
1

WAVELET COMPRESSION

WITH FEATURE PRESERVATION

AND DERIVATIVE DEFINITION

Oleg Kiselyov and Paul Fisher

Department of Computer Sciences
P.O.Box 13886

University of North Texas, Denton Texas 76203
Phone: 817-565-2767 Fax: 817-565-2799

Email: oleg@ponder.csci.unt.edu

2

FEATURES

 • Loose wavelet basis (frame) *

 ⇒ Lower enthropy of the wavelet decomposition

 • Trimmimg of the Laplacian pyramid according
 to the "contrast-frequency ratio"*

 • Run-length + Arithmetic/LZW compression
 of the Laplacian pyramid

 → • Introducing Criteria Sets
 → Criteria Set area: control over the amount of
 loss at particular locations of the picture

 → • Discrete gradient of the picture
 from the Wavelet decomposition

 → • A number of C++ functions dealing with images
 ⇒ image manipulation language

* As suggested by DeVore, Jawerth & Lucier, DCC 91
 Unique features are marked with →

3

WAVELET DECOMPOSITION

 f(x,y) = Σ
k=0

M

 [Pk f − Pk-1 f] = Σ
k=0

M

 Σ
l,m

 ck
lm Φk

lm (x,y) (1)

where

 f(x,y) - pixel value at xth row, yth column; x,y = 0..N-1

 Φk
lm (x,y) - a frame (basis) function

 = 1 over the square of size N/2k

 with upper left corner at (l N/2k, m N/2k) (2)
 = 0 everywhere else
 M = logN

 Pk f - projector, computed as the mean intensity
 over the squares of size N/2k rounded to the closest integer

P0 f P1 f P2 f

4

ALGORITHM

 a) Building Quadtree (Gaussian pyramid)

 ak
lm = f(l,m); k = M, l,m=0..N-1

 ak-1
lm = round 4

1
 (ak

2l,2m + ak
2l+1,2m + ak

2l,2m+1 + ak
2l+1,2m+1)

k=M,M-1,...1; l,m=0..2k-1 - 1

 b) Building Laplacian Pyramid

 c0
00 = a0

00

 ck+1
lm = ak+1

lm − ak
l/2,m/2

k=0,1,..M-1; l,m=0..2k+1 - 1

 c) Trimming/Quantization
 ==> SEE THE NEXT PAGE

 d) Run-Length Coding
 of zero gaps left after trimmimg

 e) Arithmetic/LZW Compressing
 the entire output file

NOTE,
Time complexity of the entire algorithm ∝ size of the image

5

TRIMMING

 I. Uniform

• Sets ck
lm = 0 if ||ck

lm Φk
lm (x,y)|| < T, a threshold

• Keeps only significant features of the image

(contrast) × (grain-level) > threshold

 uniformly over the entire picture

 → II. Non-Uniform

• Preserves certain image features in lossy compression

 according to a (predefined) Criteria Set

• Criteria Set Area
 sets out regions to trim finer/harsher

 ⇒ user-specified weight function/image r(x,y)

• Trimming criterion

|ck
lm | ||Φk

lm (x,y)||r(x,y) < T

(contrast) × (grain-level) × (weight(x,y)) < threshold

• Benefits

• Areas of special interest are encoded almost lossless

• Higher compression ratio

• Very smooth transition between coarse/fine areas

6

DISCRETE GRADIENT

Definition

 Df(x,y) = |Dx f(x,y) | + |Dy f(x,y) | (3)

 Dx f(x,y) = f(x+1,y) − f(x-1,y),

 Dy f(x,y) = f(x,y+1) − f(x,y-1), (4)

Computation

 Dx f(x,y) = Σ
k=0

M

 Σ
l,m

 ck
lm Dx Φk

lm (x,y)

1

Φk
lm (x,y)

 + + − −

Dx Φk
lm (x,y)

 +
 +

 −
 −

Dy Φk
lm (x,y)

The point

• Highlighting lines, borders, etc.

• Control over the scale of non-regularities to emphasize

• Preventing the noise enhancement

7

EXAMPLE of PROGRAM

// This may look like C code, but it is really -*- C++ -*-
// Main module

#include "laplpyr.h"
#include <builtin.h>
extern void system(const char * command);

main()
{
 IMAGE image("../old_images/lenna.xwd");

 image.display("Original image");
 LaplPyr lp(image,log2(image.q_nrows())+1);
#if 0
 IMAGE weight(image); // Non-uniform Trimming
 weight = 1;
 weight.square_of(256,rowcol(127,127)) = 10;
 lp.parse_coeffs(400,weight);
#else
 lp.parse_coeffs(400); // Uniform Trimming
#endif

 lp.write("/tmp/aa");
 system("comp_ratio ../old_images/lenna.xwd /tmp/aa");
 LaplPyr lp1("/tmp/aa"); // Read the pyramid back

 IMAGE & new_image = *(lp1.compose());
 new_image.display("Reconstructed image");
 compare(image,new_image,"Original and reconstructed images");

 IMAGE diff_image(image);
 diff_image = image; diff_image -= new_image;
 message("
-->Root mean square error is %g
",
 sqrt((diff_image * diff_image) / diff_image.q_nrows() /
 diff_image.q_ncols()));

 IMAGE & d_image = *(lp1.derivative_image());
 d_image *= 4;
 d_image.invert();
 d_image.display("Derivative image");
}

8

 Original 512 × 512 × 8 image "lenna"

Discrete Derivative

Compression 12:1, threshold 50

Discrete Derivative

Compression 58:1, threshold 400

Discrete Derivative

Discrete Derivative

Non-uniform trimming

threshold 400, weight function:

Compression 21:1
1 10

