
Interpreting types as abstract values

Oleg Kiselyov (FNMOC)
Chung-chieh Shan (Rutgers University)

Formosan Summer School on Logic, Language, and Computation
July 9–10, 2008

Abstract

We expound a view of type checking as evaluation with ‘abstract val-
ues’. Whereas dynamic semantics, evaluation, deals with (dynamic) values
like 0, 1, etc., static semantics, type checking, deals with approximations
like int. A type system is sound if it correctly approximates the dynamic
behavior and predicts its outcome: if the static semantics predicts that a
term has the type int, the dynamic evaluation of the term, if it terminates,
will yield an integer.

As object language, we use simply-typed and let-polymorphic lambda
calculi with integers and integer operations as constants. We use Haskell
as a metalanguage in which to write evaluators, type checkers, type re-
constructors and inferencers for the object language.

We explore the deep relation between parametric polymorphism and
‘inlining’. Polymorphic type checking then is an optimization allowing us
to type check a polymorphic term at the place of its definition rather than
at the places of its use.

1 Introduction: Untyped λ-calculus with con-
stants

This is the background material the students are supposed to know already. It
is here for completeness only.

Our object language in this course is the simply typed λ-calculus with integer
constants, addition and branching on zero. When extended with booleans, the
language is often called PCF.

Figure 1 is the ‘standard presentation’ of such a language, as typically found
in programming language books and articles. The syntax is given by a context-
free grammar with the non-terminal ‘Terms’; i stands for an integer literal; x
stands for one out of the countably infinitely-many variables. The semantics is
given by transition rules.

Variables are either free or bound. The α-conversion (aka, hygiene) specifies
that two lambda terms are equivalent if they differ only in the naming of bound

1

Terms E,F ::= i | x | λx.E | FE | E1 + E2 | ifz EE1E2

Transitions (λx.E)F ; E{x 7→ F} (β)
(λx.Ex) ; E, x /∈ FV E (η)

i1 + i2 ; i1 +̇ i2 (δ1)

ifz iE1E2 ;

{
E1 i = 0

E2 i 6= 0
(δ2)

E[E1] ; E[E2], if E1 ; E2 (congr)

Figure 1: Basic calculus: λ-calculus with constants

variables. For example, these two terms are equivalent: (λx. λy. xy(λx. x))y ≡α

(λx. λz. xz(λx. x)) ≡α (λu. λz. uz(λx. x))
In the β-rule, the notation E{x 7→ F} means a capture-avoiding substitution

of F for x in E. Here is an example where the capture-avoidance, hygiene,
matters: λx.(λz. λx. z)x.

It may happen that none of the transitions apply to a term: e.g., 1 or λx. x.
Such a term is in normal form. It may happen that several rules may apply:
(λy. λz. 1+2)((λx. 3x)+4). A reduction strategy determines which of the several
possible rule applications to do first.

• Normal order strategy: leftmost outermost rule application (‘redex’) first;

• Applicative order: leftmost innermost first;

• Call-by-name (CBN): leftmost outermost in a non-value; the η-rule does
not apply;

• Call-by-value (CBV): leftmost innermost in a non-value; the η-rule does
not apply;

In CBV and CBN, certain terms are declared values based on their syntactic
form: integers, variables and lambda-abstractions. Values are not further re-
ducible. The transition rules only performed in certain contexts: the rules are
context-sensitive.

With normal or applicative order strategies, we either reach a normal form,
or we keep applying transition rules forever. Church-Rosser theorem; the normal
order reduction strategy will always lead to the normal form if there is one. With
CBV or CBN, we have three possibilities: reaching a value, keep applying the
rules, or getting stuck.

Exercise: show the reductions in the above term using the four strategies.
Why the η-rule is not used in CBV and CBN?

The reduction semantics is an operational semantics: a term means what
it eventually reduces to. An operational semantics is a (partial) mapping from
terms to terms. Why is it partial?

The denotational semantics gives meaning to program phrases by mapping
or relating them to some other objects; the meaning of the latter is considered

2

‘obvious’. When giving denotational semantics, we have to specify these other
objects. Often they are mathematical objects such as numbers and mathematical
functions. In our case, the domain of denotation is Haskell integers and Haskell
functions.

How does the CBV/CBN distinction manifest itself in the denotational se-
mantics?

To quote from [3], denotational semantics has three basic principles:

1. Every syntactic phrase in a program has a meaning, or denotation.

2. Denotations are well-defined mathematical objects, such as mathematical
functions (often higher-order functions).

3. The meaning of a compound syntactic phrase is a mathematical combina-
tion of the meanings of its immediate subphrases.

The last assumption is often called compositionality or, according to Stoy, the
denotational assumption.

Let us now see how we implement this semantics in Haskell.

2 Untyped λ-calculus embedded in Haskell

Code file: EvalN.hs.
We must decide first how to represent terms of the object language in Haskell,

our metalanguage. We represent variables as Strings, integers as Ints, and
object terms as the values of the following data type:

type VarName = String
data Term = V VarName

| L VarName Term
| A Term Term
| I Int
| Term :+ Term
| IFZ Term Term Term
deriving (Show, Eq)

infixl 9 ‘A‘

Here in a sample term:

(L "x" (IFZ (V "x") (I 1) ((V "x") :+ (I 2)))) ‘A‘ (I 10)

In denotational approach, giving meaning to terms is relating them to some
other objects. In our case, these ‘other objects’ are Haskell values, elements of
the following data type:

data Value = VI Int | VC (Value -> Value)
instance Show Value where

show (VI n) = "VI " ++ show n
show (VC _) = "<function>"

3

The necessity of environments: to give a meaning to L "x" (V "x") in terms
of its sub-terms’ meanings, we should give a meaning to (V "x"). But what is
the meaning of a free variable?

An environment is a finite map from variables to their meanings, from
VarName to Value:

type Env = ...

env0 :: Env
lkup :: Env -> VarName -> Value
ext :: Env -> (VarName,Value) -> Env

Here is one implementation of the environment:

type Env = [(VarName, Value)]

env0 = []

lkup env x = maybe err id $ lookup x env
where err = error $ "Unbound variable " ++ x

ext env xt = xt : env

Other choices: functions, Data.Map.
Denotational semantics relates a Term to a Value in the environment spec-

ifying the meaning of free variables in the Term. In Haskell, the denotational
semantics of the object language is given as the following function.

eval :: Env -> Term -> Value
eval env (V x) = lkup env x
eval env (L x e) = VC (\v -> eval (ext env (x,v)) e)
eval env (A e1 e2) =

let v1 = eval env e1
v2 = eval env e2

in case v1 of
VC f -> f v2
v -> error $

"Trying to apply a non-function: " ++ show v
eval env (I n) = VI n
eval env (e1 :+ e2) =

let v1 = eval env e1
v2 = eval env e2

in case (v1,v2) of
(VI n1, VI n2) -> VI (n1+n2)
vs -> error $

"Trying to add non-integers: " ++ show vs
eval env (IFZ e1 e2 e3) =

let v1 = eval env e1
in case v1 of

4

VI 0 -> eval env e2
VI _ -> eval env e3
v -> error $

"Trying to compare a non-integer to 0: " ++ show v

Our sample term, in the empty environment, evaluates to VI 12:

eval env0 (L "x" (IFZ (V "x") (I 1) ((V "x") :+ (I 2)))
‘A‘ (I 10))

Questions about eval:

• Is eval a partial function? Partiality as divergence (we see later) or as
getting stuck? What ‘getting stuck’ means in our eval?

• Why eval expresses denotational semantics? Is eval compositional?

• Does eval correspond to CBN or CBV? Or call-by-need? Note the A-case,
the type of the environment, the fact the code is in Haskell. Can we write
a test that gives the conclusive answer?

• Can we see the correspondence with β, η and δ-rules?

• Where are the substitutions? In which sense one may say that the envi-
ronment is a delayed substitution?

• Should we worry about hygiene? Where is the α-conversion?

• Why can we say that we evaluate (L x e) to a closure? What exactly is
it closed over?

Taking advantage of the metalanguage:

(vx,vy) = (V "x", V "y")
term1 = L "x" (IFZ vx (I 1) (vx :+ (I 2)))

We use vx as a shortcut for V "x", taking advantage of Haskell’s facility to
name expressions, so that complex expressions can be succinctly referred to
by their names. We see the benefit of defining a language by embedding it in
a metalanguage (as an embedded DSL): we can take great advantage of the
metalanguage facilities such as definitions, module system, etc.

More examples of terms and their meanings:

test11 = eval env0 term1
test12 = eval env0 (term1 ‘A‘ (I 2)) -- VI 4
test13 = eval env0 (term1 ‘A‘ (I 0)) -- VI 1
test14 = eval env0 (term1 ‘A‘ vx) -- *** Exception:

-- Unbound variable x
term2 = L "x" (L "y" (vx :+ vy))
test21 = eval env0 term2
test22 = eval env0 (term2 ‘A‘ (I 1))
test23 = eval env0 (term2 ‘A‘ (I 1) ‘A‘ (I 2)) -- VI 3

5

We observe that not all terms have meanings: eval is indeed partial. Here are
a few more problematic terms. Some problems are ‘hidden’, showing up only in
some ‘contexts’.

term3 = L "x" (IFZ vx (I 1) vy)
test31 = eval env0 term3
test32 = eval env0 (term3 ‘A‘ (I 0)) -- VI 1
test33 = eval env0 (term3 ‘A‘ (I 1)) -- *** Exception:

-- Unbound variable y
term4 = L "x" (IFZ vx (I 1) (vx ‘A‘ (I 1)))
test41 = eval env0 term4
test42 = eval env0 (term4 ‘A‘ (I 0)) -- VI 1
test43 = eval env0 (term4 ‘A‘ (I 1)) -- applying a non-function

term6 = (L "x" (I 1)) ‘A‘ vy
test61 = eval env0 term6

What does the result of term6 tell us about our language being CBV or CBN?
Let’s define more interesting terms: e.g., multiplication, using the familiar

equation (x + 1)y = xy + y. Here is the first try:

tmul1 = L "x" (L "y"
(IFZ vx (I 0)
((tmul1 ‘A‘ (vx :+ (I (-1))) ‘A‘ vy) :+ vy)))

testm1 = eval env0 (tmul1 ‘A‘ (I 2) ‘A‘ (I 3))

It does work. Is it, however, cheating and taking advantage of the metalan-
guage too far? Try showing the term. We observe that infinitary terms may be
finitely represented.

The honest solution uses the object language itself for non-trivial opera-
tions such as recursion. We rely on the Y combinator, termY, which has the
property termY f x being equal to f (termY f) x. This property suggests the
implementation:

termY = L "f"
(delta ‘A‘ L "y" (L "x" (vf ‘A‘ (delta ‘A‘ vy) ‘A‘ vx)))

where delta = L "y" (vy ‘A‘ vy)
vf = V "f"

tmul = termY ‘A‘ (L "self" (L "x" (L "y"
(IFZ vx (I 0)
(((V "self") ‘A‘ (vx :+ (I (-1))) ‘A‘ vy) :+ vy)))))

testm2 = eval env0 (tmul ‘A‘ (I 2) ‘A‘ (I 3)) -- VI 6

Now we can observe divergence: try multiplying (−1) by (−1).
Exercises:

• add the recursion operator as a primitive in the object language:
data Term = ... | Fix Term (needed for the next chapter)

6

• add multiplication as a primitive

• add comparisons and booleans (again, as derived operations and as prim-
itives; compare)

• implement Fibonacci, factorial

• How to make sure the interpreter does CBN or CBV? (using ad hoc and
principled approaches)

Extra credit: write a custom Show instance for terms and for values. For
more extra credit: use the pretty-printing library.

Next: adding types.

3 What is a type?

“Types arise informally in any domain to categorize objects according to their
usage and behavior” (Cardelli, Wegner, 1985)

• A type is a set of values

• A type is a set of values and operations on them

• Types as ranges of significance of propositional functions (Bertrand Rus-
sell, ‘Mathematical Logic as based on the theory of types’, 1908). In
modern terminology, types are domains of predicates

• Type structure is a syntactic discipline for enforcing levels of abstraction
(John Reynolds)

• A type system is a syntactic method for automatically checking the ab-
sence of certain erroneous behaviors by classifying program phrases ac-
cording to the kinds of values they compute (Benjamin Pierce, ‘Types
and Programming Languages’)

Russell’s view is most unifying: On one hand, it suggests that a type denotes
a collection of objects. On the other hand, Russell introduced types specifically
as a syntactic restriction on logical formulas, to rule out formulas expressing
Russell’s paradox and formulas exhibiting circularity. Russell came to his view
by considering universally quantified propositions like ∀n.(PerfectNumber(n) →
Even(n)). Although formally n ranges over the whole universe, it really does not
make sense to evaluate the propositional function, or predicate – the formula in
the parentheses parameterized by n – when n is anything but a natural number.
When n is a color or a proposition, PerfectNumber(n) is not just true or false
– it is meaningless. Likewise, the proposition p(0) ∧ (∀x. p(x) → p(s(x))) →
∀x. p(x) makes sense only when p is a predicate over natural numbers. Thus
each propositional function makes sense only when its argument is within a
particular ‘subuniverse’ – the range of significance. We stress that we can tell
these ranges of significance just by the (syntactic) look of the formula: in the

7

first proposition, we see that n must be a natural number. Although we can
tell, by the look of it, whether or when a proposition ‘makes sense,’ we cannot
likewise tell if the proposition is true or false – the latter requires evaluation. In
fact, whether the first proposition holds is not known to this day.

Thus a type is an approximation of a dynamic behavior that can be derived
from the form of an expression.

Types are usually quite imprecise approximations: if an expression has the
type Int, we are sure that if the evaluation of the expression terminates, it will
yield some particular integer. Just by looking at the form of the expression
(using the simple type system of this course), we cannot tell which integer.
Types are useful usually not in what they tell but in what they do not tell.
For example, if an expression has the type Int, we know that evaluating the
expression never yields a function (given any dynamic inputs). Furthermore, in
the type system of this lecture, if an expression has a type, its evaluation will
never get stuck. Types approximate the dynamic behavior, abstracting away
many details. If the type system is sound, the specific concrete behavior is
certainly within the approximation. Thus if the approximation does not include
‘being stuck’ behavior, then any concrete behavior won’t get stuck.

4 Type reconstruction in Church style

Code file: TEvalNC.hs.
In this course, we will be concerned with simple types:

data Typ = TInt | Typ :> Typ
infixr 9 :>

The type TInt is an abstraction over a set of integers; the type TInt :> TInt
is an abstraction over a set of integer-valued functions on integers. One concrete
member of that set is ‘increment’. What are some concrete members of

• TInt :> TInt :> TInt,

• (TInt :> TInt) :> TInt and

• TInt :> (TInt :> TInt)?

In Church’s original typed λ-calculus, all terms and variables were annotated
with their types. If we don’t know to which objects a predicate may meaning-
fully apply, then what is the purpose of writing this predicate. That is a reason-
able point, leading, however, to a very heavy notation: (λx:int→int.(x: int →
int)(1: int)):(int→ int)→ int

The grammar of terms (formation rules) in the original Church calculus
were all typed, so we can determine the type of a composite expression from
the type of its components. This determination is a deduction, which permits
us (originally, Girard and Reynolds) to lighten the notation. We should only
annotate binders with types, and deduce the annotations on all other subterms

8

and on the whole term. If we succeed in determining the type of the term, we
declare it well-typed. One may prove that evaluation of a well-typed term does
not get stuck, and, if terminates, gives a value that is a concrete instance of the
deduced type.

The topic of this part therefore is this deduction of the type of the term.

Type checking, type inference, type reconstruction These terms are
used in specific and more general meanings, and so may be hard to distinguish.
Suppose, like in the original Church λ-calculus, we are given a term where every-
thing – every bound variable, every subterm, and the term itself – is annotated
with types. The problem is then to check if the term is well-typed, i.e., if it
indeed has the type given by the annotation. In this case we merely check the
consistency of the annotations. This is the problem of type checking in the strict
sense. This problem arises for example when type-checking proof terms of Coq
or type-checking programs in the intermediate language of a compiler, to assure
the correctness of compilation (GHC core and core-lint).

Normally we are given a term with some type annotations missing. For
example, only bound variables are annotated with types; the type for the whole
term is not given. Again we want to check if the term is well-typed, and if so,
recover the missing annotations. This problem is generally called type inference;
logically, it is a decision procedure for axiomatic theory. Some [4, Section 11]
still call this problem type checking when the well-typedness check and the
accompanying recovery of the missing annotations is straightforward, with no
‘guessing’ (hypothetical reasoning) required. This is the case of the present
section.

As we said, binding occurrences of variables must be annotated with types.
So, we have to change the syntax of our object language, however slightly: only
L-terms are changed.

data Term = ...
| L VarName Typ Term
| ...

We change the type of the environment, which previously (during evaluation,
file EvalN.hs) associated variables with their meanings, Values: type Env =
[(VarName, Value)]. In type checking, or type evaluation, the environment
still associates variables with their meanings, which are now types:

type TEnv = [(VarName, Typ)]

Types, being approximations of values, are also meanings. The environment
manipulation functions – lkup, ext, env0 – remain the same, as expected.

Here is our function teval, which compared to eval gives a different deno-
tation of a term. Now we map terms not to values but to approximations of
values, in other words, types. The signature of teval reflects this difference:

teval :: TEnv -> Term -> Typ
teval env (V x) = lkup env x

9

teval env (L x t e) = t :> teval (ext env (x,t)) e
teval env (A e1 e2) =

let t1 = teval env e1
t2 = teval env e2

in case t1 of
t1a :> t1r | t1a == t2 -> t1r
t1a :> t1r -> error $

unwords ["Applying a function of arg type",
show t1a, "to argument of type",
show t2]

t1 -> error $ "Trying to apply a non-function: " ++ show t1
teval env (I n) = TInt
teval env (e1 :+ e2) =

let t1 = teval env e1
t2 = teval env e2

in case (t1,t2) of
(TInt, TInt) -> TInt
ts -> error $ "Trying to add non-integers: " ++ show ts

teval env (IFZ e1 e2 e3) =
let t1 = teval env e1

t2 = teval env e2
t3 = teval env e3

in case t1 of
TInt | t2 == t3 -> t2
TInt -> error $

unwords ["Branches of IFZ have different types:",
show t2, "and", show t3]

t -> error $
"Trying to compare a non-integer to 0: " ++ show t

Although the code of teval has the same form as that of eval, there are
differences. The I-case in teval makes it clear that we are computing ap-
proximations: teval env (I n) returns TInt for any n, abstracting away the
available concrete information. We thus call teval an abstract interpreter. In
the case of IFZ e1 e2 e3, we no longer know the concrete value of e1, and so
cannot choose the branch. We thus evaluate both branches of the conditional
and make sure they have the same type. Only then we can statically assure
that no matter how the conditional is evaluated by eval, the result will have
the same type. In stark contrast with eval, the lambda-case of teval evaluates
under lambda. Since we know the type of the bound variable from the type
annotation, we can determine the type of the function’s body.

We may regard this code as an executable specification of the type recon-
struction algorithm. Let us follow the specification and manually process the
term λx:int→ int. λy :int.(xy) + (y + 1).

Is teval still partial and if so, what causes the partiality: divergence, or
getting stuck, or both?

10

We can try to type-check the terms we have evaluated earlier.

term1 = L "x" TInt (IFZ vx (I 1) (vx :+ (I 2)))

test1 = teval env0 term1 -- TInt :> TInt

term2a = L "x" TInt (L "y" TInt (vx ‘A‘ vy))
test2a = teval env0 term2a

term2b = L "x" (TInt :> TInt) (L "y" TInt (vx ‘A‘ vy))
test2b = teval env0 term2b -- (TInt :> TInt) :> (TInt :> TInt)

Can we give different type annotations to term2b and would it still type-check?
Type-checking problematic code:

term3 = L "x" TInt (IFZ vx (I 1) vy)
test3 = teval env0 term3

term4a = L "x" TInt (IFZ vx (I 1) (vx ‘A‘ (I 1)))
test4a = teval env0 term4a

term4b = L "x" (TInt :> TInt) (IFZ vx (I 1) (vx ‘A‘ (I 1)))
test4b = teval env0 term4b

term6 = (L "x" TInt (I 1)) ‘A‘ vy
test61 = teval env0 term6

These terms hid evaluation problems, which are now apparent. Types, as static
approximations of program behavior, give us assurance for all possible program
inputs. We type-check under lambda, and type-check both branches of condi-
tionals, so problems like unbound variables cannot hide any more.

We emphasize the similarity between eval and teval, and recall the notion
of soundness of a type system:

• Well-typed terms don’t get stuck (formally: the progress property).

• If the term yields a value, it will be of the statically predicted type (for-
mally: type preservation property, or subject reduction).

The fact the type checking relation is so similar an approximation of the evalu-
ation relation makes soundness (or unsoundness) easier to see and grasp.

Can divergence still occur?

tmul1 = L "x" TInt (L "y" TInt
(IFZ vx (I 0)
((tmul1 ‘A‘ (vx :+ (I (-1))) ‘A‘ vy) :+ vy)))

testm1 = teval env0 tmul1 -- is type-checking really decidable?

Is type-checking really decidable? Yes, if terms are finite. Why eval of testm1
succeeded but teval diverged? Because teval abstractly interprets all branches,
it has to check the whole term, whereas eval does not evaluate the whole term.

11

So, our cheating with recursion no longer works; to write recursive terms,
we have to use the fixpoint operation in the object language. Let us type-
check that operation, termY, used earlier. We start by type-checking the ‘core’
subterm of termY, the term delta, or λx. xx. How do we write delta with type
annotations?

delta = L "y" (TInt :> TInt) (vy ‘A‘ vy)
testd = teval env0 delta

Solution: introduce Fix as a primitive of the language

data Term = ...
| Fix Term -- fix f, where f : (a->b)->(a->b)

and specify how to type-check it (add a clause to teval):

teval env (Fix e) =
let t = teval env e
in case t of

(ta1 :> tb1) :> (ta2 :> tb2) | ta1 == ta2 && tb1 == tb2
-> ta1 :> tb1

t -> error $ "Inappropriate type in Fix: " ++ show t

Example of using and type-checking Fix:

tmul = Fix (L "self" (TInt :> TInt :> TInt) (L "x" TInt (L "y" TInt
(IFZ vx (I 0)
(((V "self") ‘A‘ (vx :+ (I (-1))) ‘A‘ vy) :+ vy)))))

testm21 = teval env0 tmul -- TInt :> TInt :> TInt
testm22 = teval env0 (tmul ‘A‘ (I 2)) -- TInt :> TInt
testm23 = teval env0 (tmul ‘A‘ (I 2) ‘A‘ (I 3)) -- TInt
testm24 = teval env0 (tmul ‘A‘ (I (-1)) ‘A‘ (I (-1))) -- TInt

Is teval still terminating? What is the corresponding eval rule? Why is
eval with Fix not terminating in general but teval always terminating?

The type checking of Fix illustrates an important point: we want type check-
ing to be decidable and finish quickly, even if evaluation does not terminate. We
observe that tmul and testm24 type-check, even though evaluating the term in
testm24 diverges.

Types are quickly decidable static approximation of dynamic behavior.
Does it matter for teval if the dynamic semantics is CBV vs CBN?
Bonus exercise: convert teval to be a total function (with the result type

Either String Typ. One could use the error monad.
Bonus code file TEvalNR.hs – reporting the reconstructed types for all sub-

terms of a term. So error messages can be made better: even if the full type-
checking failed, we can still show what types have been found for subterms
before the error has occurred. The bonus exercise can be reformulated so that
the result type of teval is Either (ErrMsg,Typs) Typs. Very big bonus exer-
cise: show the type of each subterm in an Emacs buffer; see the Tuareg Emacs

12

mode for OCaml and the subterm typing feature of OCaml (ocamlc -dtypes:
Save type information in filename.annot).

Next we discuss how to get by without the annotations on the bound vari-
ables: how to infer them too.

5 Type inference in Curry style

Code file: TInfT.hs.
Haskell B. Curry thought that terms may make sense without types; one

should be permitted to evaluate a term even if we don’t have any idea of the
term’s type. We get some value at the end (if we are lucky).

But we can use types to impose additional restrictions on terms. In return,
we obtain some guarantees – such as an approximation of the term’s evaluation
result and, mainly, the assurance of not getting stuck. Incidentally, Curry’s view
permits multiple type systems for the same language (with various trade-offs of
what the type system rejects vs. what it assures).

Types are well-formedness constraints on terms.
People complain that the type checker rejects their seemingly correct pro-

gram. Keep in mind that the whole purpose of types is to restrict the set
of programs; the whole value of type system is in what programs they reject.
Analogy with security: the whole purpose of security is to create inconvenience.

The problem of finding a type for a term within a given type system is called
type inference problem (Cardelli, ‘Type systems’). One can pose this problem
for a Church-style calculus (which includes type annotations) or a Curry-style
calculus. Formally, given the type environment Γ and a term e, find if there is
a type t so that the judgment Γ ` e : t is valid (alternatively, Γ can be deduced
rather than given, see TInfTEnv.hs). In the case when no annotations are given
(i.e., we start with an ‘untyped’ term), the problem of inferring all annotations
including the type of the term is sometimes called type reconstruction. Some [4]
call this (proper) type inference.

5.1 Logic variables and their unification

To build intuition, we handle two terms by hand. We start with the term we
did by hand earlier, after erasing the type annotations: λx. λy.(xy) + (y + 1).
Can we still reconstruct the type of the term (and recover the annotations along
the way)? We use the same type deduction algorithm as before, but interpret
it a bit differently, using logic variables. In elementary school, we called them
just ‘variables’. Sample problem: “A barrel has several apples. If we take five
apples, there will remain half as many as there were before. How many apples
were in the barrel?” We use x as an indeterminate number, derive another
indeterminate number x − 5, and solve the equality constraint x − 5 = x/2 to
infer that x = 10. We infer the type of our term just as we solve the elementary-
school problem.

Once we finish the processing of the term, the blackboard should contain

13

the equations:

x:t1 y:t2
t1=t3->t4 t3=t2 t2=Int t4=Int

We then determine that x should have the type Int->Int and y has the type
Int. We got the same result as before and recovered the annotations on the
bound variables. In our manual type inference, we had to: (i) introduce fresh
type variables; (ii) keep track of the equations relating two types; and (iii) chase
the binding of variables when finally writing down the types.

Let us consider one more example: λx. λy. ifz(xy)x(λz. z).

x:t1 y:t2 (z:t5)
t1=t3->t4 t3=t2 t4=Int t1=t5->t5

Now we have to solve the equations: notice two equations for t1. Solving for t1
produces more equations (for t3 and t4), which we have to solve again. This
last step illustrates that solving the equations requires unification.

The code below implements our hand-written process with small optimiza-
tions. We wish to keep our equations in solved form all the time; that is,
each equation should be in the form tvar = type (such as t1=t3->t4 but not
t5->t5=t3->t4), and there should not be multiple equations for the same type
variable. In the last example, we do not add t1=t5->t5. We should solve it right
away (do it by hand). Thus we unify types incrementally. A set of equations
in solved form is called a substitution. In other words, a substitution consists of
equations associating type variables with types.

Let us now write the code implementing our manual process. First, we
change back the syntax of our terms:

data Term = ...
| L VarName Term
| ...

There are no longer any types in terms. Second, we modify the syntax of types
to account for type variables:

data Typ = TInt | Typ :> Typ | TV TVarName
type TVarName = Int

We label type variables with integers, as when inferring types by hand.
We need to generate fresh type variables and to store the substitution. We

use the following data structure to do both. The Haskell type M.IntMap Typ
stores finite maps from Int to Typ, with library operations such as M.empty,
M.lookup and M.insert.

data TVE = TVE Int (M.IntMap Typ)

We obviously need operations to generate a yet-unused type variable (by incre-
menting the first component of TVE), to create an empty substitution, to look
up the equation for a given type variable (if any), and to add a new equation.

newtv :: TVE -> (Typ,TVE)
newtv (TVE n s) = (TV n, TVE (succ n) s)

14

tve0 :: TVE
tve0 = TVE 0 M.empty

tvlkup :: TVE -> TVarName -> Maybe Typ
tvlkup (TVE _ s) v = M.lookup v s

tvext :: TVE -> (TVarName,Typ) -> TVE
tvext (TVE c s) (tv,t) = TVE c (M.insert tv t s)

We also need the operation to chase through the equations, as we did by hand:

tvsub :: TVE -> Typ -> Typ
tvsub tve (t1 :> t2) = tvsub tve t1 :> tvsub tve t2
tvsub tve (TV v) | Just t <- tvlkup tve v = tvsub tve t
tvsub tve t = t

The second-to-last line above uses pattern guards, a form of syntactic sugar that
GHC adds to Haskell.

Finally, we need the operation to solve the equations. That is, given the
existing substitution tve and two types t1 and t2, we wish to solve t1=t2,
adding new solved equations to tve, if any. The solution may of course fail; for
example, the equation Int=t1->t2 has no solutions. Hence the type of unify.

unify :: Typ -> Typ -> TVE -> Either String TVE
unify t1 t2 tve = unify’ (tvchase tve t1) (tvchase tve t2) tve

-- chase through a substitution ‘shallowly’:
-- stop at the last equivalent type variable
tvchase :: TVE -> Typ -> Typ
tvchase tve (TV v) | Just t <- tvlkup tve v = tvchase tve t
tvchase _ t = t

In the case of no solutions, we return a string describing the problem. We start
the unification by a shallow chase.

-- If either t1 or t2 are type variables, they must be unbound
unify’ :: Typ -> Typ -> TVE -> Either String TVE
unify’ TInt TInt = Right
unify’ (t1a :> t1r) (t2a :> t2r) = either Left (unify t1r t2r)

. unify t1a t2a
unify’ (TV v1) t2 = unifyv v1 t2
unify’ t1 (TV v2) = unifyv v2 t1
unify’ t1 t2 = const (Left $ unwords ["constant mismatch:",

show t1, "and", show t2])

-- Unify a free variable v1 with t2
unifyv :: TVarName -> Typ -> TVE -> Either String TVE
unifyv v1 (TV v2) tve =

if v1 == v2 then Right tve
else Right (tvext tve (v1,TV v2)) -- record new constraint

15

unifyv v1 t2 tve = if occurs v1 t2 tve
then Left $ unwords ["occurs check:",

show (TV v1), "in",
show (tvsub tve t2)]

else Right (tvext tve (v1,t2))

-- The occurs check: if v appears free in t
occurs :: TVarName -> Typ -> TVE -> Bool
occurs v TInt _ = False
occurs v (t1 :> t2) tve = occurs v t1 tve || occurs v t2 tve
occurs v (TV v2) tve =

case tvlkup tve v2 of
Nothing -> v == v2
Just t -> occurs v t tve

The algorithm is basically the same we used in our manual derivations. Only
two aspects are new: First, the equation t1=t1 is trivially true, so we do not
add it to our set of solved equations. Second, the equation t1=t1->Int has no
solutions: a type cannot contain itself; hence the occurs check.

5.2 Type inference

We modify the type deduction algorithm in the previous section to account for
type variables. We split teval into two functions: teval’ does all the work, and
teval does the final chase – as we did on the blackboard. The type of teval’
shows that we have to thread TVE all the way through. TVE is the ‘blackboard’
with the equations.

teval’ :: TEnv -> Term -> (TVE -> (Typ,TVE))
teval’ env (V x) = \tve0 -> (lkup env x, tve0)
teval’ env (L x e) = \tve0 ->

let (tv,tve1) = newtv tve0
(te,tve2) = teval’ (ext env (x,tv)) e tve1

in (tv :> te,tve2)
teval’ env (A e1 e2) = \tve0 ->

let (t1,tve1) = teval’ env e1 tve0
(t2,tve2) = teval’ env e2 tve1
(t1r,tve3)= newtv tve2

in case unify t1 (t2 :> t1r) tve3 of
Right tve -> (t1r,tve)
Left err -> error err

teval’ env (I n) = \tve0 -> (TInt,tve0)
teval’ env (e1 :+ e2) = \tve0 ->

let (t1,tve1) = teval’ env e1 tve0
(t2,tve2) = teval’ env e2 tve1

in case either Left (unify t2 TInt) . unify t1 TInt $ tve2 of
Right tve -> (TInt,tve)

16

Left err -> error $ "Trying to add non-integers: " ++ err
teval’ env (IFZ e1 e2 e3) = \tve0 ->

let (t1,tve1) = teval’ env e1 tve0
(t2,tve2) = teval’ env e2 tve1
(t3,tve3) = teval’ env e3 tve2

in case unify t1 TInt tve3 of
Right tve -> case unify t2 t3 tve of
Right tve -> (t2,tve)
Left err -> error $ unwords ["Branches of IFZ have",

"different types.",
"Unification failed:", err]

Left err -> error $
"Trying to compare a non-integer to 0: " ++ err

teval’ env (Fix e) = \tve0 ->
let (t,tve1) = teval’ env e tve0

(ta,tve2) = newtv tve1
(tb,tve3) = newtv tve2

in case unify t ((ta :> tb) :> (ta :> tb)) tve3 of
Right tve -> (ta :> tb,tve)
Left err -> error ("Inappropriate type in Fix: " ++ err)

-- Resolve all type variables, by chasing as far as possible
teval :: TEnv -> Term -> Typ
teval tenv e = let (t,tve) = teval’ tenv e tve0 in tvsub tve t

The code is basically the same teval in TEvalNC.hs – so our new code spec-
ifies the same type system. There are a few small but interesting differences,
especially in the cases of application and of Fix. We replaced pattern matching
with unification, so that the specification become more ‘declarative’.

Logic variables thus bring a form of hypothetical reasoning. The code clearly
has the flavor of constraint programming: generating, propagating and solving
constraints. Unification is the resolution (pun intended) of equality constraints.

Let us run a few old tests:

test0 = teval’ env0 ((L "x" (vx :+ (I 2))) ‘A‘ (I 1)) tve0
-- (TV 1,TVE 2 (fromList [(0,TInt),(1,TInt)]))

term1 = L "x" (IFZ vx (I 1) (vx :+ (I 2)))
test10 = teval’ env0 term1 tve0
-- (TV 0 :> TInt,TVE 1 (fromList [(0,TInt)]))

When using teval’ we see all the accumulated equations, our ‘blackboard’. If
we want to see only the final result, the deduced type with all type variables
chased through, we use the function teval:

test1 = teval env0 term1 -- TInt :> TInt

The result is the same as before. The other tests, such as

17

tmul = Fix (L "self" (L "x" (L "y"
(IFZ vx (I 0)
(((V "self") ‘A‘ (vx :+ (I (-1))) ‘A‘ vy) :+ vy)))))

testm21 = teval env0 tmul -- TInt :> TInt :> TInt
testm22 = teval env0 (tmul ‘A‘ (I 2)) -- TInt :> TInt
testm23 = teval env0 (tmul ‘A‘ (I 2) ‘A‘ (I 3)) -- TInt
testm24 = teval env0 (tmul ‘A‘ (I (-1)) ‘A‘ (I (-1))) -- TInt

also give the same results. The terms (such as tmul) no longer have any type
annotations however.

Terms that could not be type-checked before still fail the type-checking, as
expected. There is an interesting variation: in TEvalNC.hs we had these two
terms

term4a = L "x" TInt (IFZ vx (I 1) (vx ‘A‘ (I 1)))
test4a = teval env0 term4a
-- *** Exception: Trying to apply a non-function: TInt

term4b = L "x" (TInt :> TInt) (IFZ vx (I 1) (vx ‘A‘ (I 1)))
test4b = teval env0 term4b
-- *** Exception: Trying to compare a non-integer to 0:
-- TInt :> TInt

which are essentially the same term but with different type annotations. Type-
checking of both terms failed, with the above error messages. Perhaps the term
is ‘good’ though, we merely have to find the right type annotation? Now we
write the term with no annotations:

term4 = L "x" (IFZ vx (I 1) (vx ‘A‘ (I 1)))
test4 = teval env0 term4
-- *** Exception: Trying to compare a non-integer to 0:
-- constant mismatch: TInt :> TV 1 and TInt

The error message is differently formulated; we can see right away it is produced
by the unifier. The failure to type-check term4 now tells us more: no matter
how we may annotate the bound variables in term4, it is still an ill-typed term.
A clearer example is the type-checking of the delta term. In TEvalNC.hs, we
had to write type annotations on the bound variable in delta, but we could not
find the right annotation. Perhaps we should have tried harder? Now we write
delta as it was given in EvalN.hs, with no need to think up annotations:

delta = L "y" (vy ‘A‘ vy)
testd = teval env0 delta
-- *** Exception: occurs check: TV 0 in TV 0 :> TV 1

And it still fails. So we blame the term rather than faulty annotations. The
typing of delta fails due to the occurs check. Historically, Russell and Church
introduced types to rule out terms like delta and circular definitions (which
often don’t actually define anything and lead to paradoxes).

18

In TEvalNC.hs, we had one more sample term, term2a. Let us type-check
it, with no annotations on bound variables.

term2a = L "x" (L "y" (vx ‘A‘ vy))
test2a = teval env0 term2a
-- (TV 1 :> TV 2) :> (TV 1 :> TV 2)

It is a bit odd to see type variables in the inferred type. Here is a simpler
example:

termid = L "x" vx
testid = teval env0 termid -- TV 0 :> TV 0

The inferred type has type variables. What does that mean? We can guess from
the following term

term2id = L "f" (L "y" ((I 2) :+
((termid ‘A‘ (V "f")) ‘A‘ ((termid ‘A‘ vy) :+ (I 1)))))

test2id = teval env0 term2id -- (TInt :> TInt) :> (TInt :> TInt)

which contains two occurrences of termid. We again rely on the metalanguage,
to name the term L "x" vx as termid and then refer to it by the short name.
This ‘referring to’ is sharing – the two occurrences of the name termid refer
to the same term. Do the shared terms have the same inferred type? The two
occurrences of termid are both applications, but to terms of different types.
Work out which types are those. So, what do the type variables in the inferred
type of termid tell us about the use of termid? We have just encountered
top-level parametric polymorphism.

Here is a more elaborate example of using binding in the metalanguage to
express sharing of object terms.

termlet = let c2 = L "f" (L "x" (V "f" ‘A‘ (V "f" ‘A‘ vx)))
inc = L "x" (vx :+ (I 1))
compose = L "f" (L "g" (L "x"

(V "f" ‘A‘ (V "g" ‘A‘ vx))))
in c2 ‘A‘ (compose ‘A‘ inc ‘A‘ inc) ‘A‘ (I 10) :+

((c2 ‘A‘ (compose ‘A‘ inc) ‘A‘ termid) ‘A‘ (I 100))
testlet = teval env0 termlet

Exercise: what is the value of termlet? Why is c2 so named?

6 Sharing and polymorphism

We just saw how to express sharing and polymorphism by naming object terms
in the metalanguage. This chapter extends our object language to express shar-
ing in itself. Would it work at all with types? After all, although shared untyped
terms are identical, the corresponding typed terms are not the same.

19

6.1 Implicit type variable environment: State monad

Code files: TInfTM.hs, TInfLetI.hs.
We said before that the new teval in TInfT.hs specifies the type system

more declaratively than in TEvalNC.hs. One may retort that the new code is
messier, due to tve1, tve2, tve3 in the let forms. One can easily make a
numbering mistake and use tve2 where tve3 is called for (which I did).

Let us simplify the notation by applying a few algebraic transformations to
the code. We start with the A-case in teval’:

teval’ env (A e1 e2) = \tve0 ->
let (t1,tve1) = teval’ env e1 tve0

(t2,tve2) = teval’ env e2 tve1
(t1r,tve3)= newtv tve2

in case unify t1 (t2 :> t1r) tve3 of
Right tve -> (t1r,tve)
Left err -> error err

The body of the definition has the form

\tve0 -> let (t1,tve1) = teval’ env e1 tve0 in <body>

where <body> may refer to t1 and tve1 but not tve0. That is the essence of
single-threading of tve: tve0 is ‘consumed’ by teval’ env e1 tve0 and may
no longer be used. To highlight that fact, we re-write the expression in a more
explicit form

\tve0 -> let (t1,tve1) = teval’ env e1 tve0 in E t1 tve1

where E is an expression where none of t1, tve1, and tve0 occur free. That
fact enables a β-expansion:

(\f -> \tve0 -> let (t1,tve1) = teval’ env e1 tve0 in f t1 tve1) E

Likewise teval’ env e1 obviously does not have free occurrences of t1, tve0,
and tve1. We may β-expand further:

(\m -> \f -> \tve0 -> let (t1,tve1) = m tve0 in f t1 tve1)
(teval’ env e1) E

The expression in parenthesis is a pure combinator; we may as well give it a
name, for example:

m >>= f = \tve0 -> let (t1,tve1) = m tve0 in f t1 tve1

Let us look into the type of (>>=). From the type annotation to teval’ we know
that teval’ env e1 :: (TVE -> (Typ,TVE)); E as the representation of the
body of the let form with t1 and tve explicitly abstracted should have the type
Typ -> (TVE -> (Typ,TVE)). Let us define a convenient type abbreviation

type TVEM a = TVE -> (a,TVE)

20

We could then assign to (>>=) the type TVEM Typ -> (Typ -> TVEM Typ) ->
TVEM Typ. However, the Haskell type checker infers a more general type for the
(>>=) expression

(>>=) :: TVEM a -> (a -> TVEM b) -> TVEM b

which we shall adopt.
After our re-writing of the first let-form in the A clause, we obtain:

teval’ env (A e1 e2) =
(teval’ env e1) >>= (\t1 tve1 ->
let (t2,tve2) = teval’ env e2 tve1

(t1r,tve3)= newtv tve2
in case unify t1 (t2 :> t1r) tve3 of

Right tve -> (t1r,tve)
Left err -> error err)

Re-writing the other let-forms in the same spirit gives us

teval’ env (A e1 e2) =
teval’ env e1 >>= (\t1 ->
teval’ env e2 >>= (\t2 ->
newtv >>= (\t1r tve3 ->
case unify t1 (t2 :> t1r) tve3 of

Right tve -> (t1r,tve)
Left err -> error err)))

We observe that unification operation does update tve but does not produce
any ‘direct’ result. We reflect this fact by introducing several β, η expansions:

teval’ env (A e1 e2) =
teval’ env e1 >>= (\t1 ->
teval’ env e2 >>= (\t2 ->
newtv >>= (\t1r tve3 ->
case unify t1 (t2 :> t1r) tve3 of

Right tve -> ((\tve -> ((),tve)) >>= (_ tve -> (t1r,tve))) tve
Left err -> error err)))

which we then distribute over the case statement. After introducing an auxiliary
function

unifyM t1 t2 = \tve3 ->
case unify t1 t2 tve3 of
Right tve -> ((),tve)
Left err -> error err

noting that (\t1r tve -> (t1r,tve)) is a useful combinator deserving a name

return :: a -> TVEM a
return v = \tve3 -> (v,tve3)

21

we finally obtain

teval’ env (A e1 e2) =
teval’ env e1 >>= (\t1 ->
teval’ env e2 >>= (\t2 ->
newtv >>= (\t1r->
unifyM t1 (t2 :> t1r) >>= (_ ->

return t1r))))

There are no longer any traces of tve: the threading of tve throughout the
computation is hidden in the combinator (>>=). There is no longer need to
introduce tve1, tve2, etc., there is no longer a danger of mis-numbering them.
We stress that the new form of the A-clause for teval’ is the result of algebraic
transformations, enabled by the facts that tve0 does not occur free in the body
of the first let, tve1 is not free in the body of the second let, etc – in short, tve
is used single-threadedly, linearly. The transformations are meaning-preserving:
in TInfTM.hs, we re-wrote only the A-clause of teval’ and left the other clauses
as they were in TInfT.hs. The new code type checks and works as before.

The rest of teval’ clauses can be re-written in a similar fashion. One cannot
help but notice that

teval’ env (A e1 e2) =
teval’ env e1 >>= (\t1 ->
teval’ env e2 >>= (\t2 -> ...

looks quite similar to the original let notation, only with the left- and the right-
hand sides of let reversed. This reversal, which puts the binders on the right-
hand side, looks unnatural. Fortunately Haskell has a convenient abbreviation
for such a pattern, the do-notation, which places the binders to the left of the
expressions to be bound:

teval’ env (A e1 e2) = do
t1 <- teval’ env e1
t2 <- teval’ env e2
...

This new definition for teval’ is equivalent to the one with the explicit (>>=);
in fact, the Haskell compiler rewrites the do form to the (>>=) form during the
compilation. Finally, we observe that the combinators (>>=) and return are al-
ready defined in Haskell; furthermore, our type abbreviation TVEM is State TVE
where State is a type constructor defined in Control.Monad.State. The result
of our re-writing to hide tve is the file TInfLetI.hs.

We observe that teval’ had to thread TVE, which consists of the current
substitution and the next fresh type variable, all the way through. Thus, we
can think of the teval’ computation as incurring the side effect of reading and
writing a piece of mutable state, of type TVE. This way of thinking prompts
us to use the State monad in the Haskell standard library. (Incidentally, the
implementation of the State monad uses the type s->(a,s) – compare with
the result type of teval’.)

22

type TVEM = State TVE

The monadic version of newtv, the function to allocate a fresh type variable, has
a new signature and a slightly different implementation. The TVE type explicit
in the old signature is now hidden inside the type constructor TVEM.

newtv :: TVEM Typ
newtv = do
TVE n s <- get
put (TVE (succ n) s)
return (TV n)

We also need a monadic version of unify:

unifyM :: Typ -> Typ -> (String -> String) -> TVEM ()
unifyM t1 t2 errf = do
tve <- get
case unify t1 t2 tve of

Right tve -> put tve
Left err -> fail (errf err)

Finally, we rewrite teval’ in the monadic style (we omit some cases). Again,
the return type now hides TVE inside the monadic type constructor TVEM.

teval’ :: TEnv -> Term -> TVEM Typ
teval’ env (A e1 e2) = do
t1 <- teval’ env e1
t2 <- teval’ env e2
t1r <- newtv
unifyM t1 (t2 :> t1r) id
return t1r

teval’ env (I n) = return TInt
teval’ env (e1 :+ e2) = do
t1 <- teval’ env e1
t2 <- teval’ env e2
unifyM t1 TInt ("Trying to add non-integers: " ++)
unifyM t2 TInt ("Trying to add non-integers: " ++)
return TInt

teval’ env (IFZ e1 e2 e3) = do
t1 <- teval’ env e1
t2 <- teval’ env e2
t3 <- teval’ env e3
unifyM t1 TInt ("Trying to compare a non-integer to 0: " ++)
unifyM t2 t3 (\err -> unwords ["Branches of IFZ have",

"different types.",
"Unification failed:", err])

return t2

The code of the final teval changes slightly, to explicitly run the monadic value
produced by teval’ tenv e given the initial state tve0:

23

teval :: TEnv -> Term -> Typ
teval tenv e = let (t,tve) = runState (teval’ tenv e) tve0

in tvsub tve t

The cases for application and addition here contrast with those in the non-
monadic version, TInfT.hs. The monad relieves us from threading tve explic-
itly, so we no longer worry about misnumbering tve. This worry is specific to
Haskell; in OCaml or Clean one can use the same name tve throughout. Why?

On the other hand, the monadic code is more implicit: it is imperative! The
dependencies are no longer apparent (e.g., the composition of two unifications
in the type checking of addition). Do the exercise to see what problems that
may bring:

Exercise: Comment out Control.Monad.State.Strict and uncomment
Control.Monad.State.Lazy. Now run test62 and explain the result. Is it
different from running test62 in TInfT.hs? Why?

6.2 Let-bound polymorphism as inlining

Code file: TInfLetI.hs.
Let us come back to polymorphic terms like termid. Before, we took ad-

vantage of binding in the metalanguage to name these terms and use them in
variously typed contexts:

term2id = let termid = L "x" vx
in L "f" (L "y" ((I 2) :+

((termid ‘A‘ (V "f"))
‘A‘ ((termid ‘A‘ vy) :+ (I 1)))))

We would like to write this term without relying on the metalanguage to
share (the values of) common sub-expressions such as termid. We extend the
syntax of our language with the Let form:

data Term = ...
| Let (VarName,Term) Term

so that term2id could now be written as

term2id = Let ("termid", L "x" vx)
(L "f" (L "y" ((I 2) :+
((V "termid" ‘A‘ (V "f"))
‘A‘ ((V "termid" ‘A‘ vy) :+ (I 1))))))

Exercise: extend eval in EvalN.hs to handle Let.
To evaluate this expression, we observe that Let is sort of an optimization: it

lets us replace a common sub-expression that occurs in several places in a larger
term by a much shorter name. Let may also speed up evaluation, because we can
evaluate a common sub-expression only once and use the result several times.
Type checking of Let presents a problem however. Although syntactically the
same term appears in several places (so we can ‘lift’ these occurrences), the

24

inferred type may differ from occurrence to occurrence. (This is the case for
term2id. Why?) So, we can’t assign a single type to the term. That is,
teval may not return the same type for multiple occurrences of the same term.
This observation suggests that, before type-checking a Let term, we ‘undo’ the
optimization and inline the common term wherever it is mentioned, replacing
the Let-bound variable with the term itself. Thus, before applying teval to
the term term2id, we preprocess the term to yield

term2id’ = L "f" (L "y" ((I 2) :+
(((L "x" vx) ‘A‘ (V "f"))
‘A‘ (((L "x" vx) ‘A‘ vy) :+ (I 1))))))

and proceed with type inference as before. We can do better however, relying
on the compositionality of teval. Indeed, teval’ env term2id’ has the form

teval’ env term2id’ = do
...
t1 <- teval’ env’ (L "x" vx)
...
t2 <- teval’ env’ (L "x" vx)
...

The Haskell expression teval’ env’ (L "x" vx) appears twice above, so we
can lift it at the metalanguage level, along with its side effect on the mutable
state. Thus, we can write type checking of term2id with the Let-form as follows:

teval’ env term2id = do
let env’ = ext env ("termid", teval’ env (L "x" vx))
...
t1 <- lkup env’’ (V "termid")
...
t2 <- lkup env’’ (V "termid")
...

We stress that the computation teval’ env’ (L "x" vx) associated with the
variable (V "termid") is a monadic action. It is executed several times in the
above code, generally at different states TVE. Thus the types resulting from the
executions, t1 and t2, may differ. This explains how the same term occurring
in different places may be given different types.

To implement this approach formally, we need to change surprisingly little.
First of all, our TEnv no longer associates term variables with types. Rather,
it associates term variables with monadic actions that produce a type, when
executed in the State monad hiding mutable state of type TVE:

type TEnv = [(VarName, TVEM Typ)]

We slightly change the cases for variable and lambda, and add a new case for
the Let form:

25

teval’ env (V x) = lkup env x
teval’ env (L x e) = do
tv <- newtv
te <- teval’ (ext env (x, return tv)) e
return (tv :> te)

teval’ env (Let (x,e) eb) = do
_ <- teval’ env e -- what is the point of this line?
teval’ (ext env (x, teval’ env e)) eb

We observe that in the lambda-case, we associate the variable x with a monadic
action return tv – which returns the same type tv no matter how many times
the action is executed. In contrast, the Let-case associates the variable x with
the action teval’ env e, which may create and return new type variables every
time it is executed.

The changes do not affect the type inference for expressions without Let.
All the examples from TInfT.hs can be used as they are and give the same
result. We can write new examples, with Let:

testl1 = teval env0 $ Let ("x",vx) vx -- error
testl2 = teval env0 $ Let ("x",vy) (I 1) -- error
testl3 = teval env0 $ Let ("x",(I 1)) (vx :+ vx) -- TInt

We can also re-write termlet of TInfT.hs using the object-language Let form:

termlet =
Let ("c2", L "f" (L "x" (V "f" ‘A‘ (V "f" ‘A‘ vx)))) (
Let ("inc", L "x" (vx :+ (I 1))) (
Let ("compose", L "f" (L "g" (L "x"

(V "f" ‘A‘ (V "g" ‘A‘ vx))))) (
Let ("id",L "x" vx) (
V "c2" ‘A‘ (V "compose" ‘A‘ V "inc" ‘A‘ V "inc") ‘A‘ (I 10) :+
(V "c2" ‘A‘ (V "compose" ‘A‘ V "inc") ‘A‘ V "id" ‘A‘ (I 100))

))))
testlet = teval env0 termlet -- TInt

Exercise: the following tests illustrate the difference between lambda-bound
and let-bound variables. Explain the different results of the tests.

testl66 = teval env0 $ L "x" (Let ("y",vx)
(Let ("z", (vy ‘A‘ (I 1) :+ (I 2)))
vy))

-- (TInt :> TInt) :> (TInt :> TInt), monomorphic

testl67 = teval env0 $ L "x" (Let ("y",vx) ((vy ‘A‘ (I 1)) :+
(vy ‘A‘ (L "x" vx))))

-- *** Exception: constant mismatch: TInt and TV 2 :> TV 2

testl76 = teval env0 $ Let ("x", L "y" (I 10))
(Let ("y",vx)

26

(Let ("z", vy ‘A‘ (I 1) :+ (I 2))
vy))

-- TV 4 :> TInt, polymorphic

testl77 = teval env0 $ Let ("x", L "y" (I 10))
(Let ("y",vx) ((vy ‘A‘ (I 1)) :+

(vy ‘A‘ (L "x" vx))))
-- TInt, OK.

We thus allow Let-bound variables to take polymorphic types without re-
stricting the expressions they are bound to. In particular, we do not impose the
so-called value restriction and require Let-bound polymorphic expressions to be
values. However, if the object language has effects such as mutation, then we
should not support polymorphism by executing the type-checking computation
teval’ env e multiple times, or the abstract result of type checking may not
correctly approximate the concrete result of dynamic evaluation. Why? Hint:
the contrast between sharing and replication/inlining is unobservable in a pure
language but observable in a language with effects (exercise: give an example
using assignment). If replicating an expression may affect the result of dynamic
evaluation, then type checking must refrain from replicating the expression, or
it may not correctly approximate the result of dynamic evaluation with sharing.

6.3 A polymorphic type as an approximate denotation of
a common sub-expression

Code file: TInfLetP.hs.
In this section, we optimize the type inference algorithm of TInfLetI.hs to

avoid repeated execution of the teval’ action every time a Let-bound variable
is used. We would like to type-check a common sub-expression once, where it is
defined, rather than at each point where it is mentioned. Informally, we would
like to ‘precompile’ the Let-bound expression as far as possible, associating the
Let-bound variable with the resulting ‘pre-type’. The goal is to do much of
the work of type reconstruction up front, so that each use of the Let-bound
variable is fast to type-check. This is Hindley-Milner type-checking, presented
in a non-canonical way.

The function teval of TInfT.hs inferred for the term L "x" vx the type
TV 0 :> TV 0, containing a free type variable. Since the term stands alone, the
type variable TV 0 is ‘truly free’, with nothing to constrain it. To describe such
types with ‘truly free’ type variables, we introduce type schemes:

data TypS = TypS [TVarName] Typ

explicitly enumerating the truly free type variables. Examples: TypS [] TInt
(which is essentially TInt), TypS [0] (TV 0 :> TV 0) (the type scheme for
the identity function), TypS [3] ((TV 0 :> TV 3) :> TV 3). These truly free
type variables are called generalizable or generic; the act of forming a type
scheme out of a type by explicitly specifying generic variables of the type is

27

called generalization. The type variables explicitly named in the type scheme
are considered bound (or, ‘quantified’) in the scheme. For example, whereas the
type ((TV 0 :> TV 3) :> TV 3) has two free type variables, TV 0 and TV 3,
only TV 0 is free in the type scheme TypS [3] ((TV 0 :> TV 3) :> TV 3).
The latter type scheme will be inferred, for example, for the Let-bound variable
y in the term terml51

terml51 = L "x" (Let ("y", L "f" ((V "f") ‘A‘ vx)) vy)
terml52 = terml51 ‘A‘ (I 10)

Indeed, the inferred type for the expression L "f" ((V "f") ‘A‘ vx) bound
to y is (TV 0 :> TV 3) :> TV 3. The type variable TV 0 is not generic be-
cause it is constrained, namely by the type of x. When terml51 is used in a
larger term, terml52, the inferred type for L "f" ((V "f") ‘A‘ vx) becomes
(TInt :> TV 3) :> TV 3. There is no longer TV 0, but the free type variable
TV 3 remains. It will remain in the type of the expression for y no matter how
terml51 is used. The type variable TV 3 is thus generic, and we can infer for y
the type scheme TypS [3] ((TV 0 :> TV 3) :> TV 3).

We make the notion of generic type variables precise a bit later. Right now
we stress that Hindley-Milner type inference associates term variables with type
schemes rather than with types:

type TEnv = [(VarName, TypS)]

It is instructive to compare this type environment with that of TInfLetI.hs,
which associated term variables with monadic actions of the type TVEM Typ. To
obtain the type, we had to execute the action in the monad TVEM. To obtain the
type from TypS, we have to instantiate it. In both cases, TVEM Typ and TypS
may be regarded as ‘pre-types’ or ‘would-be’ types, requiring certain actions to
obtain the type, which each time may return a type with fresh type variables.
To be precise, the instantiation of a type scheme, containing the type t and
the list of type variables tvs, is a TVEM action. When executed, it returns an
instance of t: for each type variable in tvs, its occurrences in t are replaced
with a fresh type variable. The name ‘instantiation’ comes from logic, where
universally quantified formulas are instantiated.

instantiate :: TypS -> TVEM Typ
instantiate (TypS tvs t) = do
tve <- associate_with_freshvars tvs
return $ tvsub tve t

where
associate_with_freshvars [] = return tve0
associate_with_freshvars (tv:tvs) = do
tve <- associate_with_freshvars tvs
tvfresh <- newtv
return $ tvext tve (tv,tvfresh)

Examples:

28

instantiate (TypS [1] TInt) -- TInt
instantiate (TypS [3] ((TV 0 :> TV 3) :> TV 3))

-- (TV 0 :> TV 42) :> TV 42

The optimized teval’ differs from the unoptimized teval’ in TInfLetI.hs
in only three cases:

teval’ env (V x) = instantiate (lkup env x)

teval’ env (L x e) = do
tv <- newtv
te <- teval’ (ext env (x, TypS [] tv)) e
return (tv :> te)

teval’ env (Let (x,e) eb) = do
t <- generalize (teval’ env e)
teval’ (ext env (x,t)) eb

The variable case now instantiates a type scheme to obtain the type; this is
faster than executing the action associated with the variable, as was the case
in TInfLetI.hs. The lambda-case creates an association of a variable with
a ‘would-be’ type. In TInfLetI.hs that association was return tv, which is
the action that gives the same tv no matter how many times it is executed.
Now, we associate the lambda-bound variable with the likewise trivial type
scheme TypS [] tv, which returns the same tv no matter how many times it
is instantiated.

The remaining difference is in the Let-case, which reconstructs the type of
the Let-bound expression and generalizes it to the type scheme. The Let-case
is the contribution of Robin Milner to Hindley’s type system (which Milner
re-discovered).

The function generalize finds the generic type variables in a type and turns
the type into a type scheme. Informally, a type variable in a type is generic if it
does not depend on the initial state used to reconstruct the type. Our goal is to
reproduce the behavior in TInfLetI.hs when handling Let (x,e) eb. There,
generalization was the identity – that is, our ‘type scheme’ was the unexecuted
type-reconstruction action teval’ env e – and instantiation was the execution
of that action. Now, we would like to execute the action teval’ env e and
reconstruct the type of the Let-bound expression only once, before processing
the body eb.

We denote by tve_before the type checker’s initial state before executing
the action teval’ env e, and denote by tve_after the final state after execut-
ing the action. At any point in the Let-body where the Let-bound variable is
mentioned – that is, at any state that extends tve_before – we want executing
teval’ env e to be equivalent to instantiating the type scheme. That is, the
instantiation should produce exactly as many fresh type variables as does the ex-
ecution of teval’ env e. A free type variable in a type produced by executing
teval’ env e at tve_before is generic if it would still be free if tve_before
were extended with arbitrary bindings. To be more precise, a type variable tv
is generic if

29

1. tv is unbound in tve_after; and

2. tv does not appear in tvsub tve_after tvb for any type variable tvb
in tve_before (or equivalently, for any type variable tvb unbound in
tve_before).

We implement generalization using this notion of generic type variables.

generalize :: TVEM Typ -> TVEM TypS
generalize ta = do
tve_before <- get
t <- ta
tve_after <- get
let t’ = tvsub tve_after t
let tvdep = tvdependentset tve_before tve_after
let fv = filter (not . tvdep) (nub (freevars t’))
return (TypS fv t’)

The function freevars used above lists the type variables unbound in a type.

freevars :: Typ -> [TVarName]
freevars TInt = []
freevars (t1 :> t2) = freevars t1 ++ freevars t2
freevars (TV v) = [v]

Of the two conditions above for a type variable to be generic, the first is satisfied
automatically in generalize by applying tvsub tve_after to t. The second
condition is checked using the function tvdependentset.

tvdependentset :: TVE -> TVE -> (TVarName -> Bool)
tvdependentset tve_before tve_after =

\tv -> any (\tvb -> occurs tv (TV tvb) tve_after) tvbs
where tvbs = tvfree tve_before

Finally, the function tvfree lists the type variables that are allocated but not
bound:

tvfree :: TVE -> [TVarName]
tvfree (TVE c s) = filter (\v -> not (M.member v s)) [0..c-1]

We reiterate that multiple instantiations of a type scheme are exactly like
multiple executions of a type-reconstruction action – only faster. The essence
of polymorphism is inlining. A polymorphic type is an abstract interpretation
of an expression that can be inlined in many places.

Exercise: can the computation of tvdependentset be optimized?
We modify teval to generalize the inferred type of the input term to a

type scheme: we assume that the input term stands alone at the top level, so
generalization is appropriate.

teval :: TEnv -> Term -> TypS
teval tenv e = let (ts,tve) =

runState (generalize (teval’ tenv e)) tve0 in ts

30

All examples from previous files run as they are. The inferred type is pre-
sented slightly differently:

term1 = L "x" (IFZ vx (I 1) (vx :+ (I 2)))
test1 = teval env0 term1 -- TypS [] (TInt :> TInt)

testlet = teval env0 termlet -- TypS [] TInt

Now, the the identity function has the inferred type TypS [0] (TV 0 :> TV 0),
which is commonly written as ∀a. a → a.

The difference is more noticeable in

term2a = L "x" (L "y" (vx ‘A‘ vy))
test2a = teval env0 term2a
-- TypS [1,2] ((TV 1 :> TV 2) :> (TV 1 :> TV 2))

The inferred type is the type scheme, no longer containing ‘free’ type variables.
That makes it clear the inferred type for term2a is polymorphic.

Our presentation of Hindley-Milner type-checking is non-canonical in that
we only talk about mappings from type variables to types: our notions of generic
type variables and generalization never refer to a mapping from term variables
to types.

7 Type-checking an object language by type-
checking the metalanguage

We come back to Church’s point of view: untyped terms make no sense, so the
language should not permit even writing them, let alone evaluating them. All
expressible terms must be well-typed.

In EvalN.hs, we could write terms such as

term3 = L "x" (IFZ vx (I 1) vy)
term4 = L "x" (IFZ vx (I 1) (vx ‘A‘ (I 1)))

and even successfully evaluate them and their applications to some values. One
may argue though that a term (such as term3) with a reference to an unbound
variable makes no sense, no matter how well the problem is hidden.

Thus we wish to embed an object language in the metalanguage in such a
way so that terms ill-typed in the object language become ill-typed in the met-
alanguage. Therefore, the metalanguage itself will not let us successfully enter
and use ill-typed object terms. That saves us the trouble of writing teval – we
piggy-back on the (much more powerful) ‘teval’ built in the metalanguage. One
immediate advantage is that type error messages become better, with location
information, hints about the error, etc.

7.1 Representing an object language as a data type in the
metalanguage

Code file: EvalTaglessI.hs.

31

We have to use GADT – this file is not in Haskell98.
The problematic terms mentioned earlier are now rejected by the Haskell

type checker, with good error messages:

-- term3 = L (\vx -> IFZ vx (I 1) vy) -- Not in scope: ‘vy’

-- term4 = L (\vx -> IFZ vx (I 1) (vx ‘A‘ (I 1)))

Couldn’t match expected type ‘t1 -> Int’
against inferred type ‘Int’

Expected type: Term (t1 -> Int)
Inferred type: Term Int

In the first argument of ‘A’, namely ‘vx’
In the third argument of ‘IFZ’, namely ‘(vx ‘A‘ (I 1))’

-- delta = L (\vy -> vy ‘A‘ vy)
Occurs check: cannot construct the infinite type: t1 = t1 -> t2
Expected type: Term t1
Inferred type: Term (t1 -> t2)

In the second argument of ‘A’, namely ‘vy’
In the expression: vy ‘A‘ vy

Compare the tests of TInfLetP.hs with those of EvalTaglessI.hs. In the
latter case, the Haskell type-checker has inferred the types. Thus we can com-
pare our Hindley-Milner type-checker against Haskell’s.

7.2 Tagless-final approach

Code file: EvalTaglessF.hs.
The concrete syntax for object terms changes from EvalTaglessI.hs only in

case: (i 1) vs. (I 1), etc. Please compare the tests of EvalTaglessI.hs and
EvalTaglessF.hs. The tests were automatically converted by the downcase-
region function of Emacs.

It is challenging to show higher-order abstract syntax terms. Yet, in contrast
to the GADT-based approach in EvalTaglessI.hs, we can show terms in the
tagless-final approach, without extending our language with auxiliary syntactic
forms. After all, showing terms is just another way to evaluate them, to strings.

For more details, see Carette et al. [2].

8 Further reading

• Cardelli [1]

• the substitution treatment of polymorphism: [4, Section 11].

• Jones and Nielson [3, Sections 1, 2.1, 2.7, and 3.1]

• Reynolds [5, Sections 1–5]; Reynolds [6]

32

References

[1] Cardelli, Luca. 1987. Basic polymorphic typechecking. Science of Com-
puter Programming 8(2):147–172. http://lucacardelli.name/Papers/
BasicTypechecking.pdf.

[2] Carette, Jacques, Oleg Kiselyov, and Chung-chieh Shan. 2007. Fi-
nally tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. In Proceedings of APLAS 2007: 5th Asian symposium
on programming languages and systems, ed. Zhong Shao, 222–238. Lec-
ture Notes in Computer Science 4807. http://okmij.org/ftp/papers/
tagless-final-APLAS.pdf.

[3] Jones, Neil D., and Flemming Nielson. 1994. Abstract interpretation: a
semantics-based tool for program analysis. In Handbook of logic in com-
puter science, 527–629. Oxford University Press. http://www.diku.dk/
forskning/topps/bibliography/1994.html#D-58.

[4] Mitchell, John C. 1996. Foundations for programming languages.
[5] Reynolds, John C. 1998. Definitional interpreters for higher-order program-

ming languages. Higher-Order and Symbolic Computation 11(4):363–397.
ftp://ftp.cs.cmu.edu/user/jcr/defint.ps.gz.

[6] ———. 1998. Definitional interpreters revisited. Higher-Order and
Symbolic Computation 11(4):355–361. ftp://ftp.cs.cmu.edu/user/jcr/
defintintro.ps.gz.

33

