Many More Predecessors:
A Representation Workout

Oleg Kiselyov
http://okmij.org/ftp/Computation/lambda-calc.html#
predecessors

Tohoku University, Japan

J.Functional Progr., March 2020
LFCS seminar, 28 May 2021
WG2.1 meeting, 15 Dec 2021

http://okmij.org/ftp/Computation/lambda-calc.html#predecessors
http://okmij.org/ftp/Computation/lambda-calc.html#predecessors

Outline

» Introduction
Main idea
More predecessors, generally
More predecessors, specifically
Un-application
Leitmotif

Conclusions

Subject

Pure untyped lambda-calculus and Church numerals

Subject

Pure untyped lambda-calculus and Church numerals

co:= AfAz.x
c:= Afx.fux
co:= Afx.f (f x)

Cni= Az fMg

Successor SUCC Cpp " C(n41)
succ := An.Afz.f (n f x)

Predecessor pred c(,,11) ~" ¢,

Motivation

Why would anyone care?

Motivation

Why would anyone care?

> It’s a good puzzle: even Church was stumped

Motivation

Why would anyone care?

> It’s a good puzzle: even Church was stumped

» Colorful story: tooth fairies, altered states of mind, ...

Motivation

Why would anyone care?

> It’s a good puzzle: even Church was stumped
» Colorful story: tooth fairies, altered states of mind, ...

» The commonly explained Kleene predecessor is called “very
tricky” and takes a while to explain

Motivation

Why would anyone care?

> It’s a good puzzle: even Church was stumped
» Colorful story: tooth fairies, altered states of mind, ...

» The commonly explained Kleene predecessor is called “very
tricky” and takes a while to explain

» Kleene predecessor is one of the worst in every metric:
hard to explain, hard to fit on one line, not efficient, ...

Motivation

Why would anyone care?

| 2
>
>

It’s a good puzzle: even Church was stumped
Colorful story: tooth fairies, altered states of mind, ...

The commonly explained Kleene predecessor is called “very
tricky” and takes a while to explain

Kleene predecessor is one of the worst in every metric:
hard to explain, hard to fit on one line, not efficient, ...

Searching for predecessors turns out very insightful

Motivation

Why would anyone care?

| 2
>
>

It’s a good puzzle: even Church was stumped
Colorful story: tooth fairies, altered states of mind, ...

The commonly explained Kleene predecessor is called “very
tricky” and takes a while to explain

Kleene predecessor is one of the worst in every metric:
hard to explain, hard to fit on one line, not efficient, ...

Searching for predecessors turns out very insightful

Why did I care?

Why did I care, initially

Pure untyped lambda-calculus and Church numerals

co:= M. Az.x
c1:= AN Ax.fx
co:= A x.f (f z)

Cn = Az fMg

Successor SUCC Cp " Clnp1)
succ := A\ Afx.f (n f x)
Predecessor pred c(;,4.1) ~" ¢,

pred := An.n (Ap.p Ax.x)(Afz.f (p f z))) (Afxsz.z)
(two days + tooth)

Summary

It is a representation-change problem

Results

» Six (4 2) predecessors in plain sight
All except two are new

» All have (distinct) normal forms

Methods

» Two general methods (extend beyond numbers: trees, ..

> Several specific methods: one is particularly elegant

» Un-application

)

Outline

Introduction

» Main idea
More predecessors, generally
More predecessors, specifically
Un-application
Leitmotif

Conclusions

Koan: The Fundamental Tautology

Cp, = Cp SUCC Co

Number representations

Equality

Cy, = Cp SUCC Co

Number representations

Definition; pg and supp are parameters

Pn = Cpn SUPP Po

n >0

Number representations

Definition; py and supp are parameters

Pn = Cp, SUPP Po n >0 (**)

In the sequence pg, p1, p2;- - -

P po is the initial element

> supp is the step: supp pn ~* P(n+1)

Conversely, given pg and supp as parameters, (**) is the
closed-form for the n-th element

General Recipe: Representation Change

By (**), transform c, to a different number form p,,

If p,, are such that

» predp : P(y41) > Pn and proj : pp —> ¢, are easy to define,
or

» projpred : p(,41) > Cn is easy to define

Then the predecessor is

pred := An.projpred (n supp po)

Now to find the fitting supp and pg!

10

Diagram

7 @ & C N .
ey 7 G
rk' [f‘ 7 }’; - R /4 F” 1
I SRR VI
T + ﬂ'
R R
N A -z t b —}
F F Pz — f2 =77 >pn Fat)

11

Kleene Predecessor: midway numbers

Take p,, a point between two consecutive numbers ¢, and c,_1,
represented as as pair (¢,—1,Cp):

po := (c-1,¢c0) p1:=(co,c1) p2 := (1, C2)
The successor on p, and projpred

supp := Ap.(snd p, succ (snd p))
projpred := fst

Plugging into
pred := An.projpred (n supp po)
and normalizing gives the Kleene predecessor:

an.n (Aps.s (p(Ary.y)) (A fz.f (p(Azy.y)f x))) (Ap.p (Mfz.z) (Afz.20

12

Even better General Recipe

Then the predecessor is
pred := An.projpred (n supp po)

where projpred : p(,,41) +> Cp and is easy to define

The simplest is to make projpred (a sort of) an identity!

P(n+1) ™~ Cn
Now to somehow find pg, and supp to go with it. ..
Plan for the next

> ~ is a bijection: general methods

> ~ is the identity: specific methods

13

Diagram

7 @ & C N .
ey 7 G
rk' [f‘ 7 }’; - R /4 F” 1
I SRR VI
T + ﬂ'
R R
N A -z t b —}
F F Pz — f2 =77 >pn Fat)

14

Outline

Introduction
Main idea

» More predecessors, generally
More predecessors, specifically
Un-application
Leitmotif

Conclusions

15

Shifted-by-one numbers

P(n+1) ™~ Cn

Thus p(,,+1) are isomorphic to ¢, plus one extra element, pg

16

Shifted-by-one numbers

p(n—i—l) ~ Cp

Thus p(,,+1) are isomorphic to ¢, plus one extra element, pg

read_int_opt : unit — int option

16

Shifted-by-one numbers

P(n+1) ™~ Cn

Thus p(,,+1) are isomorphic to ¢, plus one extra element, pg

read_int_opt : unit — int option

Adding an extra element to a set: X option

po := None p1 := Some cp p2 := Some c;

16

Shifted-by-one numbers

P(n+1) ™~ Cn

Thus p(,,+1) are isomorphic to ¢, plus one extra element, pg

read_int_opt : unit — int option

Adding an extra element to a set: X option

po := None p1 := Some cp p2 := Some c;

Some c¢p if p = None

supp := Ap'{Some (succ ¢) if p = Some ¢

16

Shifted-by-one numbers

p(n—i—l) ~ Cp

Thus p(,,+1) are isomorphic to ¢, plus one extra element, pg
read_int_opt : unit — int option
Adding an extra element to a set: X option

po := None p1 := Some ¢y p2 := Some ¢y

Some c¢p if p = None

supp := Ap'{Some (succ ¢) if p = Some ¢
And the predecessor is

pred := An.fromSome (n supp None)

16

Shifted-by-one numbers

pred := An.fromSome (n supp None)

None := Ak. A\y.y Some := Ax. \k. \y.kx

supp := Ap.Some (p succ ¢p)
The predecessor is

An.(n supp po) id ¢o

or, in the desugared, normal form
an.n (A\pky.k (p(Anfz. f (n f z))(Afz.2))) (Mey.y) (Az.x) (Afz.x)

17

Optimized Koan

Cy, = Cp SUCC Co

18

Optimized Koan

Cn = Afz.cpsuccy, Cofs,

18

Optimized Koan

cn = Afzep f 2

18

Shifted-by-one numbers

pred := An.fromSome (n supp None)

None := Ak. A\y.y Some := Ax. \k. \y.kx

supp := Ap.Some (p succ ¢p)
The predecessor is

An.(n supp po) id ¢o

or, in the desugared, normal form
an.n (A\pky.k (p(Anfz. f (n f z))(Afz.2))) (Mey.y) (Az.x) (Afz.x)

19

Shifted-by-one numbers, optimized

pred := An.Afz.fromSomey. (nsupp;, Noney,)

Noney, := Ak.z Somey, = A\x. \k.kx

suppy, := Ap.Somey, (p f)
The predecessor is

AnAfz.(nsuppy, (Mk.2)) id

or, in the desugared, normal form

nfz.n (Apk.k (p f)) (Mk.z) (\y.y)

20

Outline

Introduction
Main idea
More predecessors, generally
» More predecessors, specifically
Un-application
Leitmotif

Conclusions

21

Diagram

7 @ & C N .
ey 7 G
rk' [f‘ 7 }’; - R /4 F” 1
I SRR VI
T + ﬂ'
R R
N A -z t b —}
F F Pz — f2 =77 >pn Fat)

22

Searching for -1

P(n+1) = Cn
Thus p(,41) are ¢, themselves. What is po, a.k.a c_17?

The predecessor is

pred := An.(nsucc' c_1) where

;. succ n if n is a Church numeral
succ’ = An. e
co ifnisc_q

Now to find c_; than can be distinguished from c,

23

Searching for -1

P(n+1) = Cn

Thus p(,41) are ¢, themselves. What is po, a.k.a c_17?
The predecessor is

pred := An.(nsucc' c_1) where

;. succ n if n is a Church numeral
succ’ = An. e
co ifnisc_q

Now to find c_; than can be distinguished from c,

¢, id ~* id

23

Searching for -1

P(n+1) = Cn

Thus p(,41) are ¢, themselves. What is po, a.k.a c_17?
The predecessor is

pred := An.(nsucc' c_1) where

/. succ n if n is a Church numeral
succ’ = An. e
co ifnisc_q

Now to find c_; than can be distinguished from c,

¢, id ~* id
c_1:= Afz.co succ’ := An.n id (succn)
Thus the predecessor is

An.n (Ap.p Azx.z)ANfz.f (p f z))) (Afrsz.z)
(found in the Summer of 1992) 23

Diagram

7 @ & C N .
ey 7 G
rk' [f‘ 7 }’; - R /4 F” 1
I SRR VI
T + ﬂ'
R R
N A -z t b —}
F F Pz — f2 =77 >pn Fat)

24

My favorite predecessor

C, = Cp SUCC Cp

25

My favorite predecessor

C, = Cp SUCC Cp

Cn+1 = Cp SUCC C1

25

My favorite predecessor

Cp = Cp, SUCC Co (*)

Cn+1 = Cp SUCC C1
succ® 1= A\n.n succcy

is a successor on Church numerals

25

My favorite predecessor

Cp = Cp, SUCC Co (*)

Cn+1 = Cp SUCC C1
succ® 1= A\n.n succcy

is a successor on Church numerals
succ® (A fz.co) = ¢

25

My favorite predecessor

Cp = C,, SUCC Cp (*)

Cn+1 = Cp SUCC C1
succ® 1= A\n.n succcy

is a successor on Church numerals
succ® (A fz.co) = ¢

The predecessor is

pred := An.n succ® (Afz.cp)

Or, in the desugared, normal form (size 25):

An.n (Ap.p (Aefzx. f(efx))(Ax.x)) (Afzsz.z)

25

My favorite predecessor

Cp = Cp, SUCC Co (*)

Cn+1 = Cp SUCC C1
succ® 1= A\n.n succcy

is a successor on Church numerals
succ® (A fz.co) = ¢

The predecessor is

pred := An.n succ® (Afz.cp)

Or, in the desugared, normal form (size 25):

An.n (Ap.p (Aefzx. f(efx))(Ax.x)) (Afzsz.z)

succ® is a meta-circular successor:
raise the level, extend the domain

25

Outline

Introduction

Main idea

More predecessors, generally

More predecessors, specifically
» Un-application

Leitmotif

Conclusions

26

Resolving my old puzzle

= Az fWz

Pnz := Someg") None, where
None, := MAk.z
Some, := Aa.\k.k a

Pattern-matching: un-application

otherwise

‘1 JP(n—1)z ifn >0
Pz id = {Z

Reification ¢, — pn2 reif, := An.n Some. None,
Reflection py. = ")z refl; := fix \s.A\p.p (Aq.f (5 q))

Outline

Introduction
Main idea
More predecessors, generally
More predecessors, specifically
Un-application

» Leitmotif

Conclusions

28

Looking back

» Church numerals ¢,, (Koan) with constant ¢y and unary
operation succ

» Numerals p,, built from constant pg and unary operation
supp

> X option data type, with constant None and unary
operation Some

29

Looking back

» Church numerals ¢,, (Koan) with constant ¢y and unary
operation succ
F-algebra FI(X) =1+ X

» Numerals p,, built from constant py and unary operation
supp
F-algebra FI(X) :=1+ X

> X option data type, with constant None and unary

operation Some
F-algebra/data type F(X) :=1+ X

29

Looking back

» Church numerals ¢,, (Koan) with constant ¢y and unary
operation succ
Initial F-algebra FI(X) =1+ X

» Numerals p,, built from constant py and unary operation
supp
F-algebra FI(X) :=1+ X

> X option data type, with constant None and unary

operation Some
F-algebra/data type F(X) :=1+ X

29

Looking back

» Church numerals ¢, (Koan) with constant ¢y and unary
operation succ
Initial F-algebra F'(X) := 1+ X

» Numerals p,, built from constant pg and unary operation
supp
F-algebra FI(X) =1+ X

> X option data type, with constant None and unary

operation Some
F-algebra/data type F(X) :=1+ X

Pn = Cp SUPP Py n >0 (**)

is the unique homomorphism

29

Looking back

» Church numerals ¢,, (Koan) with constant ¢y and unary
operation succ
Initial F-algebra F(X) : =1+ X

» Numerals p,, built from constant pg and unary operation

supp
F-algebra FI(X) =1+ X
> X option data type, with constant None and unary

operation Some
F-algebra/data type F(X) :=1+ X

Pn = cCpsupppp 1 >0 (**)
is the unique homomorphism
Cp = C,, SUCC Cp (*)

the unique homomorphism from an initial algebra to itself must
be the identity

29

Generalizing

General approach, for any algebraic data type:
» write down the F' functor
» apply either Bohm-Berarducci or Scott-Mogensen encoding

» mechanically obtain an efficient predecessor/extractor

30

Outline

Introduction

Main idea

More predecessors, generally
More predecessors, specifically
Un-application

Leitmotif

» Conclusions

31

What’s else in the paper

» Sample generalization: left and right branch of a binary tree

» QOutline of correctness proofs
(algebraic/equational proofs)

32

What’s else in the paper

» Sample generalization: left and right branch of a binary tree

» QOutline of correctness proofs
(algebraic/equational proofs)

If f, h, and & are such that h of = g o h then

ho(c,f) = (cn8)oh Vn > 0

32

Conclusions

Our reality may be very much like theirs. All this might
jJust be an elaborate simulation running inside a little
device sitting on someone’s table.

StarTrek TNG, Episode 6x12, “Ship in a Bottle”

33

	Introduction
	Main idea
	More predecessors, generally
	More predecessors, specifically
	Un-application
	Leitmotif
	Conclusions

