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Subject

Pure untyped lambda-calculus and Church numerals

c0 := λf.λx.x

c1 := λf.λx.f x

c2 := λf.λx.f (f x)
. . .

cn := λf.λx.f (n)x

Successor succ cn  
∗ c(n+1)

succ := λn.λfx.f (n f x)

Predecessor pred c(n+1)  
∗ cn
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Motivation

Why would anyone care?

I It’s a good puzzle: even Church was stumped

I Colorful story: tooth fairies, altered states of mind, . . .

I The commonly explained Kleene predecessor is called “very
tricky” and takes a while to explain

I Kleene predecessor is one of the worst in every metric:
hard to explain, hard to fit on one line, not efficient, . . .

I Searching for predecessors turns out very insightful

Why did I care?
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Why did I care, initially
Pure untyped lambda-calculus and Church numerals

c0 := λf.λx.x

c1 := λf.λx.f x

c2 := λf.λx.f (f x)
. . .

cn := λf.λx.f (n)x

Successor succ cn  
∗ c(n+1)

succ := λn.λfx.f (n f x)

Predecessor pred c(n+1)  
∗ cn

pred := λn.n (λp.p (λx.x)(λfx.f (p f x))) (λfxsz.z)

(two days + tooth)
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Summary

It is a representation-change problem

Results

I Six (+ 2) predecessors in plain sight
All except two are new

I All have (distinct) normal forms

Methods

I Two general methods (extend beyond numbers: trees, . . . )

I Several specific methods: one is particularly elegant

I Un-application
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Koan: The Fundamental Tautology

cn
.
= cn succ c0 (*)
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Number representations

Equality

cn
.
= cn succ c0 (*)
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Number representations

Definition; p0 and supp are parameters

pn :
.
= cn supp p0 n > 0 (**)
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Number representations

Definition; p0 and supp are parameters

pn :
.
= cn supp p0 n > 0 (**)

In the sequence p0, p1, p2,. . .

I p0 is the initial element

I supp is the step: supp pn  ∗ p(n+1)

Conversely, given p0 and supp as parameters, (**) is the
closed-form for the n-th element
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General Recipe: Representation Change

By (**), transform cn to a different number form pn

If pn are such that

I predp : p(n+1) 7→ pn and proj : pn 7→ cn are easy to define,
or

I projpred : p(n+1) 7→ cn is easy to define

Then the predecessor is

pred :
.
= λn.projpred (n supp p0)

Now to find the fitting supp and p0!
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Diagram
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Kleene Predecessor: midway numbers
Take pn a point between two consecutive numbers cn and cn−1,
represented as as pair (cn−1 , cn):

p0 := (c−1 , c0) p1 := (c0 , c1) p2 := (c1 , c2) . . .

The successor on pn and projpred

supp :
.
= λp.(snd p, succ (snd p))

projpred :
.
= fst

Plugging into

pred :
.
= λn.projpred (n supp p0)

and normalizing gives the Kleene predecessor:

λn.n (λps.s (p(λxy.y)) (λfx.f (p(λxy.y)f x))) (λp.p (λfx.x) (λfx.x)) (λxy.x)
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Even better General Recipe

Then the predecessor is

pred :
.
= λn.projpred (n supp p0)

where projpred : p(n+1) 7→ cn and is easy to define

The simplest is to make projpred (a sort of) an identity!

p(n+1) ∼ cn

Now to somehow find p0, and supp to go with it. . .

Plan for the next

I ∼ is a bijection: general methods

I ∼ is the identity: specific methods
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Shifted-by-one numbers

p(n+1) ∼ cn

Thus p(n+1) are isomorphic to cn, plus one extra element, p0

read int opt : unit → int option

Adding an extra element to a set: X option

p0 := None p1 := Some c0 p2 := Some c1 . . .

supp :
.
= λp.

{
Some c0 if p = None
Some (succ c) if p = Some c

And the predecessor is

pred :
.
= λn.fromSome (n supp None)
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Shifted-by-one numbers

pred :
.
= λn.fromSome (n supp None)

None := λk.λy.y Some := λx.λk.λy.kx

supp :
.
= λp.Some (p succ c0)

The predecessor is

λn.(n supp p0) id c0

or, in the desugared, normal form

λn.n (λpky.k (p(λnfx.f (n f x))(λfx.x))) (λky.y) (λx.x) (λfx.x)
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Optimized Koan

cn
.
= cn succ c0 (*)
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Optimized Koan

cn
.
= λfz.cn succfz c0fz
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Optimized Koan

cn
.
= λfz.cn f z
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Shifted-by-one numbers
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Shifted-by-one numbers, optimized

pred :
.
= λn.λfz.fromSomefz (n suppfz Nonefz)

Nonefz := λk.z Somefz := λx.λk.kx

suppfz :
.
= λp.Somefz (p f)

The predecessor is

λn.λfz.(n suppfz (λk.z)) id

or, in the desugared, normal form

λnfz.n (λpk.k (p f)) (λk.z) (λy.y)
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Diagram
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Searching for -1

p(n+1) ≡ cn

Thus p(n+1) are cn themselves. What is p0, a.k.a c−1?
The predecessor is

pred :
.
= λn.(n succ′ c−1) where

succ′ :
.
= λn.

{
succ n if n is a Church numeral
c0 if n is c−1

Now to find c−1 than can be distinguished from cn

cn id  ∗ id

c−1 := λfx.c0 succ′ :
.
= λn.n id (succ n)

Thus the predecessor is

λn.n (λp.p (λx.x)(λfx.f (p f x))) (λfxsz.z)

(found in the Summer of 1992)
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My favorite predecessor

cn
.
= cn succ c0 (*)

cn+1
.
= cn succ c1

succ◦ :
.
= λn.n succ c1

is a successor on Church numerals
succ◦ (λfx.c0)

.
= c0

The predecessor is

pred := λn.n succ◦ (λfx.c0)

Or, in the desugared, normal form (size 25):

λn.n (λp.p (λcfx.f(cfx))(λx.x)) (λfxsz.z)

succ◦ is a meta-circular successor:
raise the level, extend the domain
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Resolving my old puzzle

cn := λfz.f (n)z

pnz := Some(n)z Nonez where

Nonez := λk.z

Somez := λa.λk.k a

Pattern-matching: un-application

pnz id =
{
p(n−1)z if n > 0
z otherwise

Reification cn 7→ pnz reifz := λn.n Somez Nonez

Reflection pnz 7→ f (n)z reflf := fix λs.λp.p (λq.f (s q))
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Looking back

I Church numerals cn (Koan) with constant c0 and unary
operation succ

I Numerals pn, built from constant p0 and unary operation
supp

I X option data type, with constant None and unary
operation Some
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F-algebra/data type F (X) := 1 + X

pn :
.
= cn supp p0 n > 0 (**)

is the unique homomorphism

cn
.
= cn succ c0 (*)

the unique homomorphism from an initial algebra to itself must
be the identity
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Generalizing

General approach, for any algebraic data type:

I write down the F functor

I apply either Böhm-Berarducci or Scott-Mogensen encoding

I mechanically obtain an efficient predecessor/extractor
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What’s else in the paper

I Sample generalization: left and right branch of a binary tree

I Outline of correctness proofs
(algebraic/equational proofs)

If f, h, and g are such that h ◦ f
.
= g ◦ h then

h ◦ (cn f)
.
= (cn g) ◦ h ∀n ≥ 0



32

What’s else in the paper

I Sample generalization: left and right branch of a binary tree

I Outline of correctness proofs
(algebraic/equational proofs)

If f, h, and g are such that h ◦ f
.
= g ◦ h then

h ◦ (cn f)
.
= (cn g) ◦ h ∀n ≥ 0



33

Conclusions

Our reality may be very much like theirs. All this might
just be an elaborate simulation running inside a little
device sitting on someone’s table.
StarTrek TNG, Episode 6x12, “Ship in a Bottle”
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