Many More Predecessors: A Representation Workout

Oleg Kiselyov http://okmij.org/ftp/Computation/lambda-calc.html# predecessors

Tohoku University, Japan

J.Functional Progr., March 2020LFCS seminar, 28 May 2021WG2.1 meeting, 15 Dec 2021

Outline

▶ Introduction

Main idea

More predecessors, generally

More predecessors, specifically

Un-application

Leitmotif

Conclusions

Subject

Pure untyped lambda-calculus and Church numerals

Subject

Pure untyped lambda-calculus and Church numerals

$$c_{0} := \lambda f.\lambda x.x$$

$$c_{1} := \lambda f.\lambda x.f x$$

$$c_{2} := \lambda f.\lambda x.f (f x)$$

$$\dots$$

$$c_{n} := \lambda f.\lambda x.f^{(n)}x$$

Successor succ
$$c_n \rightsquigarrow^* c_{(n+1)}$$

succ $:= \lambda n \cdot \lambda f x \cdot f \ (n \ f \ x)$
Predecessor pred $c_{(n+1)} \rightsquigarrow^* c_n$

Why would anyone care?

▶ It's a good puzzle: even Church was stumped

- ▶ It's a good puzzle: even Church was stumped
- ▶ Colorful story: tooth fairies, altered states of mind, ...

- ▶ It's a good puzzle: even Church was stumped
- ▶ Colorful story: tooth fairies, altered states of mind, ...
- ▶ The commonly explained Kleene predecessor is called "very tricky" and takes a while to explain

- ▶ It's a good puzzle: even Church was stumped
- ▶ Colorful story: tooth fairies, altered states of mind, ...
- ▶ The commonly explained Kleene predecessor is called "very tricky" and takes a while to explain
- Kleene predecessor is one of the worst in every metric: hard to explain, hard to fit on one line, not efficient, ...

- ▶ It's a good puzzle: even Church was stumped
- ▶ Colorful story: tooth fairies, altered states of mind, ...
- ▶ The commonly explained Kleene predecessor is called "very tricky" and takes a while to explain
- ▶ Kleene predecessor is one of the worst in every metric: hard to explain, hard to fit on one line, not efficient, ...
- ▶ Searching for predecessors turns out very insightful

Why would anyone care?

- ▶ It's a good puzzle: even Church was stumped
- ▶ Colorful story: tooth fairies, altered states of mind, ...
- ▶ The commonly explained Kleene predecessor is called "very tricky" and takes a while to explain
- Kleene predecessor is one of the worst in every metric: hard to explain, hard to fit on one line, not efficient, ...
- ▶ Searching for predecessors turns out very insightful

Why did I care?

Why did I care, initially

Pure untyped lambda-calculus and Church numerals

$$c_{0} := \lambda f.\lambda x.x$$

$$c_{1} := \lambda f.\lambda x.f x$$

$$c_{2} := \lambda f.\lambda x.f (f x)$$

$$\dots$$

$$c_{n} := \lambda f.\lambda x.f^{(n)}x$$

Successor
$$\operatorname{succ} c_n \rightsquigarrow^* c_{(n+1)}$$

 $\operatorname{succ} := \lambda n.\lambda f x. f (n f x)$
Predecessor $\operatorname{pred} c_{(n+1)} \rightsquigarrow^* c_n$
 $\operatorname{pred} := \lambda n.n (\lambda p. p (\lambda x. x) (\lambda f x. f (p f x))) (\lambda f x s z. z)$
(two days + tooth)

Summary

It is a representation-change problem

Results

- Six (+ 2) predecessors in plain sight All except two are new
- ▶ All have (distinct) normal forms

Methods

- \blacktriangleright Two general methods (extend beyond numbers: trees, ...)
- ▶ Several specific methods: one is particularly elegant
- Un-application

Outline

Introduction

▶ Main idea

More predecessors, generally

More predecessors, specifically

Un-application

Leitmotif

Conclusions

Koan: The Fundamental Tautology

$$c_n \doteq c_n \operatorname{succ} c_0$$
 (*)

Number representations

Equality

$$c_n \doteq c_n \operatorname{succ} c_0$$
 (*

Number representations

Definition; p_0 and supp are parameters

$$\mathsf{p}_n :\doteq \mathsf{c}_n \operatorname{supp} \mathsf{p}_0 \qquad n > 0$$
 (**

Number representations

Definition; p_0 and supp are parameters

$$\mathbf{p}_n := \mathbf{c}_n \operatorname{supp} \mathbf{p}_0 \qquad n > 0 \qquad (**)$$

In the sequence p_0, p_1, p_2, \ldots

- \triangleright **p**₀ is the initial element
- **•** supp is the step: supp $p_n \rightsquigarrow^* p_{(n+1)}$

Conversely, given p_0 and supp as parameters, (**) is the closed-form for the *n*-th element

General Recipe: Representation Change By (**), transform c_n to a different number form p_n

If p_n are such that

- ▶ predp : $p_{(n+1)} \mapsto p_n$ and proj : $p_n \mapsto c_n$ are easy to define, or
- ▶ projpred : $p_{(n+1)} \mapsto c_n$ is easy to define

Then the predecessor is

pred := λn .projpred ($n \operatorname{supp} p_0$)

Now to find the fitting supp and p_0 !

Diagram

11

Kleene Predecessor: midway numbers

Take \mathbf{p}_n a point between two consecutive numbers \mathbf{c}_n and \mathbf{c}_{n-1} , represented as as pair $(\mathbf{c}_{n-1}, \mathbf{c}_n)$:

$$p_0 := (c_{-1}, c_0)$$
 $p_1 := (c_0, c_1)$ $p_2 := (c_1, c_2)$...

The successor on p_n and projpred

$$\begin{aligned} \mathsf{supp} &:= \lambda p.(\mathsf{snd}\ p,\mathsf{succ}\ (\mathsf{snd}\ p)) \\ \mathsf{projpred} &:= & \mathsf{fst} \end{aligned}$$

Plugging into

pred :=
$$\lambda n$$
.projpred ($n \operatorname{supp} p_0$)

and normalizing gives the Kleene predecessor:

 $\lambda n.n \ (\lambda ps.s \ (p(\lambda xy.y)) \ (\lambda fx.f \ (p(\lambda xy.y)f \ x))) \ (\lambda p.p \ (\lambda fx.x) \ (\lambda fx.x)$

Even better General Recipe

Then the predecessor is

pred := λn .projpred ($n \operatorname{supp} p_0$)

where projpred : $\mathbf{p}_{(n+1)} \mapsto \mathbf{c}_n$ and is easy to define

The simplest is to make projpred (a sort of) an identity!

 $\mathbf{p}_{(n+1)} \sim \mathbf{c}_n$

Now to somehow find p_0 , and supp to go with it...

Plan for the next

- \triangleright ~ is a bijection: general methods
- \blacktriangleright ~ is the identity: specific methods

Diagram

Outline

Introduction

Main idea

► More predecessors, generally

More predecessors, specifically

Un-application

Leitmotif

Conclusions

 $\mathbf{p}_{(n+1)} \sim \mathbf{c}_n$

Thus $p_{(n+1)}$ are isomorphic to c_n , plus one extra element, p_0

 $\mathbf{p}_{(n+1)} \sim \mathbf{c}_n$

Thus $p_{(n+1)}$ are isomorphic to c_n , plus one extra element, p_0

 $\mathsf{read_int_opt}: \mathsf{unit} \to \mathsf{int} \mathsf{ option}$

 $\mathbf{p}_{(n+1)} \sim \mathbf{c}_n$

Thus $p_{(n+1)}$ are isomorphic to c_n , plus one extra element, p_0 read_int_opt : unit \rightarrow int option Adding an extra element to a set: X option

 $p_0 := None$ $p_1 := Some c_0$ $p_2 := Some c_1$...

 $p_{(n+1)} \sim c_n$

Thus $p_{(n+1)}$ are isomorphic to c_n , plus one extra element, p_0 read_int_opt : unit \rightarrow int option

$$\mathsf{supp} := \lambda p. \begin{cases} \mathsf{Some } c_0 & \text{if } p = \mathsf{None} \\ \mathsf{Some } (\mathsf{succ } c) & \text{if } p = \mathsf{Some } c \end{cases}$$

 $\mathbf{p}_{(n+1)} \sim \mathbf{c}_n$

Thus $p_{(n+1)}$ are isomorphic to c_n , plus one extra element, p_0 read_int_opt : unit \rightarrow int option

$$\mathsf{supp} := \lambda p. \begin{cases} \mathsf{Some } \mathsf{c}_0 & \text{if } p = \mathsf{None} \\ \mathsf{Some } (\mathsf{succ } c) & \text{if } p = \mathsf{Some } c \end{cases}$$

And the predecessor is

pred := λn .fromSome (*n* supp None)

pred := λn .fromSome (*n* supp None)

None :=
$$\lambda k. \lambda y. y$$
 Some := $\lambda x. \lambda k. \lambda y. kx$

$$supp := \lambda p. Some (p succ c_0)$$

The predecessor is

 $\lambda n.(n \operatorname{supp} p_0) \operatorname{id} c_0$

or, in the desugared, normal form

 $\lambda n.n \ (\lambda pky.k \ (p(\lambda nfx.f \ (n \ f \ x))(\lambda fx.x))) \ (\lambda ky.y) \ (\lambda x.x) \ (\lambda fx.x)$

Optimized Koan

$$\mathsf{c}_n \doteq \mathsf{c}_n \operatorname{succ} \mathsf{c}_0 \tag{(*)}$$

Optimized Koan

$$\mathsf{c}_n \doteq \lambda f z.\mathsf{c}_n \operatorname{succ}_{fz} \mathsf{c}_{0fz}$$

Optimized Koan

$$\mathsf{c}_n \doteq \lambda f z.\mathsf{c}_n f z$$

pred := λn .fromSome (*n* supp None)

None :=
$$\lambda k. \lambda y. y$$
 Some := $\lambda x. \lambda k. \lambda y. kx$

$$supp := \lambda p. Some (p succ c_0)$$

The predecessor is

 $\lambda n.(n \operatorname{supp} p_0) \operatorname{id} c_0$

or, in the desugared, normal form

 $\lambda n.n \ (\lambda pky.k \ (p(\lambda nfx.f \ (n \ f \ x))(\lambda fx.x))) \ (\lambda ky.y) \ (\lambda x.x) \ (\lambda fx.x)$

Shifted-by-one numbers, optimized

pred := $\lambda n. \lambda f z. \text{fromSome}_{fz}$ ($n \operatorname{supp}_{fz} \operatorname{None}_{fz}$)

None_{fz} :=
$$\lambda k.z$$
 Some_{fz} := $\lambda x.\lambda k.kx$

$$\operatorname{supp}_{fz} := \lambda p.\operatorname{Some}_{fz}(p \ f)$$

The predecessor is

$$\lambda n.\lambda fz.(n \operatorname{supp}_{fz}\left(\lambda k.z\right))$$
id

or, in the desugared, normal form

$$\lambda nfz.n \ (\lambda pk.k \ (p \ f)) \ (\lambda k.z) \ (\lambda y.y)$$

Outline

Introduction

Main idea

More predecessors, generally

▶ More predecessors, specifically

Un-application

Leitmotif

Conclusions

Diagram

Searching for -1

 $\mathtt{p}_{(n+1)}\equiv \mathtt{c}_n$

Thus $p_{(n+1)}$ are c_n themselves. What is p_0 , a.k.a c_{-1} ? The predecessor is

pred :=
$$\lambda n. (n \operatorname{succ}' c_{-1})$$
 where
succ' := $\lambda n. \begin{cases} \operatorname{succ} n & \text{if } n \text{ is a Church numeral} \\ c_0 & \text{if } n \text{ is } c_{-1} \end{cases}$

Now to find c_{-1} than can be distinguished from c_n

Searching for -1

 $\mathsf{p}_{(n+1)} \equiv \mathsf{c}_n$

Thus $p_{(n+1)}$ are c_n themselves. What is p_0 , a.k.a c_{-1} ? The predecessor is

pred :=
$$\lambda n. (n \operatorname{succ}' c_{-1})$$
 where
succ' := $\lambda n. \begin{cases} \operatorname{succ} n & \text{if } n \text{ is a Church numeral} \\ c_0 & \text{if } n \text{ is } c_{-1} \end{cases}$

Now to find c_{-1} than can be distinguished from c_n

$$c_n \text{ id } \rightsquigarrow^* \text{ id}$$

Searching for -1

 $\mathbf{p}_{(n+1)} \equiv \mathbf{c}_n$

Thus $p_{(n+1)}$ are c_n themselves. What is p_0 , a.k.a c_{-1} ? The predecessor is

pred :=
$$\lambda n. (n \operatorname{succ}' c_{-1})$$
 where
succ' := $\lambda n. \begin{cases} \operatorname{succ} n & \text{if } n \text{ is a Church numeral} \\ c_0 & \text{if } n \text{ is } c_{-1} \end{cases}$

Now to find c_{-1} than can be distinguished from c_n

$$\mathsf{c}_n \text{ id } \rightsquigarrow^* \text{ id}$$

 $\mathsf{c}_{-1} := \lambda f x. \mathsf{c}_0 \qquad \qquad \mathsf{succ}' :\doteq \lambda n. n \text{ id } (\mathsf{succ } n)$

Thus the predecessor is

 $\lambda n.n~(\lambda p.p~(\lambda x.x)(\lambda fx.f~(p~f~x)))~(\lambda fxsz.z)$ (found in the Summer of 1992)

Diagram

$$c_n \doteq c_n \operatorname{succ} c_0$$
 (*)

$$c_n \doteq c_n \operatorname{succ} c_0$$
 (*)

 $c_{n+1} \doteq c_n \operatorname{succ} c_1$

$$\mathsf{c}_n \doteq \mathsf{c}_n \operatorname{succ} \mathsf{c}_0 \tag{(*)}$$

$$c_{n+1} \doteq c_n \operatorname{succ} c_1$$

 $\operatorname{succ}^\circ \coloneqq \lambda n.n \operatorname{succ} c_1$

is a successor on Church numerals

$$\mathsf{c}_n \doteq \mathsf{c}_n \operatorname{succ} \mathsf{c}_0$$
 (*)

$$c_{n+1} \doteq c_n \operatorname{succ} c_1$$

 $\operatorname{succ}^\circ := \lambda n.n \operatorname{succ} c_1$

is a successor on Church numerals

$$\operatorname{succ}^{\circ}(\lambda f x. c_0) \doteq c_0$$

$$c_n \doteq c_n \operatorname{succ} c_0$$
 (*

$$\mathsf{c}_{n+1} \doteq \mathsf{c}_n \operatorname{succ} \mathsf{c}_1$$

 $\operatorname{succ}^\circ := \lambda n.n \ \operatorname{succ} \mathsf{c}_1$

is a successor on Church numerals

$$succ^{\circ}(\lambda f x.c_0) \doteq c_0$$

The predecessor is

pred :=
$$\lambda n.n \operatorname{succ}^{\circ}(\lambda f x. c_0)$$

Or, in the desugared, normal form (size 25):

 $\lambda n.n ~(\lambda p.p ~(\lambda cfx.f(cfx))(\lambda x.x))~(\lambda fxsz.z)$

$$c_n \doteq c_n \operatorname{succ} c_0$$
 (*

$$c_{n+1} \doteq c_n \operatorname{succ} c_1$$

 $\operatorname{succ}^\circ \coloneqq \lambda n.n \operatorname{succ} c_1$

is a successor on Church numerals

$$succ^{\circ}(\lambda f x.c_0) \doteq c_0$$

The predecessor is

pred :=
$$\lambda n.n \operatorname{succ}^{\circ}(\lambda f x.c_0)$$

Or, in the desugared, normal form (size 25):

$$\lambda n.n \ (\lambda p.p \ (\lambda cfx.f(cfx))(\lambda x.x)) \ (\lambda fxsz.z)$$

 $succ^{\circ}$ is a meta-circular successor: raise the level, extend the domain

Outline

Introduction

Main idea

More predecessors, generally

More predecessors, specifically

► Un-application

Leitmotif

Conclusions

Resolving my old puzzle

$$\mathsf{c}_n := \lambda f z. f^{(n)} z$$

 $p_{nz} := Some_z^{(n)} None_z \text{ where}$ $None_z := \lambda k.z$ $Some_z := \lambda a.\lambda k.k \ a$

Pattern-matching: un-application

$$\mathbf{p}_{nz} \operatorname{\mathsf{id}} = \begin{cases} \mathbf{p}_{(n-1)z} & \text{if } n > 0 \\ z & \text{otherwise} \end{cases}$$

 $\begin{array}{ll} \text{Reification} & \mathsf{c}_n \mapsto \mathsf{p}_{nz} & \text{reif}_z := \lambda n.n \ \mathsf{Some}_z \ \mathsf{None}_z \\ \text{Reflection} & \mathsf{p}_{nz} \mapsto f^{(n)}z & \text{refl}_f := \mathsf{fix} \ \lambda s.\lambda p.p \ (\lambda q.f \ (s \ q)) \end{array}$

Outline

Introduction

Main idea

More predecessors, generally

More predecessors, specifically

Un-application

▶ Leitmotif

Conclusions

- ▶ Church numerals c_n (Koan) with constant c_0 and unary operation succ
- ▶ Numerals p_n , built from constant p_0 and unary operation supp
- X option data type, with constant None and unary operation Some

- Church numerals c_n (Koan) with constant c₀ and unary operation succ
 F-algebra F(X) := 1 + X
- Numerals p_n, built from constant p₀ and unary operation supp
 F-algebra F(X) := 1 + X
- X option data type, with constant None and unary operation Some
 F-algebra/data type F(X) := 1 + X

- Church numerals c_n (Koan) with constant c₀ and unary operation succ Initial F-algebra F(X) := 1 + X
- Numerals p_n, built from constant p₀ and unary operation supp
 F-algebra F(X) := 1 + X
- X option data type, with constant None and unary operation Some
 F-algebra/data type F(X) := 1 + X

- Church numerals c_n (Koan) with constant c₀ and unary operation succ Initial F-algebra F(X) := 1 + X
- Numerals p_n, built from constant p₀ and unary operation supp
 F-algebra F(X) := 1 + X
- X option data type, with constant None and unary operation Some
 F-algebra/data type F(X) := 1 + X

$$\mathbf{p}_n := \mathbf{c}_n \operatorname{supp} \mathbf{p}_0 \qquad n > 0 \qquad (**)$$

is the unique homomorphism

- Church numerals c_n (Koan) with constant c₀ and unary operation succ
 Initial F-algebra F(X) := 1 + X
- Numerals p_n , built from constant p_0 and unary operation supp

F-algebra F(X) := 1 + X

X option data type, with constant None and unary operation Some
 F-algebra/data type F(X) := 1 + X

$$\mathbf{p}_n :\doteq \mathbf{c}_n \operatorname{supp} \mathbf{p}_0 \qquad n > 0 \qquad (**)$$

is the unique homomorphism

$$c_n \doteq c_n \operatorname{succ} c_0$$
 (*)

the unique homomorphism from an initial algebra to itself must be the identity

Generalizing

General approach, for any algebraic data type:

- \blacktriangleright write down the F functor
- ▶ apply either Böhm-Berarducci or Scott-Mogensen encoding
- ▶ mechanically obtain an efficient predecessor/extractor

Outline

Introduction

Main idea

More predecessors, generally

More predecessors, specifically

Un-application

Leitmotif

► Conclusions

What's else in the paper

- ▶ Sample generalization: left and right branch of a binary tree
- Outline of correctness proofs (algebraic/equational proofs)

What's else in the paper

Sample generalization: left and right branch of a binary treeOutline of correctness proofs

(algebraic/equational proofs)

If $f,\,h,\,{\rm and}\;g$ are such that $h\circ f\doteq g\circ h$ then

$$\mathbf{h} \circ (\mathbf{c}_n \mathbf{f}) \doteq (\mathbf{c}_n \mathbf{g}) \circ \mathbf{h} \qquad \forall n \ge 0$$

Our reality may be very much like theirs. All this might just be an elaborate simulation running inside a little device sitting on someone's table. StarTrek TNG, Episode 6x12, "Ship in a Bottle"