
ISSN 2186-7437

NII Shonan Meeting Report

No. 146

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Programming and Reasoning with
Algebraic Effects and Effect Handlers

Sam Lindley
Nicolas Wu

Oleg Kiselyov
Gordon Plotkin

March 25–29, 2019



Programming and Reasoning with Algebraic

Effects and Effect Handlers

Organizers:
Oleg Kiselyov (Tohoku University, Japan)

Sam Lindley (The University of Edinburgh, UK)
Gordon Plotkin (The University of Edinburgh, UK)

Nicolas Wu (University of Bristol, UK)

March 25–29, 2019

Algebraic effects [11, 12] and effect handlers are becoming an increasingly
popular approach for expressing and composing computational effects. There
are implementations of algebraic effects and effect handlers in Clojure, F#,
Haskell [6, 7], Idris [2], Javascript1, OCaml PureScript, Racket, Scala2, Scheme,
Standard ML, and even C [8]. There are full-fledged languages built around
effects such as Eff [1], Frank [10], Links [4], Koka [9], and Multicore OCaml [3].
Moreover, there is growing interest from industry in effect handlers. For in-
stance, Facebook’s React library for JavaScript UI programming is directly
inspired by effect handlers, and Uber’s recently released Pyro tool for prob-
abilistic programming and deep learning relies on effect handlers. Such interest
arises from the ease of combining in the same program independently developed
components using algebraic effects and effect handlers.

The increased adoption and use of algebraic effects and effect handlers reveal
and make pressing three main problems: reasoning, performance, and typing.
These problems may appear disparate, but we believe there are in fact deep
connections that bring them together.

Reasoning Algebraic effects are defined by a signature of operations and an
equational theory that describes how the operations interact, providing direct
support for reasoning. Effect handlers are modular interpreters for algebraic
effects, giving meaning to such operations. Existing implementations of effect
handlers dispense with equations, largely because many open questions remain
about how to incorporate them into a programming language. A key ques-
tion that this meeting will seek to address is how to reintroduce equations and
other forms of reasoning back into the effect handlers picture. An important
consideration here is how to combine equational theories for several interacting
effects.

1https://www.humblespark.com/blog/extensible-effects-in-node-part-1
2https://github.com/atnos-org/eff, https://github.com/m50d/paperdoll, among oth-

ers

1



Performance The dominant implementation method, the free monad, is no-
tably slower than the direct execution of side-effects where available. A range
of approaches for improving performance are under active investigation. These
include direct stack manipulation, in the case that continuations are used lin-
early, selective CPS translations, and fusion transformations. The jury is still
out on which techniques work best in which situations.

Typing Programming in the large involves working with complex and inter-
acting systems. Effect type systems are a powerful means of taming this com-
plexity, in a way that is amenable for practical programming. Several different
effect type systems have been introduced for algebraic effects and effect han-
dlers. It is not clear yet precisely what the tradeoffs are between the different
approaches. Many open questions remain over how best to support features
such as generative effects, and how to leverage effect type systems to support
reasoning and to improve performance.

Given the complexity of these problems and their importance, we believed
the face-to-face meeting of main community representatives would promote their
solution.

We identified five specific application areas to be discussed at the meeting
in the context of the three main problem areas:

• Effect handlers for concurrent and distributed programming;

• Effect handlers for generative effects (ML references, renaming effects,
scoped effects, modularity, runST, existentials);

• Effect handlers with behavioral types (parameterized monads, graded mon-
ads, type state, session types, answer type modification, dependent types);

• Effect handlers and resource management;

• Effect handlers for probabilistic programming.

To promote mutual understanding, we have planned for the workshop to have
substantial time available for discussion. Our hope has been to emphasize tutori-
als, brainstorming, and working-group sessions, rather than mere conference-like
presentations.

List of Participants

The following people participated in the seminar, besides the organizers.

1. Danel Ahman, INRIA, Paris (UK)

2. Robert Atkey, University of Strathclyde (UK)

3. Oliver Bračevac, TU Darmstadt (Germany)

4. Edwin Brady, University of St Andrews (UK)

5. Youyou Cong, Ochanomizu University (Japan)

6. Stephen Dolan, University of Cambridge (UK)

2



7. Jeremy Gibbons, University of Oxford (UK)

8. Daniel Hillerström, The University of Edinburgh (UK)

9. Atsushi Igarashi, Kyoto University (Japan)

10. Mauro Jaskelioff, Universidad Nacional de Rosario (Argentina)

11. Yukiyoshi Kameyama, University of Tsukuba (JP)

12. Ohad Kammar, University of Oxford (UK)

13. Shin-ya Katsumata, National Institute of Informatics (Japan)

14. Daan Leijen, Microsoft Research (USA)

15. Conor McBride, University of Strathclyde (UK)

16. James McKinna, The University of Edinburgh (UK)

17. Craig McLaughlin, The University of Edinburgh (UK)

18. Shin-Cheng Mu, Academia Sinica (Taiwan)

19. Max S. New, Northeastern University (US)

20. Maciej Piróg, University of Wroc law (Poland)

21. Andreas Rossberg, DFINITY (Germany)

22. Tom Schrijvers, University of Leuven (Belgium)

23. Philipp Schüster, Universität Tübingen (Germany)

24. Leo White, Jane Street (UK)

25. Jeremy Yallop, OCaml Labs, Cambridge (UK)

26. Yizhou Zhang, Cornell University (US)

Themes

The seminar covered different aspects of programming and reasoning with alge-
braic effects and effect handlers. Here we outline some of the main themes.

Encapsulating effects. Several different speakers discussed approaches to
encapsulating effects. Yizhou Zhang presented an approach called “tunneling”
based around capabilities and implicit arguments. Maciej Piróg presented an
approach based on an effect type system derived from Koka’s row-based effect
type system, extended with coercions and constructs for fresh effects and ab-
stract effects. Craig McLaughlin presented an equivalent to coercions, called
adaptors, in the Frank programming language, but generalised to support all
finite remappings of effects. Stephen Dolan presented yet another approach,
similar to that of Maciej Piróg, but using nominal techniques for generating
fresh effects.

3



Equations. Algebraic effects come equipped with equational theories. Though
the theory of effect handlers arose in the context of algebraic effects [12], their
success in practical programming has typically been as a programming fea-
ture founded on free algebras. This is partly because equations (and proofs
in general) require special treatment for incorporating into most standard pro-
gramming languages, and partly because it can be useful to interpret the same
effects using different equational theories. Nevertheless, equations offer a much
promise for supporting reasoning, and reasoning with algebraic effects was a
pervasive theme at the meeting. Jeremy Gibbons presented old work on equa-
tional reasoning with effects. Tom Schrijvers presented new work building on
the ideas of Jeremy Gibbons and collaborators, systematically studying differ-
ent ways of combining state with nondeterminism. Danel Ahman presented
work in progress by his colleagues Matija Pretnar and Žiga Luksic (neither who
could attend, unfortunately) on combining equations with effect handlers in a
practical programming language.

Non-linear continuations and external resources. Effect handlers allow
continuations to be invoked more than once, which is useful for applications such
as backtracking search and probabilistic programming. However, non-linear use
of continuations presents a problem if the continuation performs operations on
external resources, such as file I/O — typically we expect such operations to
happen exactly once, and if, for instance, we try to close an already closed file
then non-linear invocation results in an error. Steven Dolan presented a simple
example of the problem via a handler involving a choice operation interpreted
by running the continuation twice, in which the continuation performs file I/O.
Daniel Hillerström and Sam Lindley exhibited essentially the same problem in
Links when one combines effect handlers with session types (both of which are
built into Links). A number of techniques for ruling out these kind of examples
were discussed. One option is to simply rule out non-linear use of continuations
— this still allows the use of effect handlers for applications such as concurrency,
for instance, but rules out applications such as backtracking. The dynamic wind
construct of Scheme provides a way of initialising and finalising resources each
time they are accessed by the same continuation. Another idea, is to mark cer-
tain effects as linear, and statically disallow them from being used in non-linear
continuations. Daan Leijen has begun to explore this approach in Koka. At the
meeting, Bob Atkey sketched a variation of linear logic extended with support
for linear effect annotations. Conor McBride presented an indexed version of
effects that carefully tracks resources. In this setting it is not obvious how to
even write examples that make non-linear use of the continuation. Related to
this discussion, Danel Ahman presented early work with Andrej Bauer on using
comodels to account for external resources.

Tangible Outcomes

The seminar provided a fruitful forum for discussion and an ideal setting for
fostering future collaboration. Here we enumerate some of the tangible outcomes
of the seminar.

• Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg, have

4



submitted a follow-on Dagstuhl seminar proposal on “Scalable Handling
of Effects”.

• Daan Leijen and Ohad Kammar initiated a collaboration to develop a
probabilistic programming library for Koka.

• Mauro Jaskelioff, Maciej Piróg, Tom Schrijvers, and Nicolas Wu wrote a
paper together on the relationship between monad transformers and effect
handlers, which they have submitted to the Haskell Symposium.

• The proposal for adding effect handlers to WebAssembly, presented by
Andreas Rossberg, was refined. Emerging from this discussion, Daniel
Hillerström has arranged a post-doctoral internship with Daan Leijen at
Microsoft to explore efficient compilation of effect handlers.

• Informed by feedback following Daniel Hillerström’s presentation at the
meeting, Daniel Hillerström and Sam Lindley (in collaboration with John
Longley) are working on a POPL submission.

• The effect handlers rosetta stone is an open repository for examples of
programming with effect handlers. At the meeting, we supplemented the
effect handlers rosetta stone with several new examples.

Meeting Schedule

May 25 (Monday)

• Self-introductions

• Tutorial on foundations of algebraic effects (Gordon Plotkin)

• Tutorial on pragmatics of effect handlers (Daan Leijen)

• Just do It (Jeremy Gibbons)

• Implementing local state with global state (Tom Schrijvers)

• Making equations great again (Danel Ahman, for Ziga Lukšič and Matija
Pretnar)

May 26 (Tuesday)

• Abstracting Algebraic Effects (Maciej Piróg)

• Abstraction-safe effect handling via tunneling (Yizhou Zhang)

• Nominal Effects (Stephen Dolan)

• Effect handlers for a low-level stack machine (Andreas Rossberg)

• Working groups

• Cooking concurrency for algebraic effects (Mauro Jaskelioff)

• Ambient Parameters (Daan Leijen)

• Cubical type theory 101 (Conor McBride)

5



May 27 (Wednesday)

• Syntax and Semantics for Operations with Scopes (Nicolas Wu)

• Graded monads (Shin-ya Katsumata)

• One monad to the tune of another (Robert Atkey)

• Talking to Frank (Craig McLaughlin)

• Excursion and banquet

May 28 (Thursday)

• Equational theories and monads from polynomial Cayley representations
(Maciej Piróg)

• Handling polymorphic algebraic effects (Atsushi Igarashi)

• Handlers and multihandlers (Gordon Plotkin)

• Comodels as a gateway for interacting with the external world (Danel
Ahman)

• Asymptotic improvement through delimited control (Daniel Hillerström)

• Working Groups

May 29 (Friday)

• Breaking Links (Daniel Hillerström, Sam Lindley, Leo White)

• Working Groups

Selected abstracts

Comodels as a gateway for interacting with the external
world

Danel Ahman, Ljubljana, Slovenia

As much as we might try to convince ourselves, functional programming
is rarely completely pure as one often cannot escape having to interact with
the external world, e.g., by needing to write the results of one’s program to a
terminal window or a file, or perhaps also consult an external source of ran-
domness for making nondeterministic and probabilistic choices. In this work we
are exploring programming abstractions for orchestrating such interactions in a
principled way.

In languages with algebraic effects (resp. monads), the usual way of modeling
interactions with the external world is to define a dedicated effect (resp. monad)
and then treat it specially in the compiler, such as the RandomInt effect in the
Eff language and the IO monad in Haskell. This however has various drawbacks.
For instance, such languages often lack enforcement mechanisms to ensure that
a program does not write to an already closed file. And what is even worse, in

6



languages with algebraic effects, where all effects can be handled, it is very easy
to accidentally cause one’s program not to even reach file closing, by discarding
a continuation somewhere in the handler. The common denominator here is the
lack of linearity guaranteed by these languages.

In this talk, I will present some of our initial findings on the use of comodels
of algebraic effects as a programming abstraction for (i) modeling the external
world and interactions with it, (ii) ensuring the linearity of these interactions,
and (iii) controlling which capabilities of the external world different parts of
programs have access to. Regarding (ii), the novel aspect of our work is that
we do not ensure linearity of these interactions by the means of a linear type
system, but instead we leave the external world implicit and interact with it
through a combination of algebraic operations and (under the hood) a linear
state-passing translation similar to that of Møgelberg and Staton. Regarding (i)
and (ii), we do not limit the programmer to a single external world, but instead
allow them to modularly build their own intermediate external worlds. In the
talk I will demonstrate these ideas through small programming examples, and
also comment on the opportunities and challenges involved in combining such
use of comodels with effect handlers.

(This is joint work with Andrej Bauer.)

Making equations great again

Danel Ahman, for Ziga Lukšič and Matija Pretnar, Ljubljana, Slovenia

Algebraic effects are computational effects that can be described with a
set of basic operations and equations between them. As many interesting effect
handlers do not respect these equations most approaches assume a trivial theory
sacrificing both reasoning power and safety. We present an alternative approach
where the type system tracks equations that are observed in subparts of the
program yielding a sound and flexible logic and paving a way for practical
optimizations and reasoning tools.

Dijkstra Monads: One Monad to the Tune of Another

Robert Atkey, Strathclyde, UK

I’ll talk about a generic way of reasoning about monadic computations by
mapping one monad, the “computational” monad, to another, the “specifica-
tion” monad via a monad morphism. Such monad morphisms allow us to recon-
struct existing program logics for state, I/O, nondeterminism, and exceptions.
Monad morphisms can be packaged up neatly as a “Dijkstra Monad” – es-
sentially a monad graded by another monad – yielding a useful technique for
simultaneous programming and verification.

(This is joint work with Kenji Maillard, Danel Ahman, Guido Martinez,
Catalin Hritcu, Exequiel Rivas and Eric Tanter.)

Just Do It

Jeremy Gibbons, Oxford, UK

I summarized my paper “Just Do It: Simple Monadic Equational Reasoning”

7



(ICFP 2011, co-authored with Ralf Hinze). I had two main points. The first,
and the main point of the paper, was that although Haskell’s comprehension-like
“do” notation looks more like imperative programming than it does traditional
functional programming, nevertheless it is still eminently amenable to the kind
of equational reasoning we love in FP. The second point, perhaps of more in-
terest to this meeting, was the emphasis on modeling effects by combinations of
algebraic theories (as opposed to stacks of monad transformers, which was the
prevailing approach in 2011). I paid particular attention to combining state and
nondeterminism: there is a nice model of local state (in which each nondeter-
ministic branch works separately on its own copy of the state), but it is not so
obvious how to do global state (in which the branches work on a single shared
state). This served as an introduction to Tom Schrijvers’ talk.

Asymptotic improvement through delimited control

Daniel Hillerström, Edinburgh, UK

I will provide an overview of a recent expressivity result for effect handlers
that I have established in collaboration with John Longley and Sam Lindley.

Using a variation of generic search, that counts all solutions to a given search
problem, we show that a PCF flavoured language with effect handlers admits
an implementation of generic search that runs in O(2n) time, whilst there is
no implementation of generic search in a PCF flavoured language without ef-
fect handlers that runs better than O(n2n) time. As corollary we obtain that
there exists a class of programs for which effect handlers provide more efficient
implementations.

Intuitively the efficiency gap is due to control operators, such as effect han-
dlers, providing the ability to backtrack, meaning that it is possible to revert
a past decision whilst remembering the outcome of that decision, whereas in
a purely functional setting repeating past decisions is necessary to explore an
alternative decision.

Handling Polymorphic Algebraic Effects

Atsushi Igarashi, Kyoto, Japan

Algebraic effects and handlers are a powerful abstraction mechanism to rep-
resent and implement control effects. In this work, we study their extension with
parametric polymorphism that allows abstracting not only expressions but also
effects and handlers. Although polymorphism makes it possible to reuse and
reason about effect implementations more effectively, it has long been known
that naive combination of polymorphic effects and let-polymorphism breaks
type safety. While type safety can often be gained by restricting let-bound
expressions—e.g., by adopting value restriction or weak polymorphism—we pro-
pose a complementary approach, which restricts, instead of let-bound expres-
sions, handlers. Our key observation is, informally speaking, that a handler
is safe if resumptions from the handler do not interfere with each other. To
formalize our idea, we define a call-by-value lambda calculus λlet

eff that supports
let-polymorphism and polymorphic algebraic effects and handlers, design a type
system that rejects interfering handlers, and prove type safety of our calculus.

8



Talking to Frank

Craig McLaughlin, Edinburgh, UK

Frank is a strict functional language supporting algebraic effects (a la Plotkin
& Power) and handlers (a la Plotkin & Pretnar) within an effect type system.
Key to the design is the generalisation of functions to operators which may
handle effects by pattern matching on computation trees. Operators are n-ary
allowing the simultaneous handling of multiple computations. I will describe
the key features of Frank by way of example, showing its similarities to regular
functional programming and its differences. I will highlight the conveniences
afforded by some of the design choices, in particular achieving effect polymor-
phism while avoiding the need to mention effect variables. Finally, I describe
the effect pollution problem and how this is overcome in Frank.

(This is Joint work with Lukas Convent, Sam Lindley and Conor McBride.)

Effect handlers in a low-level stack machine

Andreas Rossberg, DFINITY Foundation, Germany

WebAssembly (Wasm) is a general-purpose low-level code format for envi-
ronments where portability and safety are mandatory, such as the Web, content
delivery networks, or decentralised cloud computation. In order to enable the
compilation of a wide range of programming languages to Wasm, we are consid-
ering to extend it with effect handlers as a way to compile the growing zoo of
control abstractions that exist in those languages. I present a preliminary design
for an extension to the Wasm instruction set and type system that provides a
low-level representation of effect handlers.

(This work originates from the Dagstuhl workshop last year, and is joint
work with multiple other participants.)

Handling Local State with Global State

Tom Schrijvers, KU Leuven, Belgium

We consider the interaction between monadic renditions of the state and
non-determinism effects. There are two prominent interactions in the literature:
local state semantics and global state semantics. We characterise these with laws
and show how to simulate local state semantics using global state semantics.
To prove the correctness of this simulation we reconcile the typical denotational
approach to semantics for monads with a syntactic approach to semantics that is
convenient for inductive proofs that can be mechanised in a proof assistant. We
do this by means of free monads that capture the syntax of effectful programs,
but not their semantics. The semantics is obtained by mapping into a semantic
domain, and requires us to express the effect laws on the free monad in terms
of contextual equivalence. In order to make the simulation work, we require
two non-contextual laws. These laws are not satisfied by conventional monadic
models, but thanks to our free monad approach we get the monadic structure
for free and can supply a non-monadic model.

9



Syntax and Semantics for Operations with Scopes

Nicolas Wu, University of Bristol, UK

Motivated by the problem of separating syntax from semantics in program-
ming with algebraic effects and handlers, we propose a categorical model of
abstract syntax with so-called scoped operations. As a building block of a term,
a scoped operation is not merely a node in a tree, as it can also encompass a
whole part of the term (a scope). Some examples from the area of programming
are given by the operation catch for handling exceptions, in which the part in
the scope is the code that may raise an exception, or the operation once, which
selects a single solution from a nondeterministic computation. A distinctive
feature of such operations is their behaviour under program composition, that
is, syntactic substitution.

Our model is based on what Ghani et al. call the monad of explicit substitu-
tions, defined using the initial-algebra semantics in the category of endofunctors.
We also introduce a new kind of multi-sorted algebras, called scoped algebras,
which serve as interpretations of syntax with scopes. In generality, scoped alge-
bras are given in the style of the presheaf formalisation of syntax with binders
of Fiore et al. As the main technical result, we show that our monad indeed
arises from free objects in the category of scoped algebras

(This is joint work with Tom Schrijvers, Maciej Piróg, and Mauro Jaskelioff.)

Abstraction-Safe Effect Handlers via Tunneling

Yizhou Zhang, Cornell, US

Algebraic effect handlers offer a unified approach to expressing control-flow
transfer idioms such as exceptions, iteration, and async/await. Unfortunately,
previous attempts to make these handlers type-safe have failed to support the
fundamental principle of modular reasoning for higher-order abstractions. We
demonstrate that abstraction-safe algebraic effect handlers are possible by giv-
ing them a new semantics: effects tunnel through contexts polymorphic to them.
We prove that our design is not only type-safe, but also abstraction-safe. Using
a logical-relations model that we prove sound with respect to contextual equiv-
alence, we derive previously unattainable program equivalence results. Our
mechanism offers a viable approach for future language designs aiming for effect
handlers with strong abstraction guarantees.

References

[1] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and
handlers. J. Log. Algebr. Meth. Program., 84(1):108–123, 2015.

[2] Edwin Brady. Programming and reasoning with algebraic effects and de-
pendent types. In ICFP [5], pages 133–144.

[3] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil
Madhavapeddy. Effective concurrency through algebraic effects. OCaml
Workshop, 2015.

10



[4] Daniel Hillerström and Sam Lindley. Liberating effects with rows and han-
dlers. In TyDe@ICFP, pages 15–27. ACM, 2016.

[5] ICFP ’13: Proceedings of the ACM International Conference on Functional
Programming. ACM Press, 2013.

[6] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In
ICFP [5], pages 145–158.

[7] Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects.
pages 94–105. ACM, 2015.

[8] Daan Leijen. Implementing algebraic effects in C - ”Monads for free in
C”. In APLAS, volume 10695 of Lecture Notes in Computer Science, pages
339–363. Springer, 2017.

[9] Daan Leijen. Type directed compilation of row-typed algebraic effects. In
POPL, pages 486–499. ACM, 2017.

[10] Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In
POPL, pages 500–514. ACM, 2017.

[11] Gordon Plotkin and John Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69–94, 2003.

[12] Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In
Giuseppe Castagna, editor, Programming Languages and Systems, volume
5502 of LNCS, pages 80–94. Springer-Verlag, Berlin, Heidelberg, 2009.

11


