
Iteratee IO
safe, practical, declarative input processing

http://okmij.org/ftp/Streams.html

Utrecht, NL December 17, 2009
Updated for the November 2010 version

1

Outline

I Introduction

Non-solutions: Handle-based IO and Lazy IO

Pure Iteratees

General Iteratees

Lazy IO revisited

2

Introduction
A practical alternative to Handle and Lazy IO for input
processing

Good performance
Incremental processing, interleaving, low-latency,
block-based i/o from a single buffer
Encouraging performance as compared to C (libsnd)

Correctness
No unsafe operations
predictable resource usage, timely deallocation, preventing
access to disposed resources; Haskell98

Elegance
Arbitrary nesting; vertical, horizontal and parallel
combinations; no code bloat

http://okmij.org/ftp/Streams.html

We introduce input processing with left-fold enumerator – Iteratee
IO – as a safe, declarative and practical alternative to Handle and Lazy
IO for input processing. The approach is general and applies to
processing of data taken from in-memory structures, databases, files,
sockets, etc. Binary and random IO is supported. Our approach is
incremental, permitting i/o interleaving. We shall see an example of
i/o multiplexing without using threads and in no danger of race
conditions. Unlike lazy IO, our approach is correct. There is not even
hint of UnsafePerformIO. Accessing a disposed resource like a closed
handle is impossible in our approach. Our approach permits
composing streams and stream processors: the same processor can
handle several streams one after another. Or two processors can be
applied in succession to the same source. Processors can be combined
‘vertically,’ so to deal with streams that are chunk-encoded, escaped,
UTF8- or otherwise encoded or nested into other streams. Processors
and streams can be combined in parallel: a stream can feed several
processors in parallel, or the same processor can take data from
several streams.
Enumerators and iteratees, which generalize fold, have useful
algebraic properties. But we won’t talk about them here.

3

This talk

A practical alternative to Handle and Lazy IO for input
processing

I Practical talk for (server) developers
I Generalizing from practical experience

(Web application server, Takusen, WAVE reader)
I Lots of code
I Use Haskell for concreteness
I Code is in Haskell98

http://okmij.org/ftp/Haskell/Iteratee/README.dr

This talk is aimed at practitioners, in particular, server programmers.
That is, programmers who write long-running distributed applications
and are painfully aware of the issues of reading from sockets, latency,
buffering, many layers of decoding, proper resource disposal and
sustaining high load. In short, anyone who programmed a network
server, a database back-end, or a high-volume data format transcoder.
The technique has been validated in a production web-application
server written in Haskell, database access library Takusen, TIFF and
WAVE file readers. The performance of the Iteratee library on reading
WAVE files can exceed the performance of the C-based libsnd library.
All the code is available on-line. You are welcome to download it,
even now, and follow along.

4

Running example

PUT /file HTTP/1.1crlf
Host: example.comcr
User-agent: Xlf
content-type: text/plaincrlf
crlf

Our running example is processing of an HTTP client request: a
POST/PUT request. Typically, the processing is some kind of parsing.
For illustration we use a simple but realistic line parser. In part 1, we
read a sequence of lines from the input until the empty line is
encountered. We return the list of the read lines.
For simplicity all the discussed code uses file IO rather than network
sockets. All the code is in Haskell98 and can be run in any Haskell
compiler. Since only file-based IO will be demonstrated, the operating
system does not matter either.

4

Running example

PUT /file HTTP/1.1crlf
Host: example.comcr
User-agent: Xlf
content-type: text/plaincrlf
crlf

Lines could be terminated by a CRLF combination and also by a single
CR or LF. For robustness, we must handle all three line terminators.
HTTP generally permits lines within the entity terminated with LF, CR
or CRLF.

4

Running example

PUT /file HTTP/1.1crlf
Host: example.comcr
User-agent: Xlf
content-type: text/plaincrlf
crlf

1Ccrlf
body line 1lf body line 2crlf crlf

7crlf
body li crlf

37crlf
ne 3cr body line 4lf body line 5lf crlf

0crlfcrlf

Part 2 of the running example is reading the headers and reading all
the lines from the HTTP-chunk-encoded content that follows the
headers. Part 2 thus verifies layering of streams, and processing of one
stream embedded (chunk encoded) into another stream.

4

Running example

PUT /file HTTP/1.1crlf
Host: example.comcr
User-agent: Xlf
content-type: text/plaincrlf
crlf

1Ccrlf
body line 1lf body line 2crlf crlf

7crlf
body li crlf

37crlf
ne 3cr body line 4lf body line 5lf crlf

0crlfcrlf

Chunks are not aligned at all with the boundaries of the lines of the
embedded content. A line may start in one chunk and be terminated
in another.

4

Running example

PUT /file HTTP/1.1crlfHost:

example.comcrUser-agent: Xlf content-type: text/plaincr

lfcrlf1Ccrlfbody l

ine 2crlfcrlf7

For efficiency, we read by blocks. Blocks, too, cut arbitrarily across line
boundaries. Blocks may cut across CR LF, across chunks and chunk
length data.
All this could be embedded into another stream, such as an SSL
stream or a message/http.

5

Outline

Introduction

I Non-solutions: Handle-based IO and Lazy IO

Pure Iteratees

General Iteratees

Lazy IO revisited

6

Non-solutions: Handle-based IO and Lazy IO

type Headers = [String]
type ErrMsg = String

-- The result of reading headers
data HResult = HR Headers -- successful

| HRFail ErrMsg Headers -- headers so far

Code file: GHCBufferIO.hs

We start with the conventional implementation, for the sake of
comparison. We only tackle part 1 of the problem: reading headers.
HResult is the type of the result of the function we are about to write.
The code is in the file GHCBufferIO.hs.

7

Using hGetLine, not quite correctly

line_read h = doread []
where
doread acc = do
eof <- hIsEOF h
if eof then return (HRFail "EOF" (reverse acc))

else do
l <- hGetLine h >>= return . strip_cr
if null l then return (HR (reverse acc))

else doread (l:acc)

strip_cr [] = []
strip_cr s = if last s == ’\r’ then init s else s

7

Using hGetLine, not quite correctly

line_read h = doread []
where
doread acc = do
eof <- hIsEOF h
if eof then return (HRFail "EOF" (reverse acc))

else do
l <- hGetLine h >>= return . strip_cr
if null l then return (HR (reverse acc))

else doread (l:acc)

strip_cr [] = []
strip_cr s = if last s == ’\r’ then init s else s

We must not forget that GHC does not count CR as the line
terminator! So the read string may contain CR at the end, which we
must strip off. This is an expensive process producing much garbage.
The code may appear simple, but it is not quite correct: it can’t handle
lines that are terminated by a single CR. Also, hGetLine can’t tell the
last incomplete line from the last terminated line.

8

Using hGetChar

line_read_cr h = doread [] []
where
doread acc curr_line = do
eof <- hIsEOF h
if eof then return (HRFail "EOF" (reverse acc))

else hGetChar h >>= check_term acc curr_line
check_term acc curr_line ’\n’ = finish acc curr_line
check_term acc curr_line ’\r’ = do
eof <- hIsEOF h
if eof then finish acc curr_line

else do
c <- hLookAhead h
when (c == ’\n’) (hGetChar h >> return ())
finish acc curr_line

check_term acc curr_line c = doread acc (c:curr_line)
finish acc "" = return (HR (reverse acc))
finish acc line = doread (reverse line:acc) ""

This code does solve the whole problem, handling all three CR, LF and
CRLF as terminators. There are no obvious errors in the code – there
is nothing obvious about the code at all. The code is quite imperative
and ugly though. It barely fits on the slide.

9

Using Lazy IO

line_lazy h = hGetContents h >>= return . doparse []
where
doparse acc str = -- pure function

case break (\c -> c == ’\r’ || c == ’\n’) str of
(_,"") -> HRFail "EOF" (reverse acc)
(l,’\r’:’\n’:rest) -> finish acc l rest
(l,_:rest) -> finish acc l rest

finish acc "" rest = HR (reverse acc)
finish acc l rest = doparse (l:acc) rest

When are all resources of the Handle h freed?

Pattern-matching makes for a convenient parsing. We could have used
Prelude.lines; but the latter can’t handle CRLF, and can’t tell if the
last line was terminated or not. We can’t do any IO on the handle
afterwards: it is closed, or semi-closed. In the above case, we really
don’t know when it is going to be closed: whenever the garbage
collector collects the non-yet-read portion of string and finalizes it.
That event may never occur. We can’t use such reckless resource
management in any serious programming.

10

Problems with Handle IO

I It is not that simple
I Handle IO puts the file descriptor in the non-blocking

mode:
not always good for sockets

I Cannot do our own input multiplexing with select/epoll
I Resource leaks, closed handle errors
I Cannot do Handle IO over nested/embedded streams

As we saw, the proper solution that accounts for all three terminators
is not that simple. It is imperative, hard to reason about and hard to
see its correctness.
Handle corresponds to a resource: an open file descriptor, an IO
buffer. A handle may be open in one function and passed around, to
be closed in other functions. It’s hard to see the dynamic extent of the
resource use. It is quite possible to attempt to read from a closed
handle, which is akin to reading from the null pointer. We should
strive to avoid such errors in the production code.
Handle IO provides buffering, but only over real file descriptors. We
can’t create a handle over a ‘synthetic’ file descriptors, such as
embedded streams: see SSL or message/http embedding above.
Handle IO cannot be ‘nested’.

11

Problems with Lazy IO

I It is delusionally simple
I Theoretical abomination:

a “pure” computation with observable side-effects
I Permits no IO control
I Practically unacceptable resource management
I Practically unacceptable error reporting
I Danger of deadlocks when reading from pipes

Lazy IO in serious, server-side programming is unprofessional

I can talk a lot how disturbingly, distressingly wrong lazy IO is
theoretically, how it breaks all equational reasoning. Lazy IO entails
either incorrect results or poor optimizations. But I won’t talk about
theory. I stay on practical issues like resource management. We don’t
know when a handle will be closed and the corresponding file
descriptor, locks and other resources are disposed. We don’t know
exactly when and in which part of the code the lazy stream is fully
read: one can’t easily predict the evaluation order in a non-strict
language. If the stream is not fully read, we have to rely on unreliable
finalizers to close the handle. Running out of file handles or database
connections is the routine problem with Lazy IO. Lazy IO makes error
reporting impossible: any IO error counts as mere EOF.
It becomes worse when we read from sockets or pipes. We have to be
careful orchestrating reading and writing blocks to maintain
handshaking and avoid deadlocks. We have to be careful to drain the
pipe even if the processing finished before all input is consumed. Such
precision of IO actions is impossible with lazy IO. It is not possible to
mix Lazy IO with IO control, necessary in processing several HTTP
requests on the same incoming connection, with select in-between.
I have personally encountered all these problems. Leaking resources is
an especially egregious and persistent problem. All the above
problems frequently come up on Haskell mailing lists.

12

Outline

Introduction

Non-solutions: Handle-based IO and Lazy IO

I Pure Iteratees

General Iteratees

Lazy IO revisited

13

Problems of the exposed traversal state

Handle exposes the (file) traversal state:
I need to pass the Handle around, and explicitly close
I danger of resource leaks or closed-Handle errors
I must check the Handle state on each access

We observe that resource problems of the Handle-based IO occur
because the state of the file traversal is exposed as a Handle. We have
to explicitly close the handle. Do it too late, we leak resources. Do it
too early, we get the null pointer – closed handle – errors. The sheer
number of internet security advisories concerning memory allocation
problems indicates that manual management of resources is greatly
error-prone. We also have to check the state of the handle – valid, not
EOF – at each and every operation on the handle. But there is another
way. The state of the traversal can be encapsulated rather than
exposed.

14

Fold

fold :: (a -> b -> b) -> b -> IntMap a -> b

fold f z coll ≡ (f an ...(f a2 (f a1 z)))

prod = fold (*) 1 coll
≡ (an * ...(a2 * (a1 * 1)))

As an example, let’s look at a Haskell collection, say, an IntMap. It
provides fold, which takes a seed and another function. We shall call it
iteratee, because it is being iterated upon each element of the
collection. The fold passes the iteratee the initial seed and the first
element of the collection. The result is the new seed, to be passed
again to the iteratee along with the second element of the collection,
etc. After the iteratee has been applied to all elements of the
collection, the final seed is returned. Here is an example, computing
the product of all elements of the collection of numbers. The seed is
the product so far, originally 1. The iteratee multiplies the current
seed with the current element, giving the new current product.

14

Fold

fold :: (a -> b -> b) -> b -> IntMap a -> b

fold f z coll ≡ (f an ...(f a2 (f a1 z)))

prod = fold (*) 1 coll
≡ (an * ...(a2 * (a1 * 1)))

prodbut n = snd (fold iteratee (n,1) coll)
where iteratee a (n,s) =

if n <= 0 then (n,a*s) else (n-1,s)

Fold encapsulates the traversal and its resources

We can do more interesting things: for example, we may want to skip
the first n elements of the collection and compute the product of the
rest. Our seed is the pair: the current product, initially 1, and the
number of elements yet to skip. The iteratee accumulates the product
only after the skipping is done. At the end, we extract the desired
product, the second component of the final seed.
We may see that fold is a powerful pattern; lots of papers have been
written about it, and I greatly encourage you to read all of them. We
don’t have time, alas, to talk about its wonderful properties.
We have to talk about practical things. For example, we have no
‘traversal’ handle. We never had to check if the traversal of the IntMap
finished or not. Fold traverses the collection in some way and merely
gives the iteratee each encountered element along with the seed. The
seed is opaque to to fold. Fold simply passes the seed from one
invocation of iteratee to another, and, finally, returns as the result. We
see the separation of concerns: fold cares about traversal, allocating
resources at the beginning and freeing them at the end. Iteratee cares
about processing elements; it need not be concerned about
deallocating resources at the end.

14

Fold

fold :: (a -> b -> b) -> b -> IntMap a -> b

fold f z coll ≡ (f an ...(f a2 (f a1 z)))

prod = fold (*) 1 coll
≡ (an * ...(a2 * (a1 * 1)))

prodbut n = snd (fold iteratee (n,1) coll)
where iteratee a (n,s) =

if n <= 0 then (n,a*s) else (n-1,s)

Seed exposes the iteratee state
No interface for early termination

But the separation of concerns isn’t perfect. Although fold is indeed
being treated as an abstract enumerator of a collection, iteratee is not
being treated as a black-box. The state of the iteratee, its seed, is
completely exposed. We see its structure and the components such as
n, which are only used internally. Also, the definition of iteratee and
the definition of the initial seed are separated. The iteratee here can
be defined in a separate file. Imagine all the changes we have to make
if we change our definition so that the the order of the components in
the seed is switched. We’d like to treat iteratee along with its seed,
and avoid exposing its internal data.
There is the second problem with the above interface. If the current
element of the collection is 0, the iteratee can terminate product
accumulation. There is no point of further traversal of the collection.
Alas, there is no way for iteratee to tell fold that the iteratee is
finished and is not interested in further traversal. We see that the
traversal interface can be better.

14

Fold

fold :: (a -> b -> b) -> b -> IntMap a -> b

fold f z coll ≡ (f an ...(f a2 (f a1 z)))

prod = fold (*) 1 coll
≡ (an * ...(a2 * (a1 * 1)))

prodbut n = snd (fold iteratee (n,1) coll)
where iteratee a (n,s) =

if n <= 0 then (n,a*s) else (n-1,s)

Seed exposes the iteratee state
No interface for early termination

15

Iteratee

data Stream = EOF (Maybe ErrMsg) | Chunk String

data Iteratee a =
IE done a

| IE cont (Maybe ErrMsg) (Stream -> (Iteratee a,Stream))

Code file: Iteratee.hs

The internal ‘state’ of the iteratee – the seed – is fully
encapsulated.

Let us design a better interface. For simplicity, in this part of the talk
we assume that the collection to traverse is made of characters – such
as a string or a file.
Before, an iteratee received the current element of the collection.
We’d like our iteratee to handle more than one element, if so
immediately available. That greatly improves the efficiency: think of
block-based IO rather than character IO. The traversal may encounter
an error. Since we wish iteratee encapsulated its internal state, we
need to explicitly tell the iteratee that the traversal is finished and it
should produce the final answer. So, our iteratee receives not a single
element but this value, a Stream. The first variant indicates the
termination of the traversal. Chunk str gives the immediately
available characters. The traversal is not terminated yet.

15

Iteratee

data Stream = EOF (Maybe ErrMsg) | Chunk String

data Iteratee a =
IE done a

| IE cont (Maybe ErrMsg) (Stream -> (Iteratee a,Stream))

Code file: Iteratee.hs

The internal ‘state’ of the iteratee – the seed – is fully
encapsulated.

Here’s our iteratee. In the ’done’ state, it contains the computed result.
In the ’cont’ state, the iteratee has not finished the computation and
needs more data. When the iteratee gets more data, a chunk, it
consumes (some of) them, moving to another state and returning the
unconsumed part of the chunk, if any. There is no mentioning of seed
here: it is fully encapsulated.
The ’cont’ state looks pretty much like the state monad, doesn’t it?
The ’cont’ state is also used to send an error or other message to the
stream producer (e.g., to rewind the stream). The error is restartable:
if the producer fixed the error, it replies with a chunk and so resumes
the processing.
We assume that all iteratees are ‘good’ – given bounded input, they do
the bounded amount of computation and take the bounded amount of
resources. We also assume that given a terminated stream, an iteratee
moves to the done state, so the results computed so far could be
returned.

16

Simplest Iteratees

peek :: Iteratee (Maybe Char)
peek = IE_cont Nothing step
where
step s@(Chunk []) = (peek, s)
step s@(Chunk (c:_)) = (IE_done (Just c), s)
step s = (IE_done Nothing, s)

head :: Iteratee Char
head = IE_cont Nothing step
where
step (Chunk []) = (head, Chunk [])
step (Chunk (c:t)) = (IE_done c, (Chunk t))
step s = (IE_cont (Just "EOF") step, s)

Let’s write some iteratees. The simplest one simply peeks at the
current element, without removing it from the stream. After peeking
at the element, or determining that it will never be available because
the stream is terminated, the Iteratee moves to the done state. The
state of stream is not affected: the received stream is returned as it is.
A Chunk may contain the empty string: it means that no elements are
currently available, but the stream is not yet exhausted. In that case,
we remain in the existing state, waiting for something to become
available.

16

Simplest Iteratees

peek :: Iteratee (Maybe Char)
peek = IE_cont Nothing step
where
step s@(Chunk []) = (peek, s)
step s@(Chunk (c:_)) = (IE_done (Just c), s)
step s = (IE_done Nothing, s)

head :: Iteratee Char
head = IE_cont Nothing step
where
step (Chunk []) = (head, Chunk [])
step (Chunk (c:t)) = (IE_done c, (Chunk t))
step s = (IE_cont (Just "EOF") step, s)

The head iteratee is similar, only it does remove the current element
from the stream, acting as a stream deconstructor. As another
difference from peek, head reports an error if the stream is terminated
and so has no current element. The error is restartable however. It
propagates to the producer of data. If the producer finds a new source
of data, it would send a new chunk in response to the error, effectively
resuming processing and recovering from the error. If the producer
cannot or would not handle the EOF error, the error would
‘automatically’ propagate up, as we shall see soon.

17

Complex Iteratee

ie_contM k = (IE_cont Nothing k, Chunk [])

break :: (Char -> Bool) -> Iteratee String

break cpred = IE_cont Nothing (step [])
where
step before (Chunk []) = ie_contM (step before)
step before (Chunk str) =

case Prelude.break cpred str of
(_,[]) -> ie_contM (step (before ++ str))
(str,tail) -> (IE_done (before ++ str), (Chunk tail))

step before stream = (IE_done before, stream)

Non-trivial state; benefiting from chunked input

Not all iteratees are so trivial. Here is a more complex one. Whereas
head was akin to List.head, this one is the analogue to the
List.break function from the Prelude. It takes the break predicate
and returns a string of characters, which is the (possibly empty) prefix
of the stream. None of the characters in the string prefix satisfy the
character predicate. If the stream is not terminated, the first character
of the remaining stream satisfies the predicate.
This iteratee has a non-trivial state: the list of characters read so far,
none of which satisfy the break predicate. This iteratee also takes
advantage of the chunked input.
The helper function ie contM represents the common pattern of an
iteratee consuming the whole chunk and wanting more. It simplifies
writing Iteratees.

18

Another Complex Iteratee

heads :: String -> Iteratee Int

heads str = loop 0 str
where
loop cnt "" = return cnt
loop cnt str = IE_cont Nothing (step cnt str)
step cnt str s@(Chunk "") = (loop cnt str,s)
step cnt (c:t) s@(Chunk (c’:t’)) =

if c == c’ then step (succ cnt) t (Chunk t’)
else (IE_done cnt, s)

step cnt _ stream = (IE_done cnt, stream)

Semantics
"abd". . .≫ heads "abc" "d". . .≫ done2

Let me mention another parsing combinator, I mean, iteratee, which
turns out awfully convenient in practice.
Given a sequence of characters, we attempt to match them against the
characters on the stream, returning the count of how many characters
have matched. The matched characters are removed from the stream.
For example, if the stream contains ”abd”, then (heads ”abc”) will
remove the characters ”ab” and return 2.
The notation s≫ i s′ ≫ i′ means that upon ingesting the prefix of
the stream s the iteratee i moved to the state i′ with s′ part of the
stream remaining. Often, i′ is done v.

19

Combining Iteratees

instance Monad Iteratee where
return = IE_done

IE_done a >>= f = f a
IE_cont e k >>= f = IE_cont e (docase . k)
where
docase (IE_done a, stream) = case f a of

IE_cont Nothing k -> k stream
i -> (i,stream)

docase (i, s) = (i >>= f, s)

Horizontal Iteratee composition

(>>=) :: Iteratee a -> (a -> Iteratee b)
-> Iteratee b

Our running example was to read lines. We would like to somehow
combine the above iteratees to read lines. Perhaps you won’t be
surprised that iteratees combine, well, like a monad. You don’t need
to know anything about monad. This scary word simply means that if
we have one iteratee that produces a value and the rest of the stream,
and another iteratee to handle the rest of the stream, we can combine
them to make a bigger iteratee. This infix operator (>>=) makes the
composition.

19

Combining Iteratees

instance Monad Iteratee where
return = IE_done

IE_done a >>= f = f a
IE_cont e k >>= f = IE_cont e (docase . k)
where
docase (IE_done a, stream) = case f a of

IE_cont Nothing k -> k stream
i -> (i,stream)

docase (i, s) = (i >>= f, s)

Horizontal Iteratee composition

(>>=) :: Iteratee a -> (a -> Iteratee b)
-> Iteratee b

The last line of case f a of describes the error propagation. Error
also propagates in the IE cont case. So the Iteratee is not only a
monad but a Failure monad.

20

Reading lines

type Line = String -- The line of text, no terminators

read_lines :: Iteratee (Either [Line] [Line])
read_lines = lines’ []
where
lines’ acc = break (\c -> c == ’\r’ || c == ’\n’) >>=

\l -> terminators >>= check acc l
check acc _ 0 = return . Left . reverse $ acc
check acc "" _ = return . Right . reverse $ acc
check acc l _ = lines’ (l:acc)
terminators = heads "\r\n" >>=
\n -> if n == 0 then heads "\n" else return n

This is the Iteratee IO solution to the problem of reading headers. We
combine the iteratees to read a sequence of lines up to the empty line.
A line can be terminated by CR, LF or CRLF. We return the read lines,
in order, not including the terminating empty line. Upon EOF or a
stream error, we return the complete, terminated lines accumulated so
far, in the Left alternative.
The code is the combination of other iteratees; there is no longer any
mentioning of streams.

20

Reading lines

lines’ acc = break (\c -> c == ’\r’ || c == ’\n’) >>=
\l -> terminators >>= check acc l

check acc _ 0 = return . Left . reverse $ acc
check acc "" _ = return . Right . reverse $ acc
check acc l _ = lines’ (l:acc)
terminators = heads "\r\n" >>=
\n -> if n == 0 then heads "\n" else return n

doparse acc str = -- for comparison
case break (\c -> c == ’\r’ || c == ’\n’) str of
(_,"") -> HRFail "EOF" (reverse acc)
(l,’\r’:’\n’:rest) -> finish acc l rest
(l,_:rest) -> finish acc l rest

finish acc "" rest = HR (reverse acc)
finish acc l rest = doparse (l:acc) rest

For comparison, here is a similar function from the Lazy IO code. The
parsing is very similar: find the break character, check what it is, and
if it is CR, look ahead to the next character and check if it is LF. The
iteratee version has no rest. Iteratee does not deal with the future,
only with the present.
Count the number of lines of code! It is 7 in both cases. An alternative
to Lazy IO can be just as compact!

20

Reading lines

lines’ acc = break (\c -> c == ’\r’ || c == ’\n’) >>=
\l -> terminators >>= check acc l

check acc _ 0 = return . Left . reverse $ acc
check acc "" _ = return . Right . reverse $ acc
check acc l _ = lines’ (l:acc)
terminators = heads "\r\n" >>=
\n -> if n == 0 then heads "\n" else return n

doparse acc str = -- for comparison
case break (\c -> c == ’\r’ || c == ’\n’) str of
(_,"") -> HRFail "EOF" (reverse acc)
(l,’\r’:’\n’:rest) -> finish acc l rest
(l,_:rest) -> finish acc l rest

finish acc "" rest = HR (reverse acc)
finish acc l rest = doparse (l:acc) rest

Unlike Lazy IO, the iteratee now distinguishes the stream EOF from
the stream error. The error is a part of IE cont, and it is propagated
transparently.

21

Enumerators

type Enumerator a = Iteratee a -> Iteratee a
type EnumeratorM m a = Iteratee a -> m (Iteratee a)

This was the story about iteratees, but what about fold – the one that
takes our iteratee and, well, iterates it upon the collection? We shall
call such a procedure enumerator. Enumerator takes the iteratee,
applies it to each element of the collection until the collection is
exhausted or the iteratee said it had enough. And then enumerator
returns the result. Which is, well, the final value of the iteratee. So,
enumerator is the iteratee transformer.
For the time being, our Iteratee were designed to have no effects.
Enumerators may have effects, for example, to read from a file. Hence
we also need EnumeratorM. We soon get rid of that asymmetry.

21

Enumerators

type Enumerator a = Iteratee a -> Iteratee a
type EnumeratorM m a = Iteratee a -> m (Iteratee a)

(>>>):: Enumerator a -> Enumerator a -> Enumerator a
(>>>) = flip (.)

(>>.):: Monad m =>
EnumeratorM m a -> EnumeratorM m a -> EnumeratorM m a

e1 >>. e2 = \i -> e1 i >>= e2

Obviously as Iteratee transformers, enumerators can be composed –
just like functions. The composition means: iterate the iteratee upon
the first collection. And then iterate over the second collection. Thus
the ordinary functional composition of enumerators corresponds to
concatenation, so to speak, of their collections. We can use the same
iteratee to process data from a string followed by data read from a file
followed by data received from a socket. And iteratee could not tell
from which collection the character came from – not does the iteratee
care.
We use (>>>) for left-to-right composition; such an operator, in the
more general case of categories, is defined in Control.Category.

22

Trivial Enumerators

enum_eof :: Enumerator a
enum_eof (IE_cont Nothing k) =

check . fst $ k (EOF Nothing)
where
check i@IE_done = i
check i@(IE_cont (Just _) _) = i
check _ = throwErr "Divergent Iteratee"

enum_eof i = i

Here is the most primitive enumerator: it applies the iteratee to the
terminated stream. It could be written simpler, but I want to report an
error if an iteratee is bad and didn’t move to the done state upon
receiving the EOF.

23

Trivial Enumerators

enum_pure_1chunk :: String -> Enumerator a
enum_pure_1chunk str (IE_cont Nothing k) =

fst (k (Chunk str))
enum_pure_1chunk _ iter = iter

enum_pure_nchunk :: String -> Int -> Enumerator a
enum_pure_nchunk str@(_:_) n (IE_cont Nothing k) =

enum_pure_nchunk s2 n . fst $ (k (Chunk s1))
where (s1,s2) = splitAt n str

enum_pure_nchunk _ _ iter = iter

The pure 1-chunk enumerator passes a given string to the iteratee in
one chunk. We see the commonly occurring pattern in writing
enumerators: if the iteratee wants more data, we give them to it. If
the iteratee does not want more (it is done or reporting an error), we
return the iteratee as it was. The pure 1-chunk enumerator does no IO
and is useful for testing of base parsing.
The pure n-chunk enumerator passes the given string to the iteratee in
chunks of size n. It is useful for testing of handling of chunk
boundaries.

24

File Enumerator

enum_fd :: Fd -> EnumeratorM IO a
enum_fd fd iter =
allocaBytes (fromIntegral buffer_size) (loop iter)
where
buffer_size = 5 -- for tests
loop (IE_cont Nothing k) = do_read k
loop iter = \p -> return iter
do_read k p = do
n <- myfdRead fd p buffer_size
case n of
Left errno -> return . fst $ k (EOF (Just "IO error"))
Right 0 -> return $ IE_cont Nothing k
Right n -> do

str <- peekCAStringLen (p,fromIntegral n)
loop (fst $ k (Chunk str)) p

Block IO; No resource leaks

Finally an interesting enumerator, which reads a file by blocks. It uses
a single IO buffer, which it allocates at the beginning and frees at the
very end. All the allocation and deallocation is contained within the
enumerator code. We know exactly when the clean-up occurs. There
can’t be any leaks.

25

Reading headers

test_driver filepath = do
fd <- openFd filepath ReadOnly Nothing defaultFileFlags
result <- fmap run $

enum_fd fd read_lines_and_one_more_line
closeFd fd
print result
where
read_lines_and_one_more_line = do

lines <- read_lines
after <- break (\c -> c == ’\r’ || c == ’\n’)
status <- is_finished
return (lines,after,status)

We come back to the running example, part 1: We read lines,
terminated by the empty line, and one extra line. I should remind how
the input looks like. Here are block boundaries, cutting across headers
and line terminators. And we did not have to care about any of that!

26

Running example

PUT /file HTTP/1.1crlfHost:

example.comcrUser-agent: Xlf content-type: text/plaincr

lfcrlf1Ccrlfbody l

ine 2crlfcrlf7

For efficiency, we read by blocks. Blocks, too, cut arbitrarily across line
boundaries. Blocks may cut across CR LF, across chunks and chunk
length data.
All this could be embedded into another stream, such as an SSL
stream or a message/http.

27

Stream adapters: Enumeratees

type Enumeratee a = Iteratee a -> Iteratee (Iteratee a)

Stream nesting

I buffering,
I framing,
I character encoding,
I compression, encryption, SSL, etc.

Stream adapters, or Enumeratees, handle nested – encapsulated –
streams. Stream nesting is rather common: buffering, character
encoding, compression, encryption, SSL are all examples of stream
nesting. On one hand, an Enumeratee is an Enumerator of a nested
stream: it takes an iteratee for a nested stream, feeds its some data,
returning the resulting iteratee when the nested stream is finished or
when the iteratee is done. On the other hand, an Enumeratee is an
Iteratee for the outer stream, taking data from the parent enumerator.
One can view an Enumeratee as a AC/DC or voltage converter, or as a
‘vertical’ composition of iteratees (compared to monadic bind, which
plumbs two iteratees ‘horizontally’).

27

Stream adapters: Enumeratees

type Enumeratee a = Iteratee a -> Iteratee (Iteratee a)

Stream nesting

I buffering,
I framing,
I character encoding,
I compression, encryption, SSL, etc.

Outer-stream elements to inner-stream elements:
many-to-many

In the trivial case (e.g., Word8 to Char conversion), one element of
the output stream is mapped to one element of the nested stream.
Generally, we may need to read several elements from the outer
stream to produce one element for the nested stream. Sometimes we
can produce several nested stream elements from a single outer
stream element.

27

Stream adapters: Enumeratees

type Enumeratee a = Iteratee a -> Iteratee (Iteratee a)

That many-to-many correspondence between the outer and nested
streams justifies the type of the enumeratee. Suppose that the
enumeratee has received EOF on its, that is, the outer stream. The
enumeratee, as the outer iteratee, must move to the Done state. Yet
the nested iteratee is not finished. The enumeratee then has to return
the nested iteratee as its result.

27

Stream adapters: Enumeratees

type Enumeratee a = Iteratee a -> Iteratee (Iteratee a)

Enumeratee is an EnumeratorM in an Iteratee monad

If we look at the type of the Enumeratee carefully we see that it is
EnumeratorM, where monad m is chosen to be Iteratee. That explains
that Enumeratee acts as an enumerator to the inner iteratee, but
obtains data from an outer stream.

28

Simplest nesting: framing

take :: Int -> Enumeratee a

b1 · · · bn . . .≫ take n i . . .≫ done i′

where b1 · · · bn ≫ i ≫ i′

One of the simplest Enumeratees is take. The nested stream is a
prefix of the outer stream of exactly n elements long. Such nesting
arises when several independent streams are concatenated.
We read n elements from a stream and apply the given (inner) iteratee
to the stream of the read elements. Unless the stream is terminated
early, we read exactly n elements (even if the inner iteratee has
accepted fewer).

28

Simplest nesting: framing

take :: Int -> Enumeratee a

b1 · · · bn . . .≫ take n i . . .≫ done i′

where b1 · · · bn ≫ i ≫ i′

Non-law of take

take n i1 >> take m i2 /= take (n+m) (i1 >> i2)

compare:

atomically (m1 >> m2) /= atomically m1 >> atomically m2
round (x1 + x2) /= round x1 + round x2

The definition of take implies the take non-law. It should not surprise
us given the non-law of atomic transactions in the STM monad, or the
non-law of rounding. All three non-laws express the significance of
transaction boundaries.

29

Simplest nesting: framing

take :: Int -> Enumeratee a

take 0 iter@IE_cont = return iter
take n (IE_cont Nothing k) = IE_cont Nothing (step n k)
where
step n k (Chunk []) = ie_contM (step n k)
step n k chunk@(Chunk str) | length str < n =
(take (n - length str) . fst $ (k chunk), Chunk [])

step n k (Chunk str) =
(IE_done (fst $ k (Chunk s1)), (Chunk s2))
where (s1,s2) = splitAt n str
step n k stream = (IE_done (fst $ k stream), stream)

take n iter = drop n >> return iter

And here is the code.

30

Chunk decoding

I "0" CRLF CRLF ...≫ enum cd i done i
I nhex CRLF b1 · · · bn CRLF . . .≫ enum cd i

. . .≫ enum cd i′

where b1 · · · bn ≫ i ≫ i′

Here is the HTTP chunk-decoding specification, in our notation.

31

Chunk decoding

enum_chunk_decoded :: Enumeratee a
enum_chunk_decoded iter = read_size
where
read_size = break (== ’\r’) >>=

checkCRLF iter . check_size
checkCRLF iter m = do
n <- heads "\r\n"
if n == 2 then m else frame_err "..." iter

check_size "0" = checkCRLF iter (return iter)
check_size str@(_:_) =

maybe (frame_err "Chunk size" iter) read_chunk $
read_hex 0 str

check_size _ = frame_err "Error reading chink size" iter

read_chunk size = take size iter >>= \r ->
checkCRLF r $ enum_chunk_decoded r

And here is the corresponding implementation.

32

Complete test

test_driver filepath = do
fd <- openFd filepath ReadOnly Nothing defaultFileFlags
result <- fmap run (enum_fd fd read_headers_body)
closeFd fd
print result
where
read_headers_body = do

headers <- read_lines
body <- return . run =<<

enum_chunk_decoded read_lines
status <- is_finished
return (headers,body,status)

Here is the complete running example: reading the lines of the
headers, and reading the lines of the chunk-encoded body. We use
exactly the same iteratee to read the lines: (i) from the original
collection, file; (ii) and from the nested and encoded collection,
chunk-encoded body. The complete test is at the end of the file
Iteratee.hs; please try it.
Recall what the input looks like: the IO buffer cuts across headers,
chunks and line terminators.

33

Running example

PUT /file HTTP/1.1crlfHost:

example.comcrUser-agent: Xlf content-type: text/plaincr

lfcrlf1Ccrlfbody l

ine 2crlfcrlf7

For efficiency, we read by blocks. Blocks, too, cut arbitrarily across line
boundaries. Blocks may cut across CR LF, across chunks and chunk
length data.
All this could be embedded into another stream, such as an SSL
stream or a message/http.

34

Outline

Introduction

Non-solutions: Handle-based IO and Lazy IO

Pure Iteratees

I General Iteratees

Lazy IO revisited

35

General Streams and Iteratees

data Stream el = EOF (Maybe ErrMsg) | Chunk [el]

data Iteratee el m a =
IE done a

| IE cont (Maybe ErrMsg)
(Stream el -> m (Iteratee el m a, Stream el))

instance Monad m => Monad (Iteratee el m)
instance MonadTrans (Iteratee el)

Code file: IterateeM.hs

We have talked about pure Iteratees, which process and collect their
inputs but can’t do side effects themselves. Clearly for incremental IO,
we’d like to be able to write out the results as soon as we have
computed them. We need iteratees that can do at least IO.
We also generalize streams to deliver arbitrary elements rather than
just characters.
Iteratee is a generic stream processor, what is being folded over a
stream. It now takes this general stream. The new iteratee also can do
side-effects, in a monad m. The iteratee is also a monad and a monad
transformer. Again that is not so surprising given that the last
argument of IE cont is StateT el m (Iteratee el m a).

36

Sample General Iteratees

head :: Monad m => Iteratee el m el
break :: Monad m => (el -> Bool) -> Iteratee el m [el]

dropWhile :: Monad m =>
(el -> Bool) -> Iteratee el m ()

drop :: Monad m => Int -> Iteratee el m ()
line :: Monad m => Iteratee Char m (Either Line Line)

stream2list :: Monad m => Iteratee el m [el]
print lines :: Iteratee Line IO ()

Here are a few sample Iteratees. First are the ones we have seen. The
code is virtually the same as before; only types are more general. The
Iteratee dropWhile is essentially break with the inverse break
predicate.
A pure iteratee stream2list is quite useful in unit and interactive
tests, to ‘show’ a stream. The iteratee print stream is the first
effectful iteratee.

37

General Enumerators

type Enumerator el m a =
Iteratee el m a -> m (Iteratee el m a)

The type of the enumerator is also more general.

37

General Enumerators

type Enumerator el m a =
Iteratee el m a -> m (Iteratee el m a)

Why not the following type?

type Enumerator el m a =
Iteratee el m a -> Iteratee el m a

Troublesome code:

do let iter = enum file file1 iter count
some action
run (enum file file2 iter)

Why can’t we define enumerators with the type Iteratee m a ->
Iteratee m a? Actually, we can. We indeed can use the regular
functional composition to compose Enumerators. The approach, albeit
attractive and successful, is problematic.
Consider the following code where iter count is, for example, an
iteratee that returns the count of items in the input stream. The code
returns the combined count of characters in file1 and file2. It
indeed does that. The question is: when exactly some action is
performed relative to the opening and closing of file1? That is, is
some action done before file1 is opened? A more important
question: is file1 opened before file2?

37

General Enumerators

type Enumerator el m a =
Iteratee el m a -> m (Iteratee el m a)

Why not the following type?

type Enumerator el m a =
Iteratee el m a -> Iteratee el m a

Troublesome code:

do let iter = enum file file1 iter count
some action
run (enum file file2 iter)

The answer to the first question is clear: some action is done before
file1 is opened. The result of (enum file file1 iter count) is a
pure value Iteratee m a. That value encapsulates an action but the
action is not performed yet. The question about the order of opening
of file1 and file2 cannot be answered from the above code. The
value iter encapsulates the action of opening and closing file1. If
the enumerator enum file executes the action in iter as the very first
thing, then file1 will be opened before file2. But nothing forces
enum file to behave this way; it may open file2 before checking the
result of iter. Then file2 would be opened before file1. We have
lost the precise control over action sequencing. In pure computations,
that is no problem: the results are the same either way. Effects
however demand precision on the sequence of actions. When
enumerator has the type Iteratee m a -> m (Iteratee m a) then
there is no longer uncertainty about the order of opening the files.
Since enumerator takes Iteratee but produces the monadic value m

(Iteratee m a), we have to run the action to get Iteratee m a, in
order to pass to the next enumerator. It is the type system that forces
the sequencing on us. That property is well worth preserving.

37

General Enumerators

type Enumerator el m a =
Iteratee el m a -> m (Iteratee el m a)

(>>>):: Monad m =>
Enumerator el m a -> Enumerator el m a ->
Enumerator el m a

-- (>>>) = flip (.)
e1 >>> e2 = \i -> e2 =<< (e1 i)

However, our choice for the type of the enumerator imposes a slight
burden, of using the operation =<<, the flipped monadic bind, which
can be regarded as a sort of ‘call-by-value application’. We will see
many occurrences of such an operation. This is the standard monadic
operation; one may use bind too.
To compose enumeratees, we have to use the monadic composition
rather than the ordinary functional composition. We have to use bind.
The types practically force on us the implementation.

38

Sample General Enumerators

enum eof :: Monad m => Enumerator el m a

enum fd :: Fd -> Enumerator Char IO a

There is nothing to tell here but to show these general types. The code
for these enumerators remains the same.

39

Sample General Enumeratees

type Enumeratee elo eli m a =
Iteratee eli m a -> Iteratee elo m (Iteratee eli m a)

take :: Monad m => Int -> Enumeratee el el m a
enum chunk decoded :: Monad m => Enumeratee Char Char m a

Enumeratee is an Enumerator eli m a in an Iteratee elo m
monad

With more general types, the story becomes much more interesting.
The code for take and enum chunk decoded is almost identical to the
one shown earlier. But the types are more general.

39

Sample General Enumeratees

type Enumeratee elo eli m a =
Iteratee eli m a -> Iteratee elo m (Iteratee eli m a)

take :: Monad m => Int -> Enumeratee el el m a
enum chunk decoded :: Monad m => Enumeratee Char Char m a

Enumeratee is an Enumerator eli m a in an Iteratee elo m
monad

runI :: Monad m => Iteratee eli m a -> Iteratee elo m a
runI = lift . run

Again the types show that an Enumeratee is the Enumerator in the
Iteratee monad. The function runI is a ‘variant’ of run in the
Iteratee elo m monad. It is used to terminate (send EOF to) the
inner Iteratee and return the result in the outer Iteratee.
We shall see many occurrences of runI below. The function runI can
be defined like lifted run. The real implementation is obtained from
the above by inlining.

40

More interesting Enumeratees

map stream :: Monad m =>
(elo -> eli) -> Enumeratee elo eli m a

enum lines :: Monad m => Enumeratee Char Line m a

sequence stream :: Monad m =>
Iteratee elo m eli -> Enumeratee elo eli m a

More general types of enumeratees let us write more general
functions, such as map stream, which transforms the stream of
elements elo to the stream of elements eli and applies the given
iteratee to this nested stream. The code is simple, just as you can
expect from map.
We generalized line reader to be another stream transformer: from a
stream of characters to a stream of lines. We can either accumulate
and return all lines as we did before, using the pure iteratee
stream2list, or print the lines just as we receive them.
The transformer map stream maps one element of the outer stream to
one element of the nested stream. The transformer sequence stream

is more general: it may take several elements of the outer stream to
produce one element of the inner stream. The transformation from
one stream to the other is specified as Iteratee elo m eli. This is a
generalization for Monad.sequence.

41

True IO interleaving

line printer = enum lines print lines

print headers print body = do
lift $ putStrLn "Lines of the headers follow"
line printer
lift $ putStrLn "Lines of the body follow"
runI =<< enum chunk decoded line printer

test driver full iter fpath = do
fd <- openFd fpath ReadOnly Nothing defaultFileFlags
run =<< enum fd fd iter
closeFd fd; putStrLn "Finished reading"

test driver mux iter fpath1 fpath2 = do ...

The simple iteratee line printer used to process a variety of
streams: embedded, interleaved, etc. And here how we use it: we
read the headers and print each header right after it has been read.
We then read the lines of the chunk-encoded body and print each line
as it has been read. We use standard Haskell application and bind
operations, to feed iteratees to enumerators and to extract the results.
Demo: testm1, read and print the headers, and then stop after the the
empty line. We don’t read the whole stream. With testm2, we read
and print the headers and the body. We show embedded stream:
chunk-encoded body.
Running these tests demonstrates true interleaving, of reading from
the two file descriptors and of printing the results. All IO is
interleaved, and yet it is safe. There are no unsafe operations.

42

Outline

Introduction

Non-solutions: Handle-based IO and Lazy IO

Pure Iteratees

General Iteratees

I Lazy IO revisited

43

Lazy IO vs. Iteratee IO

driver1 (i:j:rest) =
print (max cycle len i j) >> driver1 rest

driver1 = return ()
main1 = getContents >>= driver1 . map read . words

Code file: GetContentsLess.hs

Finally, let us briefly revisit lazy IO. The great part of its attraction is
writing IO processors by composition, like in this sample code. It reads
a pair of integers from the standard input, evaluates a pure function
on these two arguments, prints the result, and awaits more input.
The same program can be implemented safely with the predictable
resource usage. We use the same processing function max cycle len.
We merely replace the driver and the main function. The number of
lines of code stays the same!

43

Lazy IO vs. Iteratee IO

driver1 (i:j:rest) =
print (max cycle len i j) >> driver1 rest

driver1 = return ()
main1 = getContents >>= driver1 . map read . words

driver2 = do
i <- head; j <- head
lift (print (max cycle len i j)) >> driver2

main2 = run =<< enum file "/dev/tty"
(enum words . map stream read $ driver2)

Code file: GetContentsLess.hs

The function main2 converts a stream of characters to the stream of
integers. Just like main1, it does the conversion by applying a
sequence of transformers. In main1, the stream transformers were
composed via (.). The composition operation remains the same, only
now we build the transformers inside out rather than outside in. In
both cases, the composition takes one line. Incidentally, the code for
enum words is quite similar to the code for Prelude.words, see
IterateeM.hs.

44

Binary and random IO

RandomIO.hs
Reading 16- or 32-bit signed and unsigned integers in big- or
little-endian formats;
Seeking within a file

Tiff.hs
An extensive example of:

I random and binary IO;
I on-demand incremental processing with iteratees.

We briefly mention binary and endian IO, with applications to reading
TIFF and WAVE files.

45

Conclusions
Iteratee IO: safe and practical alternative to Lazy and Handle IO

I Compositionality
I Iteratees compose horizontally as monads
I Iteratees compose vertically:

nesting, embedded stream processors
I Iteratee compose to process the same stream in parallel, or

two streams in parallel
I Enumerators are iteratee transformers,

compose as functions

I Good resource management
I Good error handling
I Inherent incremental processing
I Safe IO interleaving
I Based on left fold, for any FP language

Good performance, Correctness, Elegance

We have achieved both high performance and encapsulation of input
processing layers that can be freely composed. The technique has
been validated in a production web-application server written in
Haskell and database access library Takusen.
All IO is interleaved, and yet it is safe. No unsafe operations are used.
Separation of concerns: The enumerator knows how to get to the next
element; the Iteratee knows what to do with the next element.
The left-fold enumerator as a general concept has been used in other
functional languages.

