
Iteratees

Oleg Kiselyov

oleg@okmij.org

Abstract. Iteratee IO is a style of incremental input processing with
precise resource control. The style encourages building input processors
from a user-extensible set of primitives by chaining, layering, pairing and
other modes of compositions. The programmer is still able, where needed,
to precisely control look-ahead, the allocation of buffers, file descriptors
and other resources. The style is especially suitable for processing of com-
munication streams, large amount of data, and data undergone several
levels of encoding such as pickling, compression, chunking, framing. It
has been used for programming high-performance (HTTP) servers and
web frameworks, in computational linguistics and financial trading.
We exposit programming with iteratees, contrasting them with Lazy IO
and the Handle-based, stdio-like IO. We relate them to online parser com-
binators. We introduce a simple implementation as free monads, which
lets us formally reason with iteratees. As an example, we validate several
equational laws and use them to optimize iteratee programs. The simple
implementation helps understand existing implementations of iteratees
and derive new ones.

“We should have some ways of coupling programs like garden
hose – screw in another segment when it becomes necessary
to massage data in another way. This is the way of IO also.”
M. D. McIlroy. October 11, 1964.

1 Introduction

Iteratee IO is a style of compositional incremental input processing with precise
resource control. As such it is conducive to handling large amounts of data and
programming of long-running servers. Iteratee IO has been proven in practice: it
is employed in several commercially deployed web frameworks (e.g., [2]) has been
used in financial trading applications [9] and natural language processing. Good
performance of iteratee IO is seen from several benchmarks, web-related (in-
cluded SNAP) and others [6, 10]. Performance, compositionality and high level
of abstraction attracted attention. As of May 2011, there are three main imple-
mentations of Iteratee IO on Hackage:1 iteratee-0.8.3, enumerator-0.4.10
and the extensive iterIO, as well as several variations. Iteratee IO lends itself to
efficient, online parser combinator libraries similar to [1, 13]. First introduced to
Haskell [5], Iteratee IO has since been ported to F#,2 Scala and other languages.

1 http://hackage.haskell.org
2 https://github.com/fsharp/fsharpx

2

The goal of Iteratee IO is to overcome drawbacks of Lazy and Handle-based
IO and combine their strong features. Lazy IO, an instance of memory-mapped
IO, is an elegant abstraction that effectively eliminates IO, giving program-
mers an impression that the entire file is available in memory and may be ac-
cessed as an ordinary string. There is no longer need to explicitly read, let alone
worry about buffer allocations and underflows. The abstraction of a file as an
in-memory string comes without guilt: behind the scene, the operating or run-
time systems access the file efficiently, reading it on demand and sharing the read
data. Lazy IO facilitates compositional input processors like parser combinators.

Lazy IO is so irresistible that it was added to Haskell despite the reservations
of its inventors and the failure to develop good techniques for reasoning about
its correctness [7, Sec 10.5]. However benign, reading is an observable side-effect,
whose occurrence may have to be correlated with other side effects. Such cor-
relations are crucial when performing IO over communication pipes, which is
typical of web servers.3 As Launchbury and Peyton Jones feared, Lazy IO in-
deed “gives rise to a very subtle class of programming errors”. We have seen
deadlocks; mishandling of IO errors; running out of file descriptors and similar
scarce resources; unpredictable, volatile and sometimes unbearably excessive use
of memory. We illustrate the splendors and miseries of Lazy IO in §2.

Handle-based IO is the stdio-style IO familiar from C. It is ‘strict’: IO op-
erations must be explicitly requested. Therefore, it affords precise control of
resources and the detection of all IO errors. However, it is very low-level: every
read operation is painfully explicit. Handle-based IO hides the buffering, provid-
ing the abstraction for a stream of characters. The abstraction does not extend
to a stream of other data types, and does not support stream embeddings. The
programmer must be constantly aware of the current file position, which makes
it tortuous to process layered streams or combine parsers to process the same
stream in parallel. §2 illustrates these problems as well.

One wishes for a set of abstractions that free programmers from thinking
about IO, and yet provide facilities to control buffering, look ahead, locking, etc.
at those moments where it matters. One wishes to derive these abstractions and
optimize them by algebraic transformations based on equational laws.

Iteratee IO is an approach to this ideal, amalgamating ideas going back to
the IO of Haskell 1.3; Kernel-Prolog’s iterator objects [15] uniformly representing
files, in-memory collections and processes; the resumption monad, surveyed in
[3], and generators of Alphard [12] (which now live as Java streams and genera-
tors in modern languages.) Like Handle IO, Iteratee IO gives error handling, the
precise control over important operations and resource allocations, incremental
processing and high performance. Like Lazy IO, it gives high-level abstractions,
encapsulating input processing layers that can be nested and composed sequen-
tially or in parallel. Iteratee IO turns out to offer reasoning principles letting us
derive implementations and optimize them.

Although all implementations of Iteratee IO follow the same principles, there
are many variations based on historical accidents, handling of buffering, levels

3 POSIX memory-mapped IO, mmap, does not work with communication pipes either.

3

of generality. There are even more tutorials, varying in generality and points of
view [6, 8, 16–18]. The desire for a standpoint to grasp the idea of iteratees, to
assess and derive their variations and to reason with them is the motivation for
the present paper.

The contributions and the structure of the paper We argue that the
essence of Iteratee IO is captured by two inter-related views: stream processing
network and incremental online parser combinators. Based on the final co-algebra
model of stream processors, for the first time we formulate algebraic laws, which
let us derive and simplify iteratee parser combinators.
§2 introduces Iteratee IO, by using an Iteratee library to write a progression

of examples abstracted from web server programming and computational linguis-
tics. We use the examples to contrast Iteratee IO with Lazy and Handle-based
IO and to give them informal semantics.
§3 defines the semantics formally, as an interpretation of the data type denot-

ing iteratees. The semantics lets us view iteratees as parsers. The rich algebraic
structure of the iteratee data type – final co-algebra and free monad – gives
rise to algebraic laws, which let us build and reason about iteratee programs
compositionally. Appendix B of the full paper4 details optimizing iteratee parser
combinators using the equational laws.

Appendix A proves the equational laws in a more general setting of effectful
iteratees – in which input processing is accompanied by effects in some monad.
Buffering and look-ahead are two particular examples of such an effect. This
insight clarifies the implementation of buffering in iteratee libraries – which so
far has been the most confusing feature.

More material about iteratees, including demonstrations, tutorials and ref-
erences to iteratee libraries are available online at http://okmij.org/ftp/

Streams.html. The annotated source code for all the examples in the paper
can be found in http://okmij.org/ftp/Haskell/Iteratee/, which is the base
URL for all code files referenced in this paper.

2 Programming with Iteratees

This section introduces programming with iteratees on a series of progressively
more complex examples. We stress compositionality – assembling input proces-
sors from previously written or library components. We appeal to the intuitions
of more familiar Lazy IO and Handle IO when explaining iteratees. Therefore,
the examples are also written in Lazy IO, and, when feasible, Handle IO. The
contrast lets us see the advantages of Lazy and Handle IO that Iteratee IO in-
herits, and the drawbacks it is designed to overcome. (In particular, we shall see
Lazy IO’s unexpected, huge memory consumption and wasting sparse resources
like file descriptors.)

The examples revolve around reading potentially very large text and count-
ing specific words and whitespace. The final example, abstracted from interactive

4 http://okmij.org/ftp/Haskell/Iteratee/describe.pdf

4

systems, tests orchestration: reading a communication pipe up to a terminator
but not a byte further. The complete code for all examples – with tests and
the extra details left out of the paper – is available online (IterDemo1.hs). The
code uses the IterateeM library available from the same site. Figure 1 lists
the interface of the library fragment used in this section, pointing out related
functions from the Haskell standard library. A different series of illustrative ex-
amples, counting lines and words and searching for the first or all occurrences
of a word – implementing wc and grep – are given in IterDemo.hs. The latter
set of examples illustrates error handling and the encapsulation of state.

type Iteratee el m a −− a processor of the stream of els
−− in a monad m yielding the result of type a

instance Monad m ⇒Monad (Iteratee el m)
instance MonadTrans (Iteratee el)

getchar :: Monad m ⇒ Iteratee el m (Maybe el) −− cf. IO.getChar, List . head
count i :: Monad m ⇒ Iteratee el m Int −− cf. List . length

run :: Monad m ⇒ Iteratee el m a → m a −− extract Iteratee ’ s result

−− A producer of the stream of els in a monad m
type Enumerator el m a = Iteratee el m a → m (Iteratee el m a)
enum file :: FilePath → Enumerator Char IO a −− Enumerator of a file

−− A transformer of the stream of elo to the stream of eli
−− (a producer of the stream eli and a consumer of the stream elo)
type Enumeratee elo eli m a =

Iteratee eli m a → Iteratee elo m (Iteratee eli m a)

en filter :: Monad m ⇒ (el → Bool) → Enumeratee el el m a
take :: Monad m ⇒ Int → Enumeratee el el m a −− cf. List . take
enum words :: Monad m ⇒ Enumeratee Char String m a −− cf. List.words

−− Kleisli (monadic function) composition: composing enumerators
(≫) :: Monad m ⇒ (a → m b) → (b → m c) → (a → m c)

−− Connecting producers with transformers (cf . (=�))
infixr 1 . | −− right−associative
(. |) :: Monad m ⇒

(Iteratee el m a → w) → Iteratee el m (Iteratee el ’ m a) → w

−− Parallel composition of iteratees (cf . List . zip)
en pair :: Monad m ⇒

Iteratee el m a → Iteratee el m b → Iteratee el m (a,b)

Fig. 1. The interface of the IterateeM library fragment

We start lightly, with counting whitespace characters. The Lazy IO code
pattern-matches on the ordinary string (cf. more elegant code later):

5

countWS lazy :: String → Int
countWS lazy ”” = 0
countWS lazy (c:str) | isSpace c = 1 + countWS lazy str
countWS lazy (:str) = countWS lazy str

There are no appearances of any IO operations, which is the main appeal of
Lazy IO. The IO is banished to the highest-level code, which opens a file and
“reads it all” into a string, to hand out to countWS lazy.

run countWSL fname = readFile fname �= print ◦ countWS lazy

The run-time system reads the file on demand, so that the counting runs in
constant, and small memory.

The Handle IO code is in the style of stdio, familiar to C programmers. It,
too, “pattern-matches” on the input stream.

countWS handle :: Handle → IO Int
countWS handle h = loop 0
where
loop n = try (hGetChar h) �= check n
check n (Right c) = loop (if isSpace c then n+ 1 else n)
check n (Left e) | Just ioe ← fromException e,

isEOFError ioe = return n
check (Left e) = throw e

run countWSH fname =
bracket (openFile fname ReadMode) hClose $ \h →
countWS handle h �= print

It, too, runs in small and constant memory. Error handling stands out. We now
differentiate EOF (end-of-file) from other IO errors, which is impossible with
Lazy IO. Also unlike Lazy IO, the code is explicit about closing the file, ensuring
that the file be closed (IO errors or not) before run countWSH returns.

The Iteratee IO code below should look quite similar to the earlier exam-
ples. The intuition of pattern-matching on the stream still applies; the stream is
implicit however. Since there is no explicit ‘handle’, errors like reading from an
already closed handle become impossible.

countWS iter :: Monad m ⇒ Iteratee Char m Int
countWS iter = loop 0 −− tail−recursive
where loop n = getchar �= check n

check n Nothing = return n
check n (Just c) = loop (if isSpace c then n+ 1 else n)

We have written an iteratee: it reads the stream of characters and produces an
Int. Polymorphism over the monad m tells that the iteratee (like countWS lazy)
is pure. The library iteratee getchar5 (see Figure 1) is quite like try (hGetChar h)

5 Although some Iteratee libraries indeed provide something like getchar, we implement
it ourselves, in IterDemo1.hs. §3 explains the idea of the implementation and gives
a simpler version, called oneL in Figure 2.

6

in the Handle IO code: getchar reads a character from the stream and returns it;
the result Nothing signifies EOF. The Iteratee library takes care of detecting and
propagating other IO errors. Iteratee el m is a monad, letting us write iteratee
code in the standard monadic style (again compare with the Handle IO code
above).

This is how we count whitespace in a file:

run countWSI fname = print =� run =� enum file fname countWS iter

Here, enum file is an enumerator : it enumerates a file, passing file data to an
iteratee. The precise enumerator/iteratee interaction is described in §3. A user
of an Iteratee library should find sufficient the stdin intuition: the iteratee getchar
is quite like Prelude.getChar, which reads a character from the buffer containing
the current chunk of the standard input. If the buffer is empty, OS is requested
to fill it in. Our enum file opens the file on the ‘standard stream’ and plays the
OS for the iteratee, reading a chunk when the iteratee asks to fill its buffer.
When the file is exhausted, or when the iteratee stops asking for more data,
the iteratee, encapsulating the resulting state, is returned. The resulting iteratee
cannot hold any references to the file: in fact, an iteratee cannot know if its ‘stdin’
data come from a file or other source. Therefore, enum file’s closing the file upon
return is safe.6 The function run tells the iteratee that the stream is finished
and extracts its result, the integer counter in our case. (App. C gives another,
plumbing intuition for Iteratee IO.) Like Lazy IO, the file is read incrementally
and on demand. Like Handle IO, the file be closed when enum file returns, IO
errors or not. Explicit bracketing is not needed. Like Handle IO (and unlike Lazy
IO), iteratees support precise error handling and accounting of sparse resources
like file descriptors. Unlike Handle IO, the boring details are hidden away.

Lazy IO permits a far more elegant solution: a one-liner, using the standard
Prelude functions on lists:

countWS’ lazy :: String → Int
countWS’ lazy = length ◦ filter isSpace

We filter out the characters other than whitespace, and count the remainder.
As expected for pure Haskell, filtering and counting is done incrementally and
lazily. The intermediate list is never fully constructed. Iteratee IO matches the
algorithm and the elegance:

countWS’ iter :: Monad m ⇒ Iteratee Char m Int
countWS’ iter = id . | (en filter isSpace) count i

We use three new library primitives, Figure 1: the iteratee count i, like length, re-
turns the length of the stream. The enumeratee en filter is a stream transformer.
The type of Enumeratee elo eli m a almost fits the pattern of Enumerator eli m a:
indeed, the enumeratee is an enumerator for the inner stream (of eli-type el-
ements), taking data from the outer stream. That is, Enumeratee elo eli m a
converts a stream of elos into a stream of elis. The conversion is not nec-
essarily in lock-step, as is the case for en filter: although the outer and the

6 In that respect, enum file is similar to Scheme’s with-input-from-file.

7

inner streams have elements of the same type, the inner streams has gener-
ally fewer elements. Although conceptually ‘stream’ is an (infinitely) long se-
quence of elements, at any given time only a single, small chunk of the stream
is present in memory. Our en filter requests a chunk from the outer stream
and creates a filtered chunk, to pass to an iteratee. All stream conversion is
strictly incremental. There is not even a chance of producing a large interme-
diate data structure, and no need to trust laziness or GHC fusion rules. The
combinator (. |), akin to run, ‘runs’ the enumeratee, that is, terminates the
inner stream and extracts the result of the inner iteratee, passing it to the con-
sumer, the left argument of (. |). (There are cases, not described in the paper,
where the inner stream should be left unterminated so it can be passed to an-
other enumeratee: e.g., processing of HTTP chunk-encoded streams.) To count
whitespace in a file, we write enum file fname countWS’ iter. The equational law
f (g . | h) ≡ (f ◦ g) . | h gives enum file fname . | en filter isSpace count i ,
which resembles the Unix pipeline.

We modify the example to count the occurrences of the word “the” (assuming
the input is text with words of bounded size). Lazy IO code is most straightfor-
ward, relying on Prelude.words to parse the input string into a list of words. We
filter out words other than “the” and count the remainder. Thanks to Haskell
laziness, the whole operation runs in constant space.

countTHE lazy :: String → Int
countTHE lazy = length ◦ filter (== ”the”) ◦ words

Handle IO code for this example is complex. Not only should we search
for “the”, we also have to make sure the character before and after (if exist)
is whitespace. On the top of it, we have to deal with errors and EOF. The
simplest solution is to explicitly write the Finite State Machine recognizer, see
IterDemo1.hs for details. The result is too big to put in the paper, reminding us
that Handle IO is really low level. An abstraction is direly needed, for example,
in a form of a lexer generator – or Iteratee IO.

Here is the Iteratee IO code (Recall, (. |) is right-associative)

countTHE iter :: Monad m ⇒ Iteratee Char m Int
countTHE iter = id . | enum words . | en filter (== ”the”) count i

It is quite like Lazy IO, converting a character stream to a word stream to the
filtered stream, which is then counted.

Let us extend the example so to count the word “the” within a sequence of
files, as if they are concatenated. We shall count “the” even if it is split between
two files. The Lazy IO code re-uses the previously written counting function
countTHE lazy, which now receives a string that is the concatenation of all files’
contents.

run manyTHEL fnames =
mapM readFile fnames �= print ◦ countTHE lazy ◦ concat

The code is elegant; the processing is incremental, reading only one file at a
time. Alas, we have to open all files first! The action readFile, which opens a file

8

and prepares it for lazy reading, is performed in sequence on all files – prior to
counting. Since counting is pure, we cannot execute IO actions like readFile in
the counting code. Therefore, we need as many file descriptors as there are files
in the fnames list. If the list is long, we may run out of file descriptors. Ideally,
however, we only need one file descriptor, opening and closing it as we go. We
get the first intimation of Lazy IO resource mis-management – with no interface
to correct.

Handle IO code to count in multiple files is even more complex than the
single-file counter.We do not show the code for the lack of space.

The Iteratee IO code again looks quite like Lazy IO code, re-using the pre-
viously written iteratee countTHE iter. Kleisli (monad functional composition)
(≫) builds an enumerator from two others, effectively sending to an iteratee
first the chunks of the first stream and then the chunks of the second. In short,
composing enumerators concatenates their sources. We elaborate on that prop-
erty and state it formally, in §3.

run manyTHEI fnames = print =� run =�
foldr1 (≫) (map enum file fnames) countTHE iter

(one can use the regular foldr keeping in mind that the unit of (≫) is return).
Unlike Lazy IO, only a single file descriptor is used during the whole counting;
only one file is open at any given time.

As a test of compositionality, we combine the two counting operations and
count “the” and whitespace, together. Lazy IO code is elegantly straightforward.

run countPairL fname = do
str ← readFile fname
print (countWS lazy str, countTHE lazy str)

Here we run into one of Lazy IO pitfalls: the counting is no longer incremental.
The whole file is loaded in memory. For applications processing large files or long
streams, Lazy IO is too unreliable for use in production.

The Iteratee code also re-uses previously written counters. It pairs them,
relying on the parallel composition of iteratees en pair.

run countPairI fname =
print =� run =� enum file fname (countWS iter ‘en pair ‘ countTHE iter)

One may think of en pair as ‘splitting’ (or duplicating) the stream. In reality
en pair does no copying or buffering: it receives a chunk and passes it to its two
argument iteratees. If both iteratees want more data, a new chunk is requested.
Unlike Lazy IO, the processing remains incremental and in constant memory:
As we read a block from file, we send the block to two iteratees.

Our final example demonstrates early, prior to EOF, termination. We modify
the previous “the” and the whitespace counter to count only within the prefix
of the stream of the size at most N. This example is abstracted from reading
HTTP request content with the explicitly specified Content-Length. We should
not attempt to read even a single byte after N since a web client expects the
reply first, before it sends the next request. If we attempt to read ahead after

9

N bytes, the deadlock ensues. The lazy IO code uses the Prelude.take to lazily
obtain the prefix of the file content, which is processed as before.

run ntermL n fname = do
str0 ← readFile fname
let str = Prelude.take n str0
print (countWS lazy str, countTHE lazy str)

As in the previous example, this counting does not run in constant memory.
There are bigger problems. First, since we generally stop reading before EOF,
the run-time system will not close the file descriptor. It will be closed when
the corresponding finalizer is run, which may happen very late. Leaking of file
descriptors puts us in danger of running out of them, which indeed happens in
practice when using Lazy IO with programs that process lots of files. Most serious
is the real danger of a deadlock. The run-time system may speculatively read-
ahead, at any time and for any reason. The programmer has no way whatsoever
to control this read-ahead or even be informed about it. Deadlock does routinely
happen in practice, when using lazy IO for interactive services.7

Lazy IO was designed to give the impression that IO is not even happen-
ing. When dealing with communication pipes and request-response servers, even
reading is an observable effect. The precise control of reading actions is crucial.
Lazy IO becomes a wrong abstraction.

The Iteratee IO code, like the earlier Lazy IO code, differs from the previous
run countPairI in one change, take – from IterateeM rather than Prelude.

run ntermI n fname =
print =� run =� enum file fname . |
IterateeM. take n (countWS iter ‘en pair ‘ countTHE iter)

Like en filter, the enumeratee take substreams its outer stream, namely, takes the
prefix of the size at most n. As soon as take n gets its n elements, it stops asking
for more data, prompting its enumerator, enum file, to close the file. The Iteratee
code is just as concise as the Lazy IO code; both are quite alike. Since IO is now
done strictly, the iteratee code gives full control over file opening, closing, and
reading. (IterDemo1.hs has another early termination example, reading the file
up to the first occurrence of a given string.)

We have seen that both Lazy IO and Iteratee IO allow assembling of the
whole program from independent building blocks. Both IO styles permit the
incremental processing, reading file data on demand. Because Iteratee IO is not
lazy, the Iteratee library can ensure timely deallocation of resources, precise IO
error handling, precise control of reading actions. Iteratee IO, unlike Lazy IO,
guarantees the incremental processing.

3 Enumerators and the semantics of iteratees

This section outlines the conceptual design of iteratees, viewing iteratees and
enumerators as communicating sequential processes. Iteratee processes are mod-

7 http://www.haskell.org/pipermail/haskell-cafe/2008-August/046532.html

10

eled as a data type; enumerators become interpreters, thus defining the seman-
tics of iteratees as parsers of an enumerator’s source. We show the compositional
construction of iteratee-parsers and elucidate the algebraic laws that help design
iteratee parser combinators and simplify iteratee programs. The accompanying
code with derivations and several examples is available at IterDeriv.hs.

Our running example is reading lines from the standard input until the empty
line, returning them in a list. The example is part of the common task of reading
HTTP or e-mail headers. A line is a maximal sequence of non-newline characters.
First, we write the example in the familiar C-style, with getChar – or its non-
exceptional version getchar0, which, like the one in the C standard library, returns
the current character or EOF.

type LChar = Maybe Char −− lifted character
getchar0 :: IO LChar

The function to read one line is later used to read all lines up to the empty line:

getline0 :: IO String
getline0 = loop ””
where loop acc = getchar0 �= check acc

check acc (Just c) | c 6= ’\n’ = loop (c: acc)
check acc = return (reverse acc)

getlines0 :: IO [String]
getlines0 = loop []
where loop acc = getline0 �= check acc

check acc ”” = return (reverse acc)
check acc l = loop (l : acc)

We may view getline0 and getlines0 as processes receiving lifted characters on
a dedicated channel stdin and terminating with a value (a line or a list of lines).
The simplest model represents such processes as a data type with a variant for
each process operation – finished or inputting a character (see [4] for a good
explanation of such modeling). We will call these processes iteratees8.

data I a = Done a
| GetC (LChar → I a)

Here is the data type model of the line reader

getline :: I String
getline = loop ””
where loop acc = GetC (check acc)

check acc (Just c) | c 6= ’\n’ = loop (c: acc)
check acc = Done (reverse acc)

which looks almost identical to getline0. However, Done and GetC merely rep-
resent process operations. Terms like getlines hence do not “do” anything; they

8 For the origin of the name, see http://okmij.org/ftp/Scheme/

enumerators-callcc.html.

11

have to be interpreted so to run the corresponding process. Our interpreter uses
a given finite string as the source of characters to send to the process.

eval :: String → I a → a
eval ”” (GetC k) = eval ”” $ k Nothing
eval (c: t) (GetC k) = eval t $ k (Just c)
eval str (Done x) = x

When the string is exhausted, the process is sent EOF (that is, Nothing). Hope-
fully the process then finishes and we can return the produced result. One may
view eval str i as a Unix pipeline cat str | i.

The data type I a has a rich structure. I a is a final co-algebra of the functor
T (X) = A+XLChar – which helps us prove algebraic laws of iteratees below. The
data type represents finitely branching trees with finite and infinite branches.9

The interpreter eval s traces the path s in the tree. Last but not least, I a is a
free monad (for good explanation and references, see [14]):

instance Monad I where
return = Done

Done x �= f = f x
GetC k �= f = GetC (k ≫ f)

(see Figure 1 for Kleisli composition (≫)). Therefore, we may build iteratee
processes by chaining simpler ones with the monadic (�=) operation. For ex-
ample, we chain getlines to build the process model of the reader of lines; the
result looks identically to getlines0:

getlines :: I [String]
getlines = loop []
where loop acc = getline �= check acc

check acc ”” = return (reverse acc)
check acc l = loop (l : acc)

The next step is simple but momentous: we factor out eval into two inter-
preters, separating out the sending of data from the sending of EOF. The first
factor feeds the characters, until there are no more data or the iteratee process
is finished. The resulting iteratee is returned. The second interpreter tells the
iteratee that there are no more data, and extracts its result.

en str :: String → I a → I a
en str ”” i = i
en str (c: t) (GetC k) = en str t $ k (Just c)
en str (Done x) = Done x

run :: I a → a
run (GetC k) = run $ k Nothing

9 Recall that Haskell data types are co-inductive, letting us construct infinite terms,
such as getline.

12

run (Done x) = x

Clearly, eval str ≡ run ◦ en str str. We call en str enumerator, and its argument
str a source. The function run is analogous to eof of the UUparsing library [13].
Enumerators and run of the IterateeM library, Figure 1, look more general than
en str and run above since IterateeM lets iteratees and enumerators perform side
effects in a monad m, when obtaining and processing input data. See App. A for
such a generalization.

The point of factoring out eval is obtaining interpreters that can be function-
ally composed. Furthermore,

Equational Law 1 (Composition)

en str (s1 ++ s2) ≡ en str s2 ◦ en str s1

In words: the composition of enumerators corresponds to the concatenation of
their sources. The law holds for more general effectful enumerators and iteratees,
see App. A for the formulation and proof. If we overlook the last clause of en str’s
definition, en str is an instance of foldr (which inspired the names ‘iteratee’ and
‘enumerator’). The law of composition therefore is hardly surprising.

Another law of en str illustrates the compositionality of the iteratee semantics
and lets us view iteratees as parsers and build parser combinator libraries. An
iteratee is a value of the data type I a, which per se has “no semantics”. The
interpreter en str gives a semantics to iteratees, as a function from finite strings
to either Done v or GetC k. When the result of en str s i is Done v, we say that
the iteratee i has recognized the string s, parsing it to the value v. It follows from
the law of composition that if i has recognized the string s, i recognizes s ++ s2
for any s2. We say that i properly recognizes the string s if i recognizes s but not
any proper prefix of s.

Equational Law 2 (Chaining) If iteratee i properly recognizes s1, then

en str (s1 ++ s2) (i �= f) ≡ en str s1 i �= en str s2 ◦ f

The proof of the general version of this law is given in App. A.
The law of chaining tells us how to build a recognizer for a string from the

recognizers of the string’s prefix and suffix, thus defining the meaning of the
sequential iteratee composition (�=). To represent choice we need a parallel
composition: the left-biased alternation combinator.

(C) :: I a → I a → I a
Done x C = Done x
C Done x = Done x

GetC k1 C GetC k2 = GetC (\c → k1 c C k2 c)

The parser i1 C i2 recognizes whatever the first finishing parser recognizes; in
the event of a tie, the result of i1 is preferred. Whereas the left and right unit
of (�=) is Done, the left and right unit of C is failure, Figure 2, which keeps
requesting input even after receiving EOF. It is a “diverging iteratee”: run failure

13

diverges. (In IterateeM library, run reports an error if an iteratee asks for data
after receiving EOF.)

Equational Law 3 (Zero) The failure is the left zero of bind

failure �= f ≡ failure

Equational Law 4 (Right distributivity)

i �= \x → (k1 x C k2 x) ≡ (i �= k1) C (i �= k2)

The law is similar to the law L10 in the parallel parser combinator library [1].
Since C commits to whatever a parser recognizes first, the left distributivity
does not hold:

(i1 C i2) �= k 6≡ i1 �= k C i2 �= k

Primitive parsers

failure :: I a −− The parser of nothing
failure = GetC (const failure)

empty :: a → I a −− The parser of the empty string
empty v = Done v

oneL :: I LChar −− The parser of one lifted character
oneL = GetC Done

Parser combinators: chaining and alteration

(�=) :: I a → (a → I b) → I b
(C) :: I a → I a → I a

Derived parsers

−− The parser of a one−character string
one :: I Char
one = oneL �= maybe failure return

−− The parser of a character satisfying the given predicate
pSat :: (LChar → Bool) → I LChar
pSat pred = oneL �= \c → if pred c then return c else failure

Fig. 2. Parser combinator library for simple iteratees

We thus arrive at the simple parser combinator library, Figure 2, which lets
us derive the parsers getline and getlines that we previously built by intuition.
First, we use the library to write the line reader in the ‘obviously correct’ way,
expressing our definition of a line:

pGetline :: I String
pGetline = nl C liftM2 (:) one pGetline
where nl = do

14

pSat (\c → c == Just ’\n’ | | c == Nothing)
return ””

It is quite inefficient: if the current character is not newline, nl turns into failure,
which does nothing but keeps receiving characters and discarding them. Such
wasteful operations should be eliminated. Noting that pSat and one start with
oneL that can be factored out by the right distributivity, and applying the laws
of failure gives us

pGetline ’ :: I String
pGetline ’ = oneL �= check
where check (Just ’\n’) = return ””

check Nothing = return ””
check (Just c) = liftM (c:) pGetline ’

(See App. B for the complete equational derivation.) This iteratee is a non-
tail-recursive version of getline that we wrote ad hoc earlier with explicit process
constructors GetC and Done. (The tail-recursive conversion through accumulator
is standard.) The correctness of getlines follows from the law of chaining.

The parser combinators in Figure 2 are efficient: the input stream is consumed
character-by-character and is never backtracked. These parser combinators are
somewhat similar to camlp4 parsers [11] in structuring a parser as a team of
concurrent simple recursive-descent ‘stream parsers’. Figure 2 library races the
stream parsers in parallel until one succeeds. Camlp4 orders stream parsers by
precedence and lets a higher-precedence parser run for a as long as it could.
Camlp4 relies on look-ahead, which iteratee parser combinators in this section
do not have (although it could be emulated in the continuation-passing style).

Look-ahead, or a fixed put-back, is an ‘effect’, to be expressed with effectful
iteratees, see App. A. Effectful iteratees also permit a better error reporting.
App. A thus lays out the way towards implementing the interface in Figure 1
and running our illustrative examples, §2.

4 Conclusions

We have introduced Iteratee IO, a compositional incremental input processing
style with precise resource control. Like Lazy IO, it provides high abstraction,
composability, combinator libraries, and on-demand IO. Because Iteratee IO is
not lazy, the Iteratee library can ensure timely deallocation of resources, precise
IO error handling, and strict control of reading actions. Incremental processing
can now be guaranteed. Iteratee IO is therefore particularly suitable for program-
ming long-running servers and processing large amounts of data. Compared to
Handle IO, Iteratee IO is much higher level.

We have presented a view of iteratees as processes, represented by final co-
algebras and free monads. The view shows how to reason with iteratees and
implement them, motivating the basic design of iteratees and explaining their
compositions. The theory of effectful iteratees clarifies the vexing issues of buffer-
ing and look-ahead. The iteratee libraries have many other features such as error

15

reporting, restartable exceptions, random IO, and merging of several streams.
The iteratee-as-process view helps in understanding these advanced parts, too.

The capabilities and applications of Iteratee IO are still being discovered.
For example, it was recently shown10 that monadic regions and iteratees easily
combine; therefore it is possible after all to write an exception-safe iterFile (an
iteratee that writes the stream data to a file), ensuring the output file always
closed.

The theory of effectful iteratees hints at the possibility of reasoning about
computations with arbitrary IO effects (involving communication pipes, locking,
shared memory, etc.), being very specific, at times, about the allocation of re-
sources and the precise sequencing of operating system calls. We could derive
observational equivalences of IO programs by extending equivalences of simple
sample programs asserted by the programmer.

Even though Lazy IO compromises equational reasoning, it was introduced
because Haskell was perceived – by its creators – as not expressive enough for
incremental high-level IO: “We fear that there may be no absolutely secure
system – that is, which one guarantees the Church-Rosser property – which is
also expressive enough to describe the programs which systems programmers (at
least) want to write...” [7, Sec 10.5]. The pessimism turns out unwarranted. We
can write high-level programs with incremental IO and precise resource control –
in safe Haskell.

Acknowledgments

I am very thankful to John W. Lato, Paulo Tanimoto, Johan Tibell and Al-
istair Bayley for extensive insightful discussions. Many helpful comments and
suggestions from Gregory Collins, Jason Dagit, Nicolas Frisby, David Mazières,
Chung-chieh Shan, Wren Ng Thornton and anonymous reviewers are gratefully
acknowledged.

10 http://www.haskell.org/pipermail/haskell-cafe/2012-January/098704.html

Bibliography

[1] Claessen, Koen. 2004. Parallel parsing processes. Journal of Functional
Programming 14(6):741–757.

[2] Collins, Gregory David. 2011. snap-server: An iteratee-based http server
library. http://snapframework.com/docs/latest/snap-server/index.

html.
[3] Harrison, William L. 2006. The essence of multitasking. In 11th int. conf.

on algebraic methodology and software technology (AMAST 2006), 158–172.
[4] Hinze, Ralf. 2001. Deriving backtracking monad transformers. In ICFP,

186–197. ACM Press.
[5] Kiselyov, Oleg. 2008. Incremental multi-level input processing with left-

fold enumerator: predictable, high-performance, safe, and elegant. ACM
SIGPLAN 2008 Developer Tracks on Functional Programming (DEFUN
2008).

[6] Lato, John W. 2010. Iteratee: Teaching an old fold new tricks. In The
monad.reader, ed. Brent Yorgey, vol. 16, 19–35.

[7] Launchbury, John, and Simon L. Peyton Jones. 1995. State in Haskell. Lisp
and Symbolic Computation 8(4):293–341.

[8] Millikin, John. 2010. Understanding iteratees. http://john-millikin.

com/articles/understanding-iteratees/.
[9] Parker, Conrad. 2011. Iteratees at Tsuru Capital. http://blog.kfish.

org/2011/09/iteratees-at-tsuru.html.
[10] Quick, Kevin. 2011. Fun with the ST monad. http://www.haskell.org/

pipermail/haskell-cafe/2011-February/089689.html.
[11] de Rauglaudre, Daniel. 2003. Camlp4 - Reference Manual, version 3.07.

http://caml.inria.fr/pub/docs/manual-camlp4/.
[12] Shaw, Mary, William A. Wulf, and Ralph L. London. 1977. Abstraction and

verification in Alphard: defining and specifying iteration and generators.
Communications of the ACM 20(8):553–564.

[13] Swierstra, S. Doaitse. 2008. Combinator parsing: A short tutorial. In LerNet
ALFA Summer School, vol. 5520 of LNCS, 252–300. Springer.

[14] Swierstra, Wouter. 2008. Data types á la carte. Journal of Functional
Programming 18(4):423–436.

[15] Tarau, Paul. 2000. Fluents: A refactoring of Prolog for uniform reflection
and interoperation with external objects. In Computational Logic: First
international conference, ed. John Lloyd. LNCS 1861.

[16] Thornton, Wren Ng. 2011. Fun with the ST monad. http://www.haskell.
org/pipermail/haskell-cafe/2011-February/089687.html.

[17] Yamamoto, Kazu. 2011. A tutorial on the enumerator library. http://

www.mew.org/~kazu/proj/enumerator/.
[18] Yang, Edward Z. 2012. Why iteratees are hard to understand. http://

blog.ezyang.com/2012/01/why-iteratees-are-hard-to-understand/.

17

A Effective iteratees

The data received by an iteratee may come from a file or a network. To get a
chunk of that data, an enumerator had to perform IO. An iteratee may also
need effects, e.g., to write a log, report exceptions, rewind the input stream.
The theory of effectful iteratees developed in this section applies to all these
cases. The theory extends the final-coalgebra representation of iteratee processes
introduced in §3. We generalize the equational laws stated in §3 and prove them.
The full details are in the accompanying source code IterDerivM.hs.

As in §3, we view iteratees as processes, modeled by a final co-algebra of their
operations – terminated or requesting a character. After receiving a character,
the iteratee may now incur an effect, in an arbitrary monad m:

data I m a = Done a
| GetC (LChar → m (I m a))

The model of the line reader process below looks identically to that of getline in
§3. Indeed, this line reader had no effects besides requesting a character.

getline :: Monad m ⇒ I m String
getline = loop ””
where
loop acc = GetC (check acc)
check acc (Just c) | c 6= ’\n’ = return (loop (c: acc))
check acc = return (Done (reverse acc))

Let us introduce an effect, of emitting a string:

class Monad m ⇒ PutS m where
putS :: String → m ()

instance PutS IO where
putS = putStrLn

so that we may model a line reader that writes the debugging trace of each
received character:

getlineT :: (PutS m, Monad m) ⇒ I m String
getlineT = loop ””
where
loop acc = GetC (trace acc)
trace acc c = putS (”got ” ++ show c) � check acc c
check acc (Just c) | c 6= ’\n’ = return (loop (c: acc))
check acc = return (Done (reverse acc))

The interpreters of the iteratee term representation – enumerators and run –
are defined as before, §3. The presence of the “call-by-value application” (=�)
reveals that the evaluation order now matters.

en str :: Monad m ⇒ String → I m a → m (I m a)

18

en str ”” i = return i
en str (c: t) (GetC k) = en str t =� k (Just c)
en str i@Done{} = return i

run :: Monad m ⇒ I m a → m a
run (Done x) = return x
run (GetC k) = run =� k Nothing

As in §3, monadic operations let us compose iteratee processes: I m is a
monad – a free monad.

instance Monad m ⇒Monad (I m) where
return = Done

Done x �= f = f x
GetC k �= f = GetC (k ≫ (return ◦ (�= f)))

Somewhat surprisingly (since monads do not generally compose), the composi-
tion of m and I m is also a monad, with the following bind operation

type IM m a = m (I m a)
bind :: Monad m ⇒ IM m a → (a → IM m b) → IM m b
bind m f = m �= check
where
check (Done x) = f x
check (GetC k) = return (GetC (\c → bind (k c) f))

We hence combine the logging line reader getlineT to read several lines until the
empty line:

getlinesT :: (PutS m, Monad m) ⇒ I m [String]
getlinesT = loop []
where
loop acc = getlineT �= check acc
check acc ”” = return (reverse acc)
check acc l = loop (l : acc)

Here is the complete example of reading lines from a given string, printing each
character as it is being processed.

t111 = print =� run =� en str ”abd\nxxx\nf” getlinesT

The equational laws of iteratees and enumerators, §3, generalize to the ef-
fectful case.

Equational Law 5 (Effectful Composition)

en str (s1 ++ s2) ≡ en str s1 ≫ en str s2

Here s1 must be a finite string; s2 is arbitrary. The law reads just like the original
law of composition, this time, in terms of Kleisli composition. Let us prove it.

19

If we pass the Done x iteratee to the enumerators on both sides of the equality,
the results are clearly equal: en str s (Done x) ≡ return (Done x) regardless of
s. The other case is the enumerators applied to a GetC k iteratee, which we prove
by induction on s1. In the base case, the empty s1, en str ”” is return, which is
the unit of Kleisli composition. The inductive case:

en str ((c: s1’) ++ s2) (GetC k)
≡ −− property of list append
en str (c:(s1’ ++ s2)) (GetC k)
≡ −− second clause of en str
en str (s1’ ++ s2) =� k (Just c)
≡ −− inductive hypothesis
(en str s1’ ≫ en str s2) =� k (Just c)
≡ −− definition of (≫)
k (Just c) �= (\x → en str s1’ x �= en str s2)
≡ −− associativity of bind
(k (Just c) �= en str s1’) �= en str s2
≡ −− second clause of en str
en str (c: s1’) (GetC k) �= en str s2
≡ −− definition of (≫)
(en str (c: s1’) ≫ en str s2) (GetC k)

The law of chaining of §3 becomes:

Equational Law 6 (Effectful Chaining) 1. If the iteratee i properly recog-
nizes s1, then

en str (s1++ s2) (i �= f) ≡ en str s1 i ‘ bind‘ en str s2 ◦ f

2. If the iteratee i does not recognize s, then

en str s (i �= f) ≡ en str s i �= (return ◦ (�= f))

The proof of part 1 is by induction on s1, which must be finite by the definition
of proper recognition. In the base case, the iteratee i properly recognizing the
empty string s1 is Done x and so en str s1 i is return (Done x), which is the left
unit of bind. In the inductive case, the iteratee i properly recognizes the string
c:s1’. Therefore, i must have the form GetC k where k (Just c) is an action that
must yield an iteratee i’ properly recognizing s1’. We calculate:

en str ((c: s1’) ++ s2) (GetC k �= f)
≡ −− property of list append
en str (c:(s1’ ++ s2)) (GetC k �= f)
≡ −− definition of bind of (I m)
en str (c:(s1’ ++ s2)) (GetC (k ≫ (return ◦ (�= f))))
≡ −− second clause of en str definition
en str (s1’ ++ s2) =� (k ≫ (return ◦ (�= f))) (Just c)
≡ −− definition of (≫)
en str (s1’ ++ s2) =� (k (Just c) �= (return ◦ (�= f)))

20

≡ −− rearrangements
(k (Just c) �= (return ◦ (�= f))) �= en str (s1’ ++ s2)
≡ −− associativity of bind
k (Just c) �= (\i ’ → return (i ’ �= f) �= en str (s1’ ++ s2))
≡ −− left unit law
k (Just c) �= (\i ’ → en str (s1’ ++ s2) (i’ �= f))
≡ −− inductive hypothesis: i ’ does properly recognize s1’
k (Just c) �= (\i ’ → en str s1’ i ’ ‘ bind‘ en str s2 ◦ f)
≡ −− a property of bind: m ‘bind‘ f ≡ m �= (\x → return x ‘ bind‘ f)
k (Just c) �= (\i ’ →

en str s1’ i ’ �= (\x → return x ‘ bind‘ en str s2 ◦ f))
≡ −− associativity
(k (Just c) �= en str s1’) �=

(\x → return x ‘ bind‘ en str s2 ◦ f)
≡ −− second clause of en str definition
en str (c: s1’) (GetC k) �= (\x → return x ‘ bind‘ en str s2 ◦ f)
≡ −− the same property of bind
en str (c: s1’) (GetC k) ‘bind‘ en str s2 ◦ f

The proof of part 2 is analogous, see IterDerivM.hs for the complete derivation.
Since the proofs relied only on monad laws, the laws of effectful composition and
chaining hold for any effect whatsoever.

The divergent failure iteratee now reads

failure :: Monad m ⇒ I m a
failure = GetC (const (return failure))

The law Zero of §3 remains the same for effectful iteratees: failure �= f ≡ failure.
The proof is trivial bisimulation.

The left-biased alternation of effectful iteratees has the form

(C) :: Monad m ⇒ I m a → I m a → I m a
i@Done{} C = i
C i@Done{} = i

GetC k1 C GetC k2 = GetC (\c → liftM2 (C) (k1 c) (k2 c))

To state the right-distributivity law, we need a definition: An iteratee i is idem-
potent if

en str s i �= \x → return (x, x) ≡
en str s i �= \x → en str s i �= \y → return (x, y)

for any finite string s. The right distributivity law has the same form as given
in §3 – with the side-condition that i must be an idempotent iteratee.

The proof is by bi-similarity. We define the relation R on iteratees as a set
of all pairs (iA,iB) where

iA = i �= \x → (k1 x C k2 x)
iB = (i �= k1) C (i �= k2)

21

and we consider all observations of related iteratees. Here we only show the case
when i is of the form GetC k for some k, in which case iA is GetC kA and iB is
GetC kB for some kA and kB. The full proof is in IterDerivM.hs. If we feed iA
a character c, we observe

case GetC k �= \x → (k1 x C k2 x) of GetC kA → kA c
≡ −− definition on (�=)
(k ≫ (return ◦ (�= \x → (k1 x C k2 x)))) c
≡
k c �= \i’ →
return (i ’ �= \x → (k1 x C k2 x))

For iteratee iB, we have

case (GetC k �= k1) C (GetC k �= k2) of GetC kB → kB c
≡ −− definitions
case GetC (k ≫ (return ◦ (�= k1))) C

GetC (k ≫ (return ◦ (�= k2)))
of GetC kB → kB c
≡
liftM2 (C)
(k c �= \ix → return (ix �= k1))
(k c �= \iy → return (iy �= k2))
≡ −− definition of liftM2
(k c �= \ix → return (ix �= k1)) �= \i1 →
(k c �= \iy → return (iy �= k2)) �= \i2 →
return (i1 C i2)
≡ −− associativity , unit laws
k c �= \ix → k c �= \iy →
return ((ix �= k1) C (iy �= k2))
≡ −− monad unit law
k c �= \ix → k c �= \iy → return (ix , iy) �=
\ (ix , iy) → return ((ix �= k1) C (iy �= k2))
≡ −− idempotence
k c �= \ix → return (ix , ix) �=
\ (ix , iy) → return ((ix �= k1) C (iy �= k2))
≡ −− monad laws
k c �= \i’ →
return ((i ’ �= k1) C (i ’ �= k2))

Thus feeding c to the related iA and iB incurs the same effect (associated with
k c) and produces the iteratees that are also related by R.

Treating look-ahead as an effect, the file IterDerivM.hs generalizes the
parser combinators of Figure 2 for look-ahead. Buffering, the processing of input
by chunks rather than by individual characters, can be handled similarly.

22

B Deriving the optimal version of pGetline

This section shows the detailed steps in the conversion of the “obviously correct”
but grossly inefficient line reader pGetLine, §3, to the efficient version pGetline’.
The conversion relies on the equational laws of iteratees.

Our starting point is pGetline written using the iteratee parsing combinators
from Figure 2:

pGetline :: I String
pGetline = nl C liftM2 (:) one pGetline
where nl = do

pSat (\c → c == Just ’\n’ | | c == Nothing)
return ””

First, we inline the definitions of one and pSat and desugar the do-notation:

pGetline1 = nl C char
where

nl = (oneL �= \c → if c == Just ’\n’ | | c == Nothing
then return c else failure) � return ””

char = (oneL �= maybe failure return) �= \c → liftM (c:) pGetline1

We re-associate the bind chains to the right:

pGetline2 = nl C char
where

nl = oneL �= (\c → if c == Just ’\n’ | | c == Nothing
then return c � return ””
else failure � return ””)

char = oneL �= (\c → maybe failure return c �= \c →
liftM (c:) pGetline2)

distribute bind into case and apply Monad and Zero laws:

pGetline3 = nl C char
where

nl = oneL �= (\c → if c == Just ’\n’ | | c == Nothing
then return ””
else failure)

char = oneL �= (\c → case c of
Just c → liftM (c:) pGetline3
Nothing → failure)

and the right-distributivity law:

pGetline4 = oneL �= \c → nl’ c C char’ c
where

nl ’ c = if c == Just ’\n’ | | c == Nothing
then return ”” else failure

char’ c = case c of

23

Just c → liftM (c:) pGetline4
Nothing → failure

We pull out the case analysis on the read character, essentially “narrowing”

pGetline5 = oneL �= check
where

check (Just ’\n’) = return ”” C liftM (’\ n’:) pGetline5
check Nothing = return ”” C failure
check (Just c) = failure C liftM (c:) pGetline5

The facts that failure is the left and the right unit of C , and return x is its left
zero give us pGetLine’.

C The plumbing intuition for Iteratee IO

The diagrammatic notation for iteratee programs introduced in this section helps
visualize the flow of input data, giving an idea of iteratee processing at a glance.
The notation is inspired by the “Piping and Instrumentation Diagram Standard
Notation”11 used in Industrial Engineering for a similar purpose. For illustration,
we show the diagrams for the examples in §2.

a

countTHE

countWS

filter filter
words

b

countTHE

countWS

filter filter
words

c

countTHE

countWS

filter filter
words

d

countTHE

countWS

filter filter
words

e

countTHE

countWS

filter filter
words

f

countTHE

countWS

filter filter
words

g

countTHE

countWS

filter filter
words

Fig. 3. Notation for primitive components and combinators

Figure 3 describes the notation for the Iteratee library components, Figure 1.
Enumerator (a) is a pump, pumping data so long as it can flow. When the con-
sumer is saturated and will not accept more data, the pressure rises and the
pump shuts off. A general iteratee (b) is a reservoir with an overflow pipe. When
the reservoir is filled up (i.e., the iteratee is Done), the further input data flow
through the overflow pipe to the next iteratee in chain. The overflow pipe is
shut by default. When the reservoir fills up (that is, the iteratee gets all data
it needs) and there is no further iteratee, the data stream has nowhere to flow,
the pressure rises and the pump (enumerator) shuts off. The iteratee getchar (c)
is a small reservoir, which can only hold a single byte. In contrast, count i (d)
is an open reservoir, accepting any amount of input data. The pairing combi-
nator en pair is the Y-connector (e), splitting the stream in two. Enumeratee is

11 See the example, https://controls.engin.umich.edu/wiki/index.php/

PIDStandardNotation

24

a reactor (f), transforming the incoming (top) stream to the stream of ‘reactor
products’. When the bottom flow stops, that is, the iteratee consuming the re-
actor product finishes, the incoming flow continues through the right (overflow)
end. The combinator (. |) (g) terminates that overflow pipe. There are cases (not
shown in the paper) when the overflow continues: for example, when processing
multi-part MIME messages. Kleisli composition of enumerators connects pumps
in sequence:

countTHE

countWS

filter filter
words

We now show the plumbing diagrams for the examples in §2. We start with
the simplest pipeline (too simple to mention in §2) that measures the output of
a pump: enum file fname count i.

countTHE

countWS

filter filter
words

The white-space gauge:

countWS’ iter = id . | (en filter isSpace) count i

countTHE

countWS

filter filter
words

The gauge for “the”:

countTHE iter = id . | enum words . | en filter (== ”the”) count i

countTHE

countWS

filter filter
words

The counter of both “the” and the whitespace in the prefix of the input
stream

run ntermI n fname =
print =� run =� enum file fname . |
IterateeM. take n (countWS iter ‘en pair ‘ countTHE iter)

25

is drawn as follows.

countTHE

countWS

filter filter
words

