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Abstract
We present a rational reconstruction of extensible effects, the re-
cently proposed alternative to monad transformers, as the conflu-
ence of efforts to make effectful computations compose. Free mon-
ads and then extensible effects emerge from the straightforward
term representation of an effectful computation, as more and more
boilerplate is abstracted away. The generalization process further
leads to freer monads, constructed without the Functor constraint.
The continuation exposed in freer monads can then be represented
as an efficient type-aligned data structure. The end result is the al-
gorithmically efficient extensible effects library, which is not only
more comprehensible but also faster than earlier implementations.

As an illustration of the new library, we show three surpris-
ingly simple applications: non-determinism with committed choice
(LogicT), catching IO exceptions in the presence of other effects,
and the semi-automatic management of file handles and other re-
sources through monadic regions.

We extensively use and promote the new sort of ‘laziness’,
which underlies the left Kan extension: instead of performing an
operation, keep its operands and pretend it is done.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Control primitives; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

Keywords free monad, Kan extension, effect handler, open union,
type and effect system, effect interaction, coroutine

1. Introduction
That monads do not compose was recognized as a problem early on
[29]. Two independently-written expressions using different side-
effects (and hence monads) are difficult to combine in one program.
Modifying a small part of a large program to use a new side-effect
(e.g., adding debug output) sends ripples of changes throughout the
code base. The very same difficulty of adding and combining ef-
fects has plagued denotational semantics [7]. In fact, monads, in-
troduced by Moggi as a way to structure denotational semantics, in-
herited that problem. One can identify three approaches to solving
it. The most popular is monad transformers [22], implemented in

the widely used monad transformer library (MTL). They are based
on Moggi’s original idea of “monads with a hole”, adding to it the
lifting of monad operations through the transformer stack. The sec-
ond approach combines monads through a quite complicated co-
product [24], whose simplification has lead to the free monad popu-
larized in Data types à la carte [30]. The third, presented just before
monad transformers, looked at effects as an interaction and intro-
duced side-effect–request handlers [7]. That idea of effect handlers,
generalizing exception handlers, was picked up in [4, 26], and de-
veloped into the language Eff. In Haskell, it was implemented as
extensible effects [21] and [17].

We present, in §2, a unifying view: we derive the free monad
and extensible effects by progressively abstracting the straightfor-
ward term representation of an effectful computation. Extensible
effects emerge as the combination of the ideas of free monads and
open union. The unifying, rational reconstruction is not only edify-
ing: it pointed to the further generalization in §2.4: freer monads,
free even from the Functor constraint. Freer (or, free-er, for empha-
sis) monad is an algebraic data type that is a monad by the very
construction, just like list is a monoid by construction.

Besides intellectually satisfying, the freer monads are more eco-
nomical with memory, avoiding rebuilding of the request data struc-
ture on each bind operation. Mainly, by exposing the continua-
tion the freer monads made it easier to represent it differently, as
a type-aligned sequence data structure [31], which improved the
performance algorithmically. §3 describes the improved extensible
effects library and §4 demonstrates its better performance on sev-
eral benchmarks, in comparison with MTL and other effect handler
libraries.

Our contribution thus is rationally deriving – telling the com-
pelling story – of the freer monad, which supports the easy ad-
dition, composition and also subtraction (that is, encapsulation)
of effects. It is so far the most efficient and expressive extensi-
ble monad. We demonstrate the expressivity on three applications,
which were previously considered difficult for extensible effects or
monads in general. §5 shows the exceptionally straightforward im-
plementation of non-determinism with committed choice (the Log-
icT monad). §6 presents the surprisingly simple implementation of
catching IO errors in monads other than IO. At last IO exceptions
behave, with regard to other effects (State, in particular), just as
non-IO exceptions. Finally, §7 is the ultimate demonstration of ef-
fect encapsulation: monadic regions, re-implementing and simpli-
fying the transformer-based library of [19].
§8 describes the related work. The complete code is available at

http://okmij.org/ftp/Haskell/extensible/Eff1.hs.

2. Derivation of Free-er Monad
In this section we derive the freer and extensible monads by pro-
gressively removing boilerplate from the term representation of ef-
fects. The result, however elegant, has poor performance, to be im-
proved in §3.



2.1 Reader Effect
We start with the simplest side effect: dynamic binding, or Reader
in the MTL terminology. Reader computations depend on a value
supplied by the environment, that is, their context. A side-effect can
be understood [7] as an interaction of an expression with its context.
The possible requests can be specified as a data type, which in our
case is1

data It i a = Pure a
| Get (i → It i a)

Such an algebraic modeling of possible operations was pioneered
in Haskell by Hughes [14] and is now known in Haskell as ‘oper-
ational’ [1]. Hinze [13] gave the lucid demonstration of this tech-
nique, to derive backtracking monad transformers. (We also deal
with non-determinism, in §5). The expression Pure e marks the
computation e that makes no requests, silently working towards a
value of the type a. The request Get k asks the context for the (cur-
rent dynamically-bound) value of the type i. Having received the
value i, the computation k i :: It i a continues, perhaps asking for
more values from the context. One may hence call Get’s argument
k a continuation.

The simplest asking computation is
ask :: It i i
ask = Get Pure

which immediately returns the received value. Bigger computations
are built with the help of the monad bind (�= ): It i is a monad.

instance Monad (It i) where
−− return :: a → It i a
return = Pure

−− (�= ) :: It i a → (a → It i b) → It i b
Pure x �= k = k x
Get k’ �= k = Get (k’ ≫ k)

The last clause in the definition of bind says that a computation
that waits for an input and then continues as k’, and after that, as
k – is the computation that continues after waiting as the compo-
sition of k’ and k. The operation (≫ ), Kleisli composition, is the
composition of effectful functions:

(≫ ) :: Monad m ⇒ (a → m b) → (b → m c) → (a → m c)
f ≫ g = (�= g) ◦ f

Here are two examples of bigger Reader computations
addGet :: Int → It Int Int
addGet x = ask �= \i → return (i +x)

addN :: Int → It Int Int
addN n = foldl (≫ ) return (replicate n addGet) 0

The latter asks for n numbers and returns their sum.
The computations addGet and addN make requests to the con-

text. We need to define how to reply, that is, how to “run” these
computations. The following interpreter gives the same value i on
each request: It i a is indeed interpreted as the Reader monad.

runReader :: i → It i a → a
runReader (Pure v) = v
runReader x (Get k) = runReader x (k x)

Unlike the MTL Reader, It i a may be treated differently: each
request gets a new value, as if read from an input stream:

feedAll :: [ i ] → It i a → a
feedAll (Pure v) = v
feedAll [] = error ”end of stream”
feedAll (h : t) (Get k) = feedAll t (k h)

In this interpretation, It i a is called an iteratee and feedAll an
enumerator [18].

1 The choice of the name It should become clear shortly.

2.2 Reader/Writer Effect
Let us add another effect: rather than asking a context for a value,
we tell the context. This is a Writer, or tracing effect.

data IT i o a = Pure a
| Get (i → IT i o a)
| Put o (() → IT i o a)

The Put o k request tells the value o to the context. After the
context acknowledges with ()2 the computation continues as k ().
The extended IT i o is also a monad:

instance Monad (IT i o) where
return = Pure
Pure x �= k = k x
Get k’ �= k = Get (k’ ≫ k)
Put x k’ �= k = Put x (k’ ≫ k)

Again, a computation that tells the context and continues as k’ and
then as k, really continues as k’ ≫ k.

In MTL’s Writer monad, the told value must have a Monoid
type. Our IT i o has no such constraints. If we write a Writer-like
IT interpreter to accumulate the told values in a monoid, it will have
the Monoid o constraint then:

runRdWriter :: Monoid o ⇒ i → IT i o a → (a, o)
runRdWriter i m = loop mempty m
where

loop acc (Pure x) = (x,acc)
loop acc (Get k) = loop acc (k i )
loop acc (Put o k) = loop (acc 8 mappend8 o) (k ())

There are other ways of interpreting IT i o a requests, for example,
keeping the last told value, or writing the told value to stderr. Yet
another interpreter, of IT s s computation takes the told value as
the one to give when next asked, thus treating IT s s as a State
computation.

The IT i o computation is an extension of It i. Alas, data types
are not extensible. Therefore, we had to change the data type name
and hence modify (the signatures of) addGet and addN, even if
their code does not care about the new writer effect and remains
essentially the same.

2.3 Free Monad
A data type describing an effectful computation such as It i a and
IT i o a follows a common pattern: It is a recursive data type, with
the Pure variant for the absence of any requests, and the variants
for requests, usually containing the continuation that receives the
reply (except for exceptions that do not expect any reply). The
recursive occurrences of the data type are always as the return type
of the continuations, that is, in covariant positions. This pattern, of
pure and effectful parts and covariant recursive occurrences can be
captured as

data Free f a = Pure a
| Impure (f (Free f a))

where f is a (categorical) functor, that is, in f a, the type a occurs
covariantly. The latter phrase means that if we can convert a value
of type a into some other value of type b, we can also turn f a into
f b. The Functor type class captures that meaning literally:

class Functor f where
fmap :: (a → b) → (f a → f b)

The concrete instantiations of f define the types of requests and
replies, that is, the effect signature of a particular effectful compu-
tation. This splitting of a recursive data type such as It i into a non-
recursive “structure component” and the recursive tying the knot
Free f a was pioneered in [28] (who also used extensible effectful
interpreters as one of the examples).

2 In Haskell, this () acknowledgment is not needed, but it fits our story
better.



The monad instances for It i and IT i o also look very much
alike. It is a shame to keep writing such instances for each new
effect and each combination of effects. The Free f data type lets us
capture the common pattern:

instance Functor f ⇒ Monad (Free f) where
return = Pure
Pure a �= k = k a
Impure f �= k = Impure (fmap (�= k) f)

Thus Free f for a functor f is a monad – the free monad. New
effects will have new effect signatures f, but the single instance
of Monad (Free f) will work for all of them, with no further re-
writing.

As an example, the earlier IT i o computation may now be
specified as

data ReaderWriter i o x = Get (i → x) | Put o (() → x)
instance Functor (ReaderWriter i o) where ...
type IT i o a = Free (ReaderWriter i o) a

The word “free” in free monad refers to the category theory’s
construction of the left adjoint of a forgetful operation [2]. In
English, if we take a monad, say, State s with its return, bind,
fmap, put and get operations and forget the first two, we can
recover the monad as Free (State s), with prosthetic return and
bind. In short, we get the Monad instance for free.

In general monads do not compose: if M1 a and M2 a are
monads, M1 (M2 a) is generally not. Free monads however are
a particular form of monads, defined via a functor. Functors do
compose. We will exploit that fact after one more generalization.

2.4 Free-er Monads
Let us look more carefully at the Monad instance for Free f. The
purpose of fmap there is to extend the continuation, embedded
somewhere within (f (Free f a)), by (≫ )-composing it with the
new k. The operation fmap lets us generically modify the embed-
ded continuation, for any request signature.

Since the continuation argument is being handled so uniformly,
it makes sense to take it out of the request signature and place it
right into the fixed request data structure, as the second argument
of Impure:

data FFree f a where
Pure :: a → FFree f a
Impure :: f x → (x → FFree f a) → FFree f a

The remaining part of the request signature f x tells the type x of the
reply, to be fed into the continuation. Different requests have their
own reply types, hence x is existentially quantified. Our Reader-
Writer effect gets then the following signature:

data FReaderWriter i o x where
Get :: FReaderWriter i o i
Put :: o → FReaderWriter i o ()

It is a GADT: the type variable x in FReaderWriter i o x is instan-
tiated depending on the type of the request. For Get, the reply type
is i, and for Put, it is unit. The IT i o a is now

type IT i o a = FFree (FReaderWriter i o) a

The monad instance for FFree f no longer needs the Functor or
any other constraint on f:

instance Monad (FFree f) where ...
Impure fx k’ �= k = Impure fx (k’ ≫ k)

FFree f is more satisfying since it abstracts more of the common
pattern of accumulating continuation, compared to Free. It is more
general, not imposing any constraints on f – it is “freer”. Continuing
our example of State s from the end of §2.3, we can now forget
not only return and bind but also the fmap operation, and still
recover the state monad through FFree (State s) construction. We
no longer have to bother defining the basic monad and functor
operations in the first place: We now get not only the Monad
instance but also the Functor and Applicative instances for free.

Freer monad is also more economical in terms of memory
(and running time) because the continuation can now be accessed
directly rather than via fmap, which has to rebuild the mapped data
structure. The explicit continuation of FFree also makes it easier to
change its representation, which we will do in §3.

Marcelo Fiore has suggested in private communication that the
above FFree construction is the left Kan extension. To highlight this
point we show another derivation of FFree. Recall, if f :: ∗ → ∗ is
a functor, we can convert f x to f a whenever we can map x values
to a values. If g :: ∗ → ∗ is not a functor, such a conversion is not
possible. We can “cheat” however: although we cannot truly fmap
h :: x → a over g x, we can keep its two operands as a pair, and
assume the mapping as if it were performed:

data Lan (g :: ∗ → ∗ ) a where
FMap :: (x → a) → g x → Lan g a

Any further mapping over Lan g a updates the original mapping,
leaving g x intact. That is, Lan g is now a “formal” functor:

instance Functor (Lan g) where
fmap h (FMap h’ gx) = FMap (h ◦ h’) gx

This Lan construction is the Left Kan extension. One may think of
it as a free Haskell Functor – Functor by construction – just as a list
is a free Monoid.

Let us see what Free (Lan g) is: substituting f in the type of
(f (Free f a)) → Free f a of Free.Impure with Lan g gives us
∃ x. (x → (Free (Lan g) a)) → g x → Free (Lan g) a

which is the type of FFree.Impure. Hence
type FFRee g = Free (Lan g)

Incidentally, the type-aligned sequences, which we will use in §3,
are essentially Free-er Applicative.

By analogy with the “free functor” Lan g we may also define a
“free bifunctor”

data BiFree p a b where
Bimap :: (a → b) → (c → d) → p a c → BiFree p b d

which is a generalization of the bifunctor used in [16, §6.3].
One last generalization step remains, to deliver the promised

extensibility.

2.5 From Free(er) Monads to Extensible Effects
We have hinted in §2.3 that the form of free monads, built from
functors, lends itself to composability since functors compose. This
section demonstrates this composability on freer monads, built
around left Kan extensions, which are functors by construction.
There are two sides to composability: extensible monad type and
modular interpreters. The latter part has been receiving less atten-
tion: for example, Data types à la carte [30] provides the former but
not the latter.

A monad type is extensible if we can add a new effect without
having to touch or even recompile the old code. The Free f or
FFree f lets us do that: the monad type is indexed by the request
signature f. Specifying this signature as an ordinary data type, such
as ReaderWriter in §2.3 or GADT FReaderWriter in §2.4 is not
extensible: an ordinary variant data type is a closed union, with
the fixed number of variants. Open unions are relatively easy to
construct, essentially by nesting the simplest union, the Either data
type. The monad transformer paper [22] already showed such an
implementation; Swierstra [30] used essentially the same.

We will use the open union that improves the previous imple-
mentations, including the one in [21]. It provides the (abstract) type
Union (r :: [∗ → ∗ ]) x where the first argument r is a type-level
list of effect labels, to be described shortly. The second argument is
the response type, which depends on a particular request. The argu-
ment r lists all effects that are possible in a computation; a concrete
Union r x value contains one request out of those listed in r.



It is crucial for extensibility to be able to talk about one effect
without needing to list all others. For the sake of this effect poly-
morphism, our implementation provides a type class

class Member t r where
inj :: t v → Union r v
prj :: Union r v → Maybe (t v)

that asserts that a label t occurs in the list r. If an effect is part of
the union, its request can be injected and projected. We also offer
another function, not present in [22, 30], to “orthogonally project”
from the union,

decomp :: Union (t ’: r ) v → Either (Union r v) (t v)

obtaining either a request labeled t or a smaller union, without t.
This function is needed for effect encapsulation. The earlier ex-
tensible effects library [21] provided a similar open union, imple-
mented using overlapping instances and Typeable. The latter in par-
ticular attracted a large number of complaints. Deriving Typeable is
indeed an extra step for a library aiming to encourage using many
custom effects. For applications like monadic regions, Typeable
was quite an obstacle, as we discuss in §7. The current implementa-
tion uses neither overlapping, nor Typeable. It also does not provide
the no longer needed Functor instance.

The extensible freer monad, the monad of extensible effects, is
hence FFree with the open union:

data FEFree r a where
Pure :: a → FEFree r a
Impure :: Union r x → (x → FEFree r a) → FEFree r a

A request label defines a particular effect and its requests. For
example, the Reader and Writer effects have the following labels:

data Reader i x where
Get :: Reader i i

data Writer o x where
Put :: o → Writer o ()

Informally, we split the monolithic FReaderWriter request signa-
ture into its components (to be combined in the open union). The
simplest Reader computation, ask of §2.1, can now be written as

ask :: Member (Reader i) r ⇒ Eff r i
ask = Impure (inj Get) return

The signature tells that ask is an Eff r i computation which in-
cludes the Reader i effect, without telling what other effects may
be present. Unlike the old ask of §2.1, the new one can be used, as
it is, without any adjustments to code or the signature, in programs
with other effects. The new ask is thus extensible.

Making interpreters such as runRdWriter of §2.2 modular is
just as important, and not always achieved in the past. We describe
them §3.

2.6 Performance Problem of Free(er) Monads
Free (and freer) monads are certainly elegant and insightful, but
poorly performing. Let us look again at the FFree f monad instance

instance Monad (FFree f) where ...
Impure fx k’ �= k = Impure fx (k’ ≫ k)

The bind operation traverses its left argument but merely passes
around the right argument. Therefore, the performance of left-
associated binds, like the performance of left-associated list ap-
pends, will be poor – algorithmically poor. For example, the run-
ning time of addN n, implemented either as the It i monad or the
FEFree [Reader i] monad, is quadratic in n. This is because addN
happens to associate addGets on the left. For example, addN 3
evaluates to

((( return ≫ addGet) ≫ addGet) ≫ addGet) 0

which takes 3 evaluation steps to
(( Impure (inj Get) return ◦ (+0)) �= addGet) �= addGet

The two evaluations of bind then produce the final request

Impure (inj Get) (( return ◦ (+0) ≫ addGet x) ≫ addGet)

The continuation, the second argument to Impure, is the addGet
chain we started with, only one link shorter. Processing the re-
ply from the context will again take time linear in the size of the
chain. Overall, processing n requests takes O(n2) time. We refer
the reader to [31] for more illustration and discussion of this per-
formance problem, and for the general solution: representing the
continuation as an efficient data structure, a type-aligned sequence.

3. Final Result: Freer and Better Extensible Eff
Monad

This section describes our current, improved and efficient library
of extensible effects. Thanks to the Freer monad and the new open
union it became easier, compared to the version presented two years
ago [21], to define a new effect and to write a handler for it. There is
no longer any need for Functor and Typeable instances. The perfor-
mance has also improved, algorithmically; see §3.3. Before show-
ing off the library in §3.2 we describe the last key improvement,
representing the continuation as an efficient data structure.

3.1 Composed Continuation as a Data Structure
The new library is based on the FEFree monad derived in §2.5
(repeated here for reference):

data FEFree r a where
Pure :: a → FEFree r a
Impure :: Union r x → (x → FEFree r a) → FEFree r a

differing in one final respect: Now that the request continuation
x → FEFree r a is exposed, it can be represented in other ways
than just a function. The motivation for a new representation comes
from looking at the monad instance for FEFree f

instance Monad (FFree f) where ...
Impure fx k’ �= k = Impure fx (k’ ≫ k)

which extends the request continuation k’ with the new segment
k. The lesson of [31] is to represent this conceptual sequence of
extending the continuation with more and more segments as a
concrete sequence. It would contain all the segments that should
be functionally composed – without actually composing them! We
shall see soon that the composing is not really needed: it was just
a way of accumulating continuation segments, and not an efficient
way at that. (Another motivation to look for a new representation
of continuations is the performance problem of free(er) monads,
described in §2.6).

We call the improved FEFree r monad Eff r, where r, as in §2.5,
is the list of effect labels. The request continuation – which receives
the reply x and works towards the final answer a – then has the type
x → Eff r a. We define the convenient type abbreviation for such
effectful functions, that is, functions mapping a to b that also do
effects denoted by r.

type Arr r a b = a → Eff r b

The job of the monad bind is to accumulate the request contin-
uation, by (≫ )-composing it with further and further Arr r a b
segments. Rather than really doing the composition, we assume it
as performed, and merely accumulate the pieces being composed
in a data structure. The left Kan extension used the same ‘pretend
the operation performed’ trick. The data structure has to be hetero-
geneous, actually, type-aligned [31]: the Arr r a b being composed
have different a and b types, and the result type of one function
must match the argument type of the next. The type-aligned se-
quences enforce this invariant by construction. We chose the se-
quence FTCQueue of the following interface

type FTCQueue (m :: ∗ → ∗ ) a b
tsingleton :: (a → m b) → FTCQueue m a b
(B ) :: FTCQueue m a x → (x → m b) → FTCQueue m a b



(BC ) :: FTCQueue m a x → FTCQueue m x b → FTCQueue m a b
data ViewL m a b where

TOne :: (a → m b) → ViewL m a b
(: | ) :: (a → m x) → (FTCQueue m x b) → ViewL m a b

tviewl :: FTCQueue m a b → ViewL m a b

FTCQueue m a b represents the composition of one or more func-
tions of the general shape a → m b. The operation tsingleton con-
structs a one-element sequence, (B) adds a new element at the right
edge and (BC ) concatenates two sequences; tviewl removes the
element from the left edge. All operations have constant or aver-
age constant running time. Our FTCQueue may be regarded as
the minimalistic version of a more general fast type-aligned queue
FastTCQueue: see [31] and type-aligned on Hackage. Thus the
composition of functions (continuation segments) a → Eff r t1,
t1 → Eff r t2, . . . , tn → Eff r b is represented as

type Arrs r a b = FTCQueue (Eff r) a b

and the Eff r monad has the following form
data Eff r a where

Pure :: a → Eff r a
Impure :: Union r x → Arrs r x a → Eff r a

A composition of functions is a function itself; likewise Arrs r a b
is isomorphic to the single Arr r a b (or a → Eff r b). In one di-
rection,

singleK :: Arr r a b → Arrs r a b
singleK = tsingleton

the conversion builds the sequence with one element. In the other
direction,

qApp :: Arrs r b w → b → Eff r w
qApp q x = case tviewl q of

TOne k → k x
k : | t → bind’ (k x) t

where bind’ :: Eff r a → Arrs r a b → Eff r b
bind’ (Pure y) k = qApp k y
bind’ (Impure u q) k = Impure u (q BC k)

The qApp operation applies the argument x to a composition of
functions denoted by the sequence Arrs r a b. To be precise, it
applies x to the head of the sequence k and ‘tacks in’ the tail t
(if any) as it was. That is the performance advantage of the new
representation for continuation. The bind’ operation is like monad
bind (�= ) but with the continuation represented as the sequence
Arrs r a b rather than the a → Eff r b function. If the application
k x runs in constant time, the whole qApp q x takes on average
constant time.

Finally, in the monad instance of Eff r
instance Monad (Eff r) where

return = Pure
Pure x �= k = k x
Impure u q �= k = Impure u (q B k)

the bind operation grows the sequence Arrs r x a of continuations
by appending another segment, k, which takes constant time.

3.2 Library Showcase: Defining and Interpreting Effects
We now demonstrate the extensible effects library: writing and
composing effectful computations with the Eff monad. We re-do
the reader and writer example §2.1, §2.2 to show that now adding
the writer does not have to change the earlier code.

An effect is defined first by listing its requests and the corre-
sponding reply types. For the Reader i effect, the request merely
asks for a reply of the type i.

data Reader i x where
Get :: Reader i i

The simplest client that returns the received reply is hence
ask :: Member (Reader i) r ⇒ Eff r i
ask = Impure (inj Get) (tsingleton Pure)

Recall, tsingleton creates the singleton sequence. The following
library function makes the sending of requests even easier:

send :: Member t r ⇒ t v → Eff r v
send t = Impure (inj t) (tsingleton Pure)

The other Reader computations addGet and addN of §2.1 are
expressed in terms of ask and monad operations; their code is hence
unchanged. Here they are, for the ease of reference:

addGet :: Member (Reader Int) r ⇒ Int → Eff r Int
addGet x = ask �= \i → return (i +x)

addN :: Member (Reader Int) r ⇒ Int → Eff r Int
addN n = foldl (≫ ) return (replicate n addGet) 0

Their types however become more general: addN n has the Reader
effect and can be used in computations that do other effects.

Interpreters of Reader requests now have to keep in mind there
may be other request types, for other interpreters to deal with. Here
is the new version of runReader from §2.1:

runReader :: i → Eff (Reader i ’: r ) a → Eff r a
runReader i m = loop m where
loop (Pure x) = return x
loop (Impure u q) = case decomp u of

Right Get → loop $ qApp q i
Left u → Impure u (tsingleton (qComp q loop))

The type signature says that runReader i receives the Eff computa-
tion with the Reader i effect, and returns the Eff computation with-
out. The Reader i effect is thus handled, or encapsulated. The code
indeed replies to the Get request – leaving other requests for other
interpreters, see the Left u case. After that other interpreter replies,
the program resumes and may make further Get requests. That is
why we append the reader interpreter loop to the reply continuation
q, using the function qComp:

qComp :: Arrs r a b → (Eff r b → Eff r’ c) → Arr r ’ a c
qComp g h = h ◦ qApp g

The result continuation has the different list of effect labels r’ since
some of the effects will be handled by the interpreter h.

The common request handling code is factored out in the fol-
lowing function provided by the library:

handle relay :: (a → Eff r w) →
(∀ v. t v → Arr r v w → Eff r w) →
Eff (t ’: r ) a → Eff r w

handle relay ret (Pure x) = ret x
handle relay ret h (Impure u q) = case decomp u of

Right x → h x k
Left u → Impure u (tsingleton k)

where k = qComp q (handle relay ret h)

The first two arguments of handle relay are like return and bind.
The reader interpreter can be thus written simply as

runReader i = handle relay return (\Get k → k i )

The last part of handle relay’s signature, Eff (t ’: r) a → Eff r w,
shows that the label t of the handled effect must be at the top of the
list of effect labels r. Whereas effectful functions like addN above
or rdwr below regard r truly as a set of effect labels, with no particu-
lar order, handlers impose the order. This fact is noticeable already
in the interface of Union in §2.5: in the signatures of inj and prj,
effects are represented by the type variable r, with a Member con-
straint. On the other hand, decomp takes the collection of effects to
be specifically a list, with the projected effect t at its head. In our
experience so far, this imposition of order by the handlers has not
been a problem. It is theoretically unsatisfying. Although we could
avoid it by playing with Constraint types, the required type anno-
tations made the result impractical. Unfortunately, there does not
seem to be any convenient way in Haskell to discharge one type
class constraint by submitting the corresponding dictionary. (Im-
plicit parameters do come very close.)

To run the Eff computation after all effects have been handled
by the corresponding interpreters, the library provides

run :: Eff ’[] a → a
run (Pure x) = x



The Impure case is unreachable since Union ’[] a has no (non-
bottom) values. Thus we run addGet 1 as

run ◦ runReader 10 $ addGet 1

Let us add the writer effect, of telling the context the value of
type o:

data Writer o x where
Put :: o → Writer o ()

tell :: Member (Writer o) r ⇒ o → Eff r ()
tell o = send $ Put o

The type of tell lets it be combined in any effectful computation
with the Writer o effect. Here is a sample combined reader-writer
computation
−− rdwr :: (Member (Reader Int) r, Member (Writer String) r)
−− ⇒ Eff r Int
rdwr = do{ tell ”begin”; r ← addN 10; tell ”end”; return r }

whose inferred type is shown in the comments. Because the type
of addN is polymorphic in r, we could use addN as it was in a
computation with more effects (and similarly, for tell).

In §2.2, the interpreter for Reader-Writer computations was the
monolithic runRdWriter, which handled both types of requests.
Now we can interpret only the Writer requests

runWriter :: Eff (Writer o ’: r ) a → Eff r (a,[ o])
runWriter =

handle relay (\x → return (x,[]))
(\(Put o) k → k () �= \(x,l ) → return (x, o: l ))

and literally compose it with the previously written runReader. The
sample reader-writer computation rdwr is thus run as

(run ◦ runReader 10 ◦ runWriter) rdwr

Since the reader and writer effects commute, the order of the inter-
preters can be switched without affecting the result.

One may write other reader and writer interpreters, for example,
handling Reader and Writer requests together; the value last told
becomes the value to give on the next Reader request. We thus
implement State, by decomposing it into the reading and mutating
parts. It becomes easier to tell, just from their inferred type, which
parts of the computation mutate the state.

runStateR :: Eff (Writer s ’: Reader s ’: r ) w → s → Eff r (w,s)
runStateR m s = loop s m where

loop :: s → Eff (Writer s ’: Reader s ’: r ) w → Eff r (w,s)
loop s (Pure x) = return (x, s)
loop s (Impure u q) = case decomp u of

Right (Put o) → k o ()
Left u → case decomp u of

Right Get → k s s
Left u → Impure u (tsingleton (k s))

where k s = qComp q (loop s)

3.3 Improved Performance
This section re-analyzes the performance of the freer monad after
changing the representation of the request continuation, on the
problematic example from §2.6. As before, addN 3 evaluates to

((( return ≫ addGet) ≫ addGet) ≫ addGet) 0

and then to
(( Impure (inj Get) [ return ◦ (+0)]) �= addGet) �= addGet

The two evaluations of bind produce the request
Impure (inj Get) [ return (+0), addGet, addGet]

(where we used the list notation for the type-aligned sequence for
clarity). So far, the process and its result seem similar to that for
the non-optimized monad in §2.5. The fact that the continuation of
the Get request is now represented as an efficient sequence makes
the difference. When a runReader interpreter replies, say, with the
value v1, it does the following operations that eventually produce
a new request. For emphasis we denote as t the tail of the request
continuation (in our example, t is the singleton sequence [addGet]):

qApp (return (+0) : addGet : t) v1
 return v1 8 bind’ 8 (addGet : t)
 addGet v1 8bind’ 8 t
 Impure (inj Get) (return (+v1) : t)

The above reduction sequence has dealt only with the two head el-
ements of the entire continuation of the original request. The tail t
was merely passed around and not even looked at. Furthermore, all
FTCQueue operations involving t such as concatenation, etc., were
constant-time. Therefore, the entire sequence of reductions above
runs in time independent of the length of t. The run-time of the
entire addN n computation is thus linear in n. Compared with the
previous version §2.5, we obtain the algorithmic improvement in
performance, from quadratic to linear. The key to the performance
is the ability to look at and remove initial segments from the accu-
mulated request continuation. If the continuation is represented as
a composition of functions, we cannot ‘uncompose‘ them – but we
can deconstruct a data structure.

4. Performance Evaluation
This section reports on several micro-benchmarks used to evaluate
the performance of extensible effects (EE) relative to monad trans-
former library MTL, Kammar’s et al. “Handlers in action (HIA)”
[17] and the old version of EE presented in [21].

The benchmark code was compiled with GHC 7.8.3 with the
flag −threaded −O −rtsopts. We ran the benchmark on an Intel
Core i7 (2.8GHz) laptop with 16GB of RAM. The Criterion frame-
work was used to report the run-time.

4.1 Deep-monad-stack Benchmarks
First, we ran two benchmark computations with many effects (deep
monad stacks). These benchmarks do a simple stateful computation
with many Reader layers under or over the target State layer. The
core State computation is as follows:

benchS ns = foldM f 1 ns where
f acc x | x 8 mod8 5 == 0 = do

s ← get
put $! (s+1:: Integer)
return $! max acc x

f acc x = return $! max acc x

Strictness annotations are to avoid space leaks.
Figure 1 shows the results. If we add the extra Reader layers

under the State (the top of Fig.1), EE runs in constant time, while
the MTL version takes linear time in the number of layers. Our EE
is about 12% faster than HIA, and 40% faster than the old EE. If
the State layer is at the bottom of the monad stack (the bottom
of Fig.1) the run-time of HIA and EE versions is linear in the
number of layers, whereas MTL and the old EE are quadratic. The
results confirm the analyzes of performance in §2.6 and §3.3: the
EE library presented in this paper indeed algorithmically improves
the performance over the old version – as well over MTL for deep
monad stacks. The overhead of MTL can indeed be severe for deep
stacks. We also see that EE is competitive with HIA.

4.1.1 Monad Stack Depth and Memory Consumption
We also evaluated the memory efficiency of the two deep-monad-
stack benchmarks by taking the memory profile, using GHC with
RTS options −N2 −prof −p −N2 −p −hm. Figure 2 shows the
result.

Adding Reader layers under the State layer (the top of Fig.2)
affects the memory consumption of effect libraries (EE and HIA)
very little. The memory use does increase linearly with the number
of layers, but by such a small amount that it is very difficult to see
in the figure. In contrast, the amount of allocated memory for MTL
is quadratic in the number of layers, and is quite large compared
to the effect libraries. If we add Reader over the State layer (the
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Figure 1. Runtime in seconds for MTL, HIA, Old EE, EE and
Inlined EE. x-axis corresponds to the number of Reader layers
under (top) or over (bottom) the target State layer.

bottom of Fig.2), the linear increase in allocated memory for effect
libraries becomes quite more noticeable. The MTL memory use is
again quadratic in the number of layers. The results confirm our
expectation of the memory efficiency of the EE library presented in
this paper.

4.2 Single-effect Benchmark
We have just seen that EE can overcome the overhead of handling
very many effects. To see how EE and MTL compare for a single
effect, we ran a simpler benchmark, with the single State or the
single Error effect (table 1).

Table 1. A simple benchmark with a single layer (msec).

pure MTL HIA Old EE EE Inlined EE
State - 15.2 7.16 840 579 488
Error 46.4 218 648 644 204 216
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Figure 2. Total allocation in 105 bytes for MTL, HIA, Old EE, EE
and Inlined EE. x-axis corresponds to the number of Reader layers
under (top) or over (bottom) the target State layer.

The single State benchmark counts down from 10, 000, 000
to 0, using the State monad. The EE version is much slower
than the MTL and HIA, 30 and 60 times correspondingly. This
is because the State monad enjoys the preferential treatment by
GHC, with dedicated optimization passes. Likewise, GHC is very
good at optimizing simple CPS code employed in simple instances
of HIA. Thus for the single State effect, our EE approach is not so
suitable. The new library is still noticeably faster than the original
EE version two years ago.

In contrast, for the Error monad EE and MTL have almost
the same performance and notably, three times, faster than HIA
and the old approach. The Error benchmark takes the product of
10, 000, 000 copies of 1 and 0, raising a exception when the zero
factor is found.

Thus for the single or few-layered monadic computations, EE
can compete with individual single specialized monads in general,
but for some monads, like State, it runs much more slowly.
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4.3 Non-determinism Benchmarks
We have run another series of benchmarks, for the non-determinism
effect, to be discussed in detail in §5.

The first benchmark (the top of Fig.3) searches for Pythagorean
triples up to the given bound with non-deterministic brute-force:

iota k n = if k >n then mzero else return k 8 mplus8 iota (k+1) n

pyth1 :: MonadPlus m ⇒ Int → m (Int, Int , Int )
pyth1 upbound = do

x ← iota 1 upbound
y ← iota 1 upbound
z ← iota 1 upbound
if x∗ x +y∗ y == z∗ z then return (x,y,z) else mzero

For the MTL version, we use the continuation monad transformer
ContT. The result shows that our EE is much faster than old EE, but
slightly slower than MTL and HIA. We should stress that our EE
library, unlike HIA and MTL, implements the more general LogicT
effect: non-determinism with committed choice.

The next benchmark adds to the previous one counting of the all
attempted choices, using the State effect. The result at the bottom
of Figure 3 shows that our EE approach is faster than the other
alternatives.

The results confirm the good performance of EE, also for more
complicated computations with many layers of effects.

4.4 Comparison with “Fusion for Free”
Very recently, Wu and Schrijvers [32] introduced the “Fusion for
Free” approach for algebraic event handlers. Since their implemen-
tation is not yet published as a library, we will briefly compare per-
formance in a qualitative manner. Specifically, we ran the bench-
marks count 1 and count 2 from [32] for MTL, EE and Inlined
EE. The result is shown in Table 2.

Table 2. Runtime in milliseconds for Counting benchmarks from
Wu and Schrijvers [32]

MTL EE Inlined
count 1 103 0.000694 0.0592 0.0488

104 0.00692 0.593 0.489
105 0.0689 5.87 4.81

count 2 103 0.202 0.306 0.287
(Writer 104 4.84 6.40 6.51
bottom) 105 54.4 84.7 80.8

count 2 103 0.0859 0.345 0.316
(Writer 104 2.85 6.57 6.67

top) 105 37.3 85.2 84.2

Here, count 1 is the single State-effect benchmark, counting
down in the State monad, similar to our benchmark in §4.2. This
is the singular most unfavorable case for EE compared to MTL,
since GHC has several optimizations that benefit the MTL State
monad. The table shows that in all the cases, the run-time increases
with the count not just linearly but proportionally. This qualitatively
reproduces the behavior reported by Wu and Schrijvers in [32].

The next count 2 benchmark counts down using State, and
also logs every intermediate value in the Writer monad. Wu and
Schrijvers did not indicate which layer is on top, so we ran both
cases, which proved to make little difference for EE (in contrast to
MTL, however). The run-times again seem linear, but not propor-
tional. In [32], the run-time of “Fusion” is proportional. Although
the qualitative behavior again seems similar, quantitative compari-
son is clearly needed. We defer it to future work, when the code for
[32] becomes available.

4.5 Inlining of Key Functions
The key functions of the EE library such as handle described in
§3, contain a recursive reference but not a recursive invocation.
These functions are hence safe to inline. To see if it makes any
difference we added the INLINEABLE pragma for these functions.
The pragma had almost no effect. The performance has improved
slightly only when we inlined tviewl into qApp by hand (these
functions are defined in different modules).

5. Non-determinism with Committed Choice
Non-determinism, with its inherent balancing of several continu-
ations, may seem impossible to express as a freer monad, which
explicitly deals with a single continuation. This section shows that
not only the Eff monad can represent non-deterministic choice, but



also that the representation preserves the sharing of continuations,
lost in the standard free monad approach.

Free monad models non-determinism with the following request
functor:

data Ndet x = MZero | MPlus x x
instance Functor Ndet where ...

MZero, like an exception, requests abandoning the current line of
computation as unsuccessful; MPlus asks the context to choose
between the two Ndet computations. This request signature comes
straight from the interface for non-deterministic computations in
Haskell: MonadPlus or Alternative:

instance MonadPlus (Free Ndet) where
mzero = Impure MZero
mplus m1 m2 = Impure $ MPlus m1 m2

The MPlus constructor has two continuation arguments. How
are we going to separate them into the single continuation argument
of FFree? Let us consider the non-deterministic choice in context:

(mplus m1 m2 �= k1) �= k2
{The bind of the Free monad}

 Impure (fmap (�= k1) (MPlus m1 m2) �= k2
{The fmap from the derived Functor instance }

 Impure (MPlus (m1 �= k1) (m2 �= k1)) �= k2
{Repeating for k2}

 Impure (MPlus ((m1 �= k1) �= k2) ((m2 �= k1) �= k2))

That is, the two continuations collected by MPlus in fact have the
common k1, k2 suffix. That suffix, albeit common, is not shared:
although the two MPlus continuations share the common segments,
they are independently composed. It is this common suffix that the
freer monad will factor out and share.

After the common continuation suffix is separated out, what
remains of MPlus is the request to the context to pick and return
one of the two choices. There is no need to include the choices
themselves in the request then. Hence in the Eff framework, the
non-determinism effect has the following signature:

data NdetEff a where
MZero :: NdetEff a
MPlus :: NdetEff Bool

instance Member NdetEff r ⇒ MonadPlus (Eff r) where
mzero = send MZero
mplus m1 m2 = send MPlus �= \x → if x then m1 else m2

To complete the implementation, we add an interpreter, such as the
following, mapping the NdetEff-effect non-determinism to Alter-
native:

makeChoiceA :: Alternative f ⇒
Eff (NdetEff ’: r) a → Eff r (f a)

makeChoiceA = handle relay (return ◦ pure) $ \m k → case m of
MZero → return empty
MPlus → liftM2 (< |>) (k True) (k False)

One may recognize in this code the “flip oracle” of [9, §3], which
non-deterministically returns a boolean value. Just as Danvy and
Filinski’s code, we are capturing the context of mplus, represented
as k above, and plugging first True and then False into the very
same context.

The advantage of NdetEff over Alternative is not only the ability
to mix NdetEff with other (non-applicative) effects, for example,
State. It also supports the so-called “committed choice” [25], such
as logical “if-then-else” (called “soft-cut” in Prolog):

ifte :: Member NdetEff r ⇒
Eff r a → (a → Eff r b) → Eff r b → Eff r b

Declaratively, ifte t th el is equivalent to t �= th if the non-
deterministic computation t succeeds at least once. Otherwise,
ifte t th el is equivalent to el. The difference between ifte t th el
and the seemingly equivalent (t �= th) 8mplus8el is that in the lat-
ter el is a valid choice even if t succeeds. In the former, el is chosen
if and only if t is the total failure. One of the examples of ifte is the

many parser combinator with ‘maximal munch’: many p should
keep applying the argument parser p for as long as it succeeds.
The following is another, easier to explain albeit more contrived,
example: computing primes

test ifte = do
n ← gen
ifte (do d ← gen

guard $ d <n && n 8mod8 d == 0)
(\ → mzero)
(return n)

where gen = msum ◦ fmap return $ [2..30]
msum :: MonadPlus m ⇒ [m a] → m a −− choose one from a list

Here gen non-deterministically produces a candidate prime and a
candidate divisor. The prime candidate is accepted if all attempts to
divide it fail. For example,

test ifte run :: [ Int ]
test ifte run = run ◦ makeChoiceA $ test ifte
−− [2,3,5,7,11,13,17,19,23,29]

gives the result shown in the comment.
We actually implement not just ifte but the general

msplit :: Member NdetEff r ⇒
Eff r a → Eff r (Maybe (a, Eff r a))

which expresses all other committed choice operations [20]. One
may think of msplit as “inspecting” the argument computation, to
see if it can succeed. If a computation gives an answer, it is returned
along with the computation that may produce further answers. The
implementation is so straightforward and small that it can be listed
in its entirety:

msplit = loop [] where
loop jq (Pure x) = return (Just (x, msum jq))
loop jq (Impure u q) = case prj u of
−− The current choice fails (requested abort)
Just MZero → case jq of

−− check if there are other choices
[] → return Nothing
(j : jq) → loop jq j

Just MPlus → loop ((qApp q False): jq) (qApp q True)
→ Impure u (tsingleton k) where k = qComp q (loop jq)

In words, msplit t intercepts the NdetEff requests of t. If t asks
to choose, MPlus, one choice is pursued immediately and the
other is saved in the work list jq of possible choices. The function
finishes when the watched computation succeeds (the worklist is
the collection of the remaining choices then) or when all possible
choices failed.

We have demonstrated the most straightforward Eff implemen-
tation of not just non-determinism but non-determinism with com-
mitted choice (or, LogicT) [20].

6. Catching IO Exceptions
Handling IO errors in the presence of other effects abounds in
subtleties. It was also thought to be a challenge for the Eff library.
Not only has Eff met the challenge, it improves on MTL. With
extensible effects, the state of the computation at the point of an
exception is available to the handler. In MTL, an exception handler
only has access to the state that existed at the point where it was
installed (that is, catch was entered). Any further changes, up to
the point of the exception, are lost.

Capturing IO errors in general MonadIO computations (not just
the bare IO monad) has been a fairly frequently requested fea-
ture, going back to 20033. An early approach4 has been improved

3 http://www.haskell.org/pipermail/glasgow-haskell-users/
2003-September/005660.html http://haskell.org/pipermail/
libraries/2003-February/000774.html
4 http://okmij.org/ftp/Haskell/misc.html#catch-MonadIO



and polished through many packages (such as MonadCatchIO) and
eventually de facto standardized in exceptions . The solution, al-
though very useful in many circumstances is not without problems.
For example, consider the following computation with the Writer
and IO effects

do tell ”begin”; r ←faultyFn; tell ”end”; return r
8 catch8 (\e → return ◦ show $ (e:: SomeException))

where faultyFn throws an IO or a user-defined dynamic exception.
With MTL, any Writer updates that happened after catch up to
the point of the exception are lost. That is, after the above code
finishes the accumulated trace has neither “end” nor “begin”. Such
a transactional semantics is useful – but not when the Writer is
meant to accumulate the debug trace. Alas, MTL does not give us
the easy choice.

To understand the MTL behavior, recall that its WriterT String IO a
monad is IO (a,String): it is the computation that produces the
value a along with the contribution to the writer string. The catch
is implemented as (see liftCatch in mtl).

catch h m = m 8IO.catch8 \e → h e

When an IO exception is raised, the value produced by m, including
its Writer contribution, is lost. MTL’s liftCatch for the State monad
has the similar behavior of discarding the state accumulated since
the catch is entered. In general, effect interaction in MTL depends
on the order of the transformer layers; the IO monad is not a
transformer however and must always be at the bottom of the stack.

If we execute the same code with the extensible-effect IO error
handling 5 the trace accumulated by the writer of course has no
”end” but it does have ”begin”. Here is the whole code for catching
IO exceptions

catchDynE :: ∀ e a r .
(MemberU2 Lift (Lift IO) r , Exc.Exception e) ⇒
Eff r a → (e → Eff r a) → Eff r a

catchDynE m eh = interpose return h m
where

h :: Lift IO v → Arr r v a → Eff r a
h (Lift em) k = lift (Exc.try em) �= \x → case x of

Right x → k x
Left e → eh e

In the extensible effects library, IO computations are requested with
the Lift IO effect

newtype Lift m a = Lift (m a)

whose interpreter
runLift :: Monad m ⇒ Eff ’[Lift m] w → m w

is necessarily the last one, which is signified by the special
MemberU2 Lift (Lift IO) r constraint. The library function interpose
is a version of handle relay that does not consider an effect handled
although it does reply to its requests: interpose may also ‘re-throw’
effect’s request. The function catchDynE intercepts IO requests
to wrap them into the Exception.try to reify possible exceptions.
Therefore, IO errors are instantly caught and do not immediately
discard their continuation. The effect handlers in scope and their
state are thus preserved.

We can also easily implement transactional behavior: an excep-
tion rolling-back the state to what it was when the exception han-
dler was installed; see the source code for details.

7. Regions
Monadic Regions were introduced by Fluet and Morrisett [10] as
a surprisingly simple version of the type-safe region memory man-
agement system. It may be thought of as a nested ST monad while
also allowing reference cells allocated in a parent region to be used,

5 http://okmij.org/ftp/Haskell/extensible/EffDynCatch.hs

relatively hassle-free, in any child region. Lightweight monadic re-
gions [19] is the Haskell implementation of the extended version
of Fluet and Morrisett’s system, which was applied to IO resources
such as file handles rather than memory cells, and is simpler to use.
Lightweight regions statically ensure that every accessible file han-
dle is open, while providing timely closing. The original Monadic
Regions used an atomic monad, indexed by a unique region name;
the lightweight version was built by iterating an ST-like monad
transformer. Extensible effects, with its atomic Eff monad indexed
by effects tempted one to re-implement lightweight regions closer
to Fluet and Morrisett’s original style while still avoiding the in-
convenience of passing around parent-child–relationship witnesses.
This challenge was set as future work in [21].

Implementing monadic regions with extensible effects was cer-
tainly a challenge. To ensure that an allocated resource such as
a memory cell or a file handle do not escape from their region,
Monadic Regions – like the ST s monad – mark the types of
the computation and its resources with a quantified (or rigid, in
GHC parlance) type variable. Defining Typeable instances for such
types was the first challenge. More worrisome, any type-level pro-
gramming with types that include rigid variables never meant to
be instantiated is fragile. Sometimes, incoherent instances [5] are
needed, which is a rather worrisome extension that we are keen
to avoid. Finally, lightweight monadic regions, although based on
monad transformers, intentionally prohibited any lifting and hence
the addition of other effects. Exceptions and non-determinism are
clearly incompatible with the region discipline. On the other hand,
State and Reader are benign and should be allowed.

All these challenges have been met6. Below we describe the
salient points of the implementation.

Since the new version of extensible effects no longer uses
Typeable, the first challenge disappears. The second one was dif-
ficult indeed. The most straightforward realization of Fluet and
Morrisett’s idea is to provide a RegionEff s effect indexed by the
rigid type variable s taken to be the name of the region. File handles
allocated within the region will be marked by that region’s name:

newtype SHandle s = SHandle Handle
data RegionEff s a where

RENew :: FilePath → IOMode → RegionEff s (SHandle s)

The data constructors are private and not exported. (The actual im-
plementation is a bit more complex because it supports bequeathing
of file handles to an ancestor region, see [19] for more discussion.)

The operation to allocate the new file handle will send a RENew
request and obtain the handle marked with the region’s name.

newSHandle :: Member (RegionEff s) r ⇒ −− simplified
FilePath → IOMode → Eff r (SHandle s)

newSHandle fname fmode = send (RENew fname fmode)

The list of constraints is a bit simplified, omitting the type-level
computation that scans the list of effect labels r and finds the name
of the closest, that is, innermost, region. The interpreter of the
requests

newRgn :: (∀ s. Eff (RegionEff s ’: r ) a) → Eff r a

like runST, has higher-rank type: informally, it allocates a fresh
rigid type variable s, the fresh name for the region. The interpreter
keeps the list of handles it was asked to allocate, closing all of them
upon normal or exceptional exit. An operation using the handle has
the type

shGetLine :: Member (RegionEff s) r ⇒
SHandle s → Eff r String

that enforces that the region named s owning the handle is active: its
name is among the current effect labels r. Incidentally, the signature

6 http://okmij.org/ftp/Haskell/extensible/EffRegion.hs
http://okmij.org/ftp/Haskell/extensible/EffRegionTest.hs



automatically allows the handle allocated in any ancestor region to
be used in a child region.

The outlined implementation indeed works, save for two sub-
tleties. It is indeed tempting to think of the rigid type variable
s as the name for the region RegionEff s. Alas, the ever-present
Member (RegionEff s) r constraint, checking that the RegionEff s
effect is part of the current effect list r, cannot distinguish two types
RegionEff s1 and RegionEff s2 that differ only in the rigid type
variable. Although these variables will never be instantiated and
hence never can be the same, the constraint-solving part of GHC
does not know or understand this fact. Therefore, we have to give
regions another name, a type-level numeral, which the constraint-
solver can distinguish. Therefore, the signatures of newSHandle
and newRgn (but not shGetline, etc) are slightly more complex
than shown.

The second subtlety is allowing other effects besides RegionEff.
Since all possible effects of a Eff r computation are listed in
r, we merely need to look through the list to check if the ef-
fect is known to be benign. The implementation provides such
SafeForRegion constraint, treating Reader and State as safe7.
Exc SomeException is also allowed since newRgn specifically
listens for this request.

The rest of the implementation is straightforward. It passes the
old Lightweight Regions regression tests with minimal modifica-
tions.

8. Related Work
The library of extensible effects reported in this paper is the sim-
plification and improvement of the library presented two years ago
[21]. Eff was a co-density-transformed free monad – which was not
made clear in that paper. The co-density transform is regarded as
an optimization – alas, it does not work for modular interpreters,
which have to reflect the continuation when relaying a request
to another handler. The incompatibility of reflection with the co-
density optimization was described in detail in [31]. We now use the
simpler and quite better performing Freer monad with type-aligned
sequences. The new Eff also uses the new implementation of open
unions without the objectionable features: Typeable and overlap-
ping instances. The applications described in §§5,6,7 are also new,
for extensible effects.

One of the most common questions about Extensible Effects
is their relation to Swierstra’s well-known “Data types à la carte”
[30]. Similarities are indeed striking: free monads, open unions,
‘modular’ monads leading to a type-and-effect system. Although
the à la carte approach provides extensible monad type, it does not
provide modular interpreters with modular effects and hence effect
encapsulation. Related to the lack of compositionality are prob-
lems with type inference, requiring cumbersome and what should
be unnecessary annotations. (The ambiguity in the definition of
the subsumption relation on collection of types, which caused the
inference problems, has been rooted out in the novel approach
by [3].) See http://okmij.org/ftp/Haskell/extensible/
extensible-a-la-carte.html for a detailed comparison with
the old Eff library. The present paper moves past the free monad to
freer monad.

In comparison with monad transformers, the interaction of ef-
fects in Eff depends not on the statically fixed order of transform-
ers but on the order of effect interpreters and can even be adjusted
dynamically (by interpreters that listen to and intercept other re-
quests). See [21] for more extensive comparison with MTL. That

7 Since the user may write their own interpreter, they may well treat Reader
as an exception, which is not safe. We may prevent such a behavior by not
exporting the data constructor for the Reader request.

paper relates Eff with other effect systems known at that time. In
the following we compare Eff with the systems introduced since.

The effect system of Idris [6] is an implementation of algebraic
effects in the dependently-typed setting. The paper [6] introduces
a domain-specific language – a notation – for describing effect-
ful computations and demonstrates the easy combination of effects.
The handlers are specifies as instances of a type class. The effect
order is globally fixed and effects are interpreted essentially at the
top level; there is no encapsulation of effects. The paper makes
an excellent case that effect handlers provide a more flexible and
cleaner alternative to monad transformers. We disagree about lim-
itations: as we show in our implementation, the effect approach is
more, rather than less expressive than monad transformers.

The closely related to our work is Kammar’s et al. “Handlers
in action” [17]. Whereas our library manages sets of effects us-
ing both type-level constraints and type-level lists, Kammar et al.
rely only on type-class constraints. Constraints truly represent an
unordered set. Using constraints exclusively however requires all
effect handler definitions be top-level since Haskell does not sup-
port local type class instances. Handlers in Action rely on Template
Haskell to avoid much of the inconvenience of type-class encod-
ing and provide a pliable user interface. The provided library has
excellent performance, which can also been seen from our bench-
marks in §4. The use of Template Haskell however significantly
hinders the practical use of Handlers in Action. The present paper
demonstrates that many of Kammar’s et al. benefits can be attained
in a simple to develop and to use library, staying entirely within
Haskell.

The freer or freer-like monads have already appeared before, yet
connecting all the dots took long time. The origins of freer monads
can be traced to the pioneering work of Hughes [14], Claessen [8]
and Hinze [13], who introduced and explained the term represen-
tation of effectful monadic computations. That representation was
fully developed in the monad construction toolkit Unimo [23]:

data Unimo r a =
Unit a
| Effect (r (Unimo r) a)
| ∀ b. Bind (Unimo r b) (b → Unimo r a)

It is quite close to FFree of §2.4, in particular, the Bind constructor
whose second argument accumulates the continuation. Dedicating
a variant Effect for effect requests proved to be a drawback, requir-
ing the interpreter of Unimo r a monad to deal with two separate
but very similar cases: Effect e and Bind (Effect e) k. One can
think of free monads as eliminating this boilerplate – and throwing
away the explicit continuation argument in the process. Our FFree
brings the explicit continuation back. Unimo aimed to provide ex-
tensibility by emulating monad transformers. The Operational tu-
torial [1] introduces

data Program instr a where
Then :: instr a → (a → Program instr b) → Program instr b
Return :: a → Program instr a

which is exactly like our FFree. The tutorial correctly observed
that Program instr is a monad (although without proof). Alas the
paper mis-characterized Program as a GADT (it is not: it is a
mere existential data type in GADT notation) and has not made the
connection with the free monad. It is this connection that proves
that Program instr really is a monad. More recently, Kammar’s
et al. also came within an inch of the freer monad: [17, Figure 5]
contains the following definition

data Comp h a where
Ret :: a → Comp h a
Do :: (h 8 Handles8 op ) e ⇒

op e u → (Return (op e u ) → Comp h a ) → Comp h a

where Return is a type family and Handles is a three-parameter
type class. It is very, very similar to FFree of §2.4, but with con-



straints. The very similar data type, also with the constraints, ap-
pears in [27] as the data type NM ctx t a for constrained monad
computations. Handlers in Action did not seem to have recognized
that removing all the constraints gives a new algebraic data struc-
ture that is a monad by construction. The paper describes Comp
in the traditional way: “the monad Comp h, which is simply a free
monad over the functor defined by those operations op that are han-
dled by h (i.e. such that (h ‘Handles ‘ op ) e is defined for some
type e)”. FFree in §2.4 requires no functors and has no constraints
or preconditions; it is a monad, period.

The papers [1] and [17] have noted the performance problem
of free monads and attempted to overcome it with some sort of
continuation passing – which works only up to the (reflection)
point, as explained in [31]. The latter paper, which introduced type-
aligned sequences, also applied them to speed up free monads. The
implementation was quite complex, with the mutually recursive
FreeMonad and FreeMonadView. It tried hard to fit the type-
aligned sequences into the traditional 2free monads, rather than
overcoming them. The main lesson of that paper – representing
a conceptual sequence of binds as an efficient data structure – is
expressed most clear in the new Eff monad in §3.

The recent ‘Handlers in scope’ [33] gives the more traditional
introduction of extensible effects based on Data types à la carte.
It also introduces the notion of a handler scope and two ways to
support it. The underlying idea seems to be to run an effectful
computation at the place of its handler, so to speak. The detailed
investigation of the notion of scope deserves its own paper.

Compared to the right Kan extensions, left Kan extensions seem
to have found so far fewer applications in functional programming.
A notable application is Johann and Ghani’s [16], which used a
specific form of left Kan extension (only with the equality GADTs)
to develop the initial algebra semantics for GADTs.

9. Conclusions
We have rationally reconstructed the simplified and more efficient
version of the extensible effects library and illustrated it with three
new challenging applications: non-determinism, handling IO errors
in the presence of other effects, and monadic regions. The new li-
brary is based on the freer monad, a more general and more effi-
cient version of the traditional free monads. To improve efficiency
we systematically applied the lesson of the left Kan extension: in-
stead of performing an operation, record the operands in the data
structure and pretend it done.

The ambition is for Eff to be the only monad in Haskell. Rather
than defining new monads programmers will be defining new ef-
fects, that is, effect interpreters.
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