
Extensible Effects
An Alternative to Monad Transformers

Oleg Kiselyov Amr Sabry Cameron Swords

Haskell Symposium 2013
Boston, MA Sep 23, 2013

We design and implement a library that solves the long-standing
problem of combining effects without imposing restrictions on their
interactions (such as static ordering). Effects arise from interactions
between a client and an effect handler (interpreter); interactions may
vary throughout the program and dynamically adapt to execution
conditions. Existing code that relies on monad transformers may be
used with our library with minor changes, gaining efficiency over long
monad stacks. In addition, our library has greater expressiveness,
allowing for practical idioms that are inefficient, cumbersome, or
outright impossible with monad transformers.

Our alternative to a monad transformer stack is a single monad, for

the coroutine-like communication of a client with its handler. Its type

reflects possible requests, i.e., possible effects of a computation. To

support arbitrary effects and their combinations, requests are values

of an extensible union type, which allows adding and, notably,

subtracting summands. Extending and, upon handling, shrinking of

the union of possible requests is reflected in its type, yielding a

type-and-effect system for Haskell. The library is lightweight,

generalizing the extensible exception handling to other effects and

accurately tracking them in types.

2

Monad Transformers

Monad Transformers and Modular Interpreters

Sheng Liang and Paul Hudak and Mark Jones
POPL 1995

“1 Very recently, Cartwright and Felleisen [3] have
independently proposed a modular semantics emphasizing a
direct semantics approach, which seems somewhat more
complex than ours; the precise relationship between the
approaches is, however, not yet clear.”

Effects in Haskell immediately evoke monad transformers, which were
proposed, essentially in the same form we know now, in this classic,
well-cited paper by Liang, Hudak and Jones from 1995. It is
deservingly a classic paper.

Here is the first page of the paper. If we scroll down to the bottom of

it, we see a curious footnote, mentioning a paper that hardly anyone

knows or remembers. There was an alternative to monad

transformers! This whole talk at its heart is about this footnote. The

relationship between the two approaches has become clear, and the

alternative can be presented much simpler than it was originally.

3

EDLS I

Extensible Denotational Language Specifications

Robert Cartwright, Matthias Felleisen
Theor. Aspects of Computer Software, 1994
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.5941

The schema critically relies on the distinction between a complete
program and a nested program phrase. A complete program is
thought of as an agent that interacts with the outside world, e.g., a
file system, and that affects global resources, e.g., the store. A central
authority administers these resources. The meaning of a program
phrase is a computation, which may be a value or an effect. If the
meaning of a program phrase is an effect, it is propagated to the
central authority. The propagation process adds a function to the
effect package such that the central authority can resume the
suspended calculation. We refer to this component of an effect
package as the handle since it provides access to the place of origin for
the package.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.5941

Here is this paper presenting the alternative approach. Curiously, it
was published roughly at the same time as the Monad Transformers
paper, just a couple of months earlier. Research in effects seems to be
filled with amazing coincidences.
The paper, especially the introduction, is very inspirational. I
strongly recommend reading it. Let me show a few parts of the paper
that directly inspired and are reflected in the work presented now.
Cartwright and Felleisen were interested in extensible denotational
specifications and hence building extensible interpreters. They really
did it, starting from the language with only two constructs, for
looping and failure. They add boolean algebra, arithmetic,
call-by-name or by-value, state, etc. – as extensions. You have
probably read the highlighted paragraph. You see the word ‘handle’
(and then ‘handler’) that you’ll hear again in this talk and in several
ICFP talks. These term was coined in 1994.

Our effect library pretty much reflects the quoted Cartwright and

Felleisen’s description.

4

Main ideas

1. “An effect is most easily understood as an interaction
between a sub-expression and a central authority that
administers the global resources of a program.”

2. “an effect can be viewed as a message to the central
authority plus enough information to resume the
suspended calculation”
the program and its authority are like co-routines

3. the authority is part of the program, distributed
throughout it: bureaucracy

I modularity and extensibility
I encapsulation of effects

4. types approximate possible effects, unordered collection:
type-and-effect system

Let me summarize the main ideas. Cartwright and Felleisen propose
to view effect as an interaction, communication with an authority in
charge of resources. The interacting authority and the program may
be viewed as coroutines.
The last two points are our departure from Cartwright and Felleisen.
When the authority is part of user program and distributed
throughout it, it is easier to add new effects (compared to the
extension of the monolithic central authority) and it becomes possible
to encapsulate effects, limiting them to parts of the program. Also
unlike EDLS, we use types – as a conservative approximation of effects
an expression may perform. We thus get a type and effect system.

If you understand these ideas, you can write your own library of

extensible effects. Let me briefly describe how we did it.

5

Outline

I Limits of monad transformers

I Extensible effects, the library

I Extensible effects: beyond the limits of MTL

I Frequently Expressed Confusions
I Isn’t this just “Data types à la carte”?
I Isn’t this just a Free Monad?
I Typeable is ugly! OverlappingInstances are ugly!
I Extensible effects vs Algebraic effects?
I OCaml polymorphic variants vs OpenUnion?

I Concluding remarks

Looking at alternatives is worthwhile in and of itself. Yet some may
say, if Monad Transformers work so well, what’s the problem then?

We show a simple example, implemented with the monad transformer

library (MTL): to remind of monad transformers and to demonstrate

they do have a problem. We then demonstrate one implementation of

the main ideas of the alternative approach, which we just saw. The

alternative looks and feels very much like MTL, but goes beyond its

limits.

6

Running example

Given

comp :: Monad m ⇒ m Int

Tasks

1. if the result is too big, throw TooBig exception

2. recover from that exception

Here is the specification of our running example, to illustrate monad

transformers and their limitations, and extensible effects’ overcoming

them. Suppose we have a computation in some monad m producing

an Int. First, we check the result against a threshold. If it’s bigger,

throw the exception TooBig. In the second part of the example, we

should recover from the exception.

7

Running example in MTL 1

newtype TooBig = TooBig Int deriving Show

ex2 :: MonadError TooBig m ⇒ m Int → m Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v) else return v

Here is the most elegant implementation with the Monad Transformer

Library (MTL). We define the data type to use as an exception. We

throw the TooBig value if the result of the argument computation m is

bigger than our threshold, 5. The use of throwError induces the

constraint MonadError: the monad m must be an error monad. The

code is intuitive, elegant and clearly express our intention. Let’s see

how it works.

8

Running example in MTL 2

ex2 :: MonadError TooBig m ⇒ m Int → m Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v) else return v

choose :: MonadPlus m ⇒ [a] → m a

runListT :: ListT m a → m [a]
runErrorT :: ErrorT e m a → m (Either e a)

Fixing the order

runIdentity ◦ runListT ◦ runErrorT $ ex2 (choose [5,7,1])

−− [Right 5]

runIdentity ◦ runErrorT ◦ runListT $ ex2 (choose [5,7,1])
−− Left (TooBig 7)

Our guard ex2 should work with any computation. As a computation

to guard, we take non-deterministic choice of an integer out of three:

5, 7 or 1. We need a MonadPlus monad to program such choice. We

can now try running the example. But we need to choose a monad

that has the properties of being an error monad and a

non-determinism monad. In MTL, monads with desired properties are

composed by layering of monad transformers responsible for a single

property. For example, ListT applied to some m makes the monad

that supports non-determinism (a member of the type class

MonadPlus). The function runListT ‘peels off’ the layer, returning all

choices in a list. ErrorT e adds supports for throwing exceptions of

type e. We must fix the order of layers though. It is fixed by choosing

the order of the run functions. Here, the order is: Identity transformed

by ListT transformed by ErrorT. The order remain fixed throughout

the computation.

8

Running example in MTL 2

ex2 :: MonadError TooBig m ⇒ m Int → m Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v) else return v

choose :: MonadPlus m ⇒ [a] → m a

runListT :: ListT m a → m [a]
runErrorT :: ErrorT e m a → m (Either e a)

Fixing the order

runIdentity ◦ runListT ◦ runErrorT $ ex2 (choose [5,7,1])
−− [Right 5]

runIdentity ◦ runErrorT ◦ runListT $ ex2 (choose [5,7,1])
−− Left (TooBig 7)

The result is quite surprising. We see no shred of the TooBig

exception, which was supposed to be thrown. Also, the choice 1 is

gone. It is a puzzle indeed. It is an exercise to the audience to

determine what is going on.

8

Running example in MTL 2

ex2 :: MonadError TooBig m ⇒ m Int → m Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v) else return v

choose :: MonadPlus m ⇒ [a] → m a

runListT :: ListT m a → m [a]
runErrorT :: ErrorT e m a → m (Either e a)

Fixing the order

runIdentity ◦ runListT ◦ runErrorT $ ex2 (choose [5,7,1])
−− [Right 5]

runIdentity ◦ runErrorT ◦ runListT $ ex2 (choose [5,7,1])
−− Left (TooBig 7)

What if we choose the different order of layers? This time, we see the

exception thrown, as expected. So, the order of layers matters a great

deal. Well, at least one order of layers has worked for us. But we are

not done yet. There is the second part of the example: error recovery.

9

Running example in MTL 3

ex2 :: MonadError TooBig m ⇒ m Int → m Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v) else return v

exRec :: MonadError TooBig m ⇒ m Int → m Int
exRec m = catchError m handler
where handler (TooBig n) | n ≤ 7 = return n

handler e = throwError e

runIdentity ◦ runErrorT ◦ runListT $ exRec (ex2 (choose [5,7,1]))
−− Right [7]

Wanted: per world exception and recovery

The MonadError type class offers not only throwError to throw errors

but also catchError to handle them. We can catch the TooBig

exception and examine it. If the result is really not that big, not

exceeding 7, we then continue the execution, recovering from the

error. Otherwise, we re-throw the error. Let us see how it works,

using the winning order of the layers.

9

Running example in MTL 3

ex2 :: MonadError TooBig m ⇒ m Int → m Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v) else return v

exRec :: MonadError TooBig m ⇒ m Int → m Int
exRec m = catchError m handler
where handler (TooBig n) | n ≤ 7 = return n

handler e = throwError e

runIdentity ◦ runErrorT ◦ runListT $ exRec (ex2 (choose [5,7,1]))
−− Right [7]

Wanted: per world exception and recovery

Well, it doesn’t work too well. The original computation had three
non-deterministic choices. Two of them should not trigger any error,
and one triggers the TooBig exception, which is supposed to be
recovered from. So, the result should have three choices, but we got
only one. The other two got lost. We would really wanted that
exception did not interfere with choices, was limited to its possible
world. We tried the two possible ordering of the monad transformer
layers and could not get what we wanted, per-world exception and
recovery. Simple variations lead to the similar disappointment.

Actually we are lucky: it is possible to implement our example, with

per world exception and recovery, using MTL. But we need two error

layers. To see how easy or intuitive it is, I encourage the audience to

write that code.

10

MTL Problems

I Fixed order of layers throughout the computation:
limited expressivity

I Complexity (quadratic) of lifting

I Performance degradation on large transformer stacks

So, monad transformers do have problems. The principal problem is

the fixed order of monad transformer layers. The order matters, since

it defines how effects, exceptions and non-determinism, interact. If

the order is fixed throughout the whole computation, we cannot

express computations that require more flexible interaction. We were

lucky that we could after all implement our running example as

intended, albeit unintuitively and with performance degradation. The

paper outlines a different example, with coroutines and dynamic

binding, the Reader monad. There does not seem to be any way to

implement that example in its full form with MTL, by composing

independent layers of effects. There are other problems of MTL,

please see the paper for their discussion.

11

Alternative: Extensible Effects

I effect as a communication with an authority
the program and its authority are like coroutines

I the authority is part of the program: bureaucracy

I types approximate possible effects

Let’s recall what’ve learned from the Cartwright and Felleisen’s

paper, and from contemplating extensions to it. Let us see how we

can implement them in Haskell.

11

Alternative: Extensible Effects

I effect as a communication with an authority
the program and its authority are like coroutines

type Eff r a
instance Monad (Eff r)
run :: Eff Void w → w
send req :: (Suspension a → Request) → Eff r a

I the authority is part of the program: bureaucracy

I types approximate possible effects

First, we need coroutines. Let’s pick a monadic implementation of

coroutines out of several available, and call it monad Eff r. We will

come to this r parameter of the monad in a moment. A coroutine

monad will have an operation to run it; let’s call it run. Again, please

disregard the void for a moment. A coroutine monad obviously has an

operation for a coroutine to resume its caller, and suspend. Let’s call

this operation send req. Its argument is a function that takes a

suspension, the ‘return address’, and incorporates it into the request;

send req will then send the request and suspend. When the coroutine

resumes, it receives the value of the type a and continues.

11

Alternative: Extensible Effects

I effect as a communication with an authority
the program and its authority are like coroutines

type Eff r a
instance Monad (Eff r)
run :: Eff Void w → w
send req :: (Suspension a → Request) → Eff r a

I the authority is part of the program: bureaucracy

data VE w r = Val w |E (Union r (VE w r)) −− cf. free monad
admin :: Eff r w → VE w r −− cf. try
handle relay :: Union (req B r) v →

(v → Eff r a) → (req v → Eff r a) → Eff r a

I types approximate possible effects

The authority, bureaucracy, is part of the program. So, we should be

able to program it as well. First, the bureaucrat needs to know if the

supervised program fragment has finished, with the value w, or has

sent a request. Recall, Cartwright and Felleisen wrote: “The meaning

of a program phrase is a computation, which may be a value or an

effect.” The function admin, which should be provided by the

coroutine library, does this. Recall that bureaucracy is distributed:

each particular bureaucrat, or handler, is responsible only for one or a

couple of specific requests. A program may perform several effects,

that is, send several requests. Thus a bureaucrat has do determine if

the request of the type it can handle. If not, the request should be

relayed upstairs. The function handle relay does the case analysis. It

checks if the current request, contained in the union of possible

request, is of the desired type req. If so, it calls the supplied handler

(the last argument of the function). The function handle relay is

provided by the library of open unions.

11

Alternative: Extensible Effects

I effect as a communication with an authority
the program and its authority are like coroutines

type Eff r a
instance Monad (Eff r)
run :: Eff Void w → w
send req :: (Functor req, Member req r) ⇒

(∀ w. (a → VE w r) → req (VE w r)) → Eff r a

I the authority is part of the program: bureaucracy

data VE w r = Val w |E (Union r (VE w r)) −− cf. free monad
admin :: Eff r w → VE w r −− cf. try
handle relay :: Union (req B r) v →

(v → Eff r a) → (req v → Eff r a) → Eff r a

I types approximate possible effects
handled effects are subtracted from the type
assure: there is a handler for each request

Finally, we need types that tell which effects a program fragment may
possibly do. Here is where that r parameter comes in. The coroutine
monad is indexed by r, the type of possible requests. One may think
of this type as a set of possible requests. Void denotes the empty set.
Therefore, we can run only uneffectful computations, whose effects are
all handled. The notation req B r denotes a set with the element req
added to r. Therefore, when the bureaucrat handles req, the
computation no longer has that req (see the handle relay.) In other
words, handled effects are subtracted from the effect type.
Here is the full type of send req: it shows that the request req we are
sending has to be a member of the set r. That is, the whole program
must have a bureaucrat that can handle the request.

That is all there is to it. We can re-implement the whole MTL, and

we can do more.

12

Extensible Effects: Error effect

newtype Exc e v = Exc e

throwError :: (Member (Exc e) r) ⇒ e → Eff r a
throwError e = send req (const $ Exc e)

runError :: Eff (Exc e B r) a → Eff r (Either e a)
runError m = loop (admin m)
where
loop (Val x) = return (Right x)
loop (E u) = handle relay u loop (\(Exc e) → return (Left e))

catchError :: (Member (Exc e) r) ⇒
Eff r a → (e → Eff r a) → Eff r a

No need for MonadError

Let’s implement the effect of throwing an exception (of type e) in our
framework. Exc e v is the type of the request, with v being the result
to be produced by a suspension. Since the program, after requesting
an exception, is not resumed, we ignore v. Throwing an exception
makes the request. The interpreter, the bureaucrat, runError returns
the result of the supervised computation tagged with Right. If the
computation requested an exception, the exception value e is
returned, without resuming the computation. If the computation
made some other request, it is relayed upstairs. After the higher
bureaucrat replied, we continue the supervision.
Our library implements this Error effect and other MTL effects.

We no longer need to define a type class per effect. In MTL, it hid

the ordering of the layers. Now, the ordering is hidden anyway, by the

constraint Member.

13

Back to the running example 1

newtype TooBig = TooBig Int deriving (Show, Typeable)

ex2 :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int
ex2 m = do

v ← m
if v >5 then throwError (TooBig v) else return v

exRec :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int
exRec m = catchError m handler
where handler (TooBig n) | n ≤ 7 = return n

handler e = throwError e

Let’s come back to our running example and re-implement it with
extensible effects.

The code looks exactly the same as it was with MTL. Only type

signatures differ. The type signatures are all inferred.

14

Back to the running example 2

ex2 :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int

ex2 (choose [5,7,1])
:: (Member Choose r, Member (Exc TooBig) r) ⇒ Eff r Int

We see the encapsulation of effects. As we add handlers, the type

becomes smaller as effects are handled.

14

Back to the running example 2

ex2 :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int

runErrBig :: Eff (Exc TooBig B r) a → Eff r (Either TooBig a)
runErrBig m = runError m

ex2 (choose [5,7,1])
:: (Member Choose r, Member (Exc TooBig) r) ⇒ Eff r Int

runErrBig $ ex2 (choose [5,7,1])
:: Member Choose r ⇒ Eff r (Either TooBig Int)

14

Back to the running example 2

ex2 :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int
runErrBig :: Eff (Exc TooBig B r) a → Eff r (Either TooBig a)

makeChoice :: Eff (Choose B r) a → Eff r [a]

ex2 (choose [5,7,1])
:: (Member Choose r, Member (Exc TooBig) r) ⇒ Eff r Int

runErrBig $ ex2 (choose [5,7,1])
:: Member Choose r ⇒ Eff r (Either TooBig Int)

makeChoice ◦ runErrBig $ ex2 (choose [5,7,1])
:: Eff r [Either TooBig Int]

run ◦ makeChoice ◦ runErrBig $ ex2 (choose [5,7,1])
[Right 5, Left (TooBig 7),Right 1]

When all effects are handled, we can finally run the computation. Of

three choices, one ended in error, the others normally. There are no

surprises.

15

Back to the running example 3

exRec :: Member (Exc TooBig) r ⇒ Eff r Int → Eff r Int

run ◦ runErrBig ◦ makeChoice $ exRec (ex2 (choose [5,7,1]))
−− Right [5,7,1]

run ◦ makeChoice ◦ runErrBig $ exRec (ex2 (choose [5,7,1]))
−− [Right 5,Right 7,Right 1]

Quickly, error recovery. According to our thresholds, 7 is too big but

not too big. So, when it comes to 7, an exception should be raised,

and should be recovered from. That’s exactly the result we get. There

are no lost choices any more. If we switch the order of the handlers,

the return type obviously changes, but the overall result stays the

same. The exception is handled, no choices gone missing. There are

no surprises.

16

Choice effect

data Choose v = ∀a. Choose [a] (a → v)
deriving (Typeable)

choose :: Member Choose r ⇒ [a] → Eff r a
choose lst = send (\k → inj $ Choose lst k)

mzero’ :: Member Choose r ⇒ Eff r a
mzero’ = choose []
mplus’ m1 m2 = choose [m1,m2] �= id

We have time to see the implementation of the Choice effect, with the

choose request, which expresses the familiar MonadPlus operators

mzero and mplus.

17

Choice effect: handler

makeChoice :: ∀ a r . Eff (Choose B r) a → Eff r [a]
makeChoice m = loop (admin m)
where
loop (Val x) = return [x]
loop (E u) = handle relay u loop (\(Choose lst k) → handle lst k)

handle :: [t] → (t → VE a (Choose B r)) → Eff r [a]
handle [] = return []
handle [x] k = loop (k x)
handle lst k = fmap concat $ mapM (loop ◦ k) lst

The handler of choose requests implements DFS. One can see the

similarity with the list monad: cf. concatMap

18

Choice effect: Soft cut (LogicT)

Non-deterministic if-then-else, aka Prolog’s *->

ifte t th el ≡ (t �= th) ‘ mplus‘ ((not t) � el)

but t is evaluated only once

Monadic reification

admin :: Eff r w → VE w r
admin (Eff m) = m Val

Monadic reflection

reflect :: VE a r → Eff r a
reflect (Val x) = return x
reflect (E u) = Eff (\k → E $ fmap (loop k) u) where
loop :: (a → VE w r) → VE a r → VE w r
loop k (Val x) = k x
loop k (E u) = E $ fmap (loop k) u

The choice effect implements not just the MonadPlus interface but

also LogicT, in particular, soft cut. That is, ifte t th el is equivalent to

t >>= th if t has at least one solution. If t fails, ifte t th el is the

same as el. To implement soft cut, we should sort of look-ahead into

the test t to see it succeeds at least once. Hence we need to convert a

computation to its representation, so we can look into it.

18

Choice effect: Soft cut (LogicT)

Non-deterministic if-then-else, aka Prolog’s *->

ifte t th el ≡ (t �= th) ‘ mplus‘ ((not t) � el)

but t is evaluated only once

Monadic reification

admin :: Eff r w → VE w r
admin (Eff m) = m Val

Monadic reflection

reflect :: VE a r → Eff r a
reflect (Val x) = return x
reflect (E u) = Eff (\k → E $ fmap (loop k) u) where
loop :: (a → VE w r) → VE a r → VE w r
loop k (Val x) = k x
loop k (E u) = E $ fmap (loop k) u

But we had been doing it all along: admin. More technically, it is

called reification.

18

Choice effect: Soft cut (LogicT)
Non-deterministic if-then-else, aka Prolog’s *->

ifte t th el ≡ (t �= th) ‘ mplus‘ ((not t) � el)

but t is evaluated only once

Monadic reification

admin :: Eff r w → VE w r
admin (Eff m) = m Val

Monadic reflection

reflect :: VE a r → Eff r a
reflect (Val x) = return x
reflect (E u) = Eff (\k → E $ fmap (loop k) u) where
loop :: (a → VE w r) → VE a r → VE w r
loop k (Val x) = k x
loop k (E u) = E $ fmap (loop k) u

Monadic reification and reflection are generic

For soft-cut, we also need the inverse operation: We have

disassembled t and ‘looked inside’ and saw if it fails or not. If we

found it does not fail, we have to put it back together, to implement t

>>= th. We need so-called reflection. It is also implementable. The

shown implementation is not efficient; that can be fixed. What

interesting is that normally reification and reflection require separate

implementation per each effect. With extensible effects, they are

written generically.

19

Choices

I how to implement coroutines

I use OverlappingInstances and Typeable

I use closed type families instead of OverlappingInstances

I use neither OverlappingInstances nor Typeable

I allow or prohibit the duplication of effect descriptors in
types

I allow or prohibit different types of monad readers

I . . .

The design space is quite large. For example, there are several ways
to implement coroutines and sending of messages; there are several
ways to implement open unions. We explored a few options, shown on
the slide; more remain.

In our implementation, Open unions it is a true union: union of a and

a is a.

20

Frequently Expressed Confusions

I Isn’t this just “Data types à la carte”?

I Isn’t this just a Free Monad?

I Typeable is ugly! OverlappingInstances are ugly!

I Extensible effects vs Algebraic effects?

I OCaml polymorphic variants vs OpenUnion?

There has been a fair amount of discussion of extensible effects on

various forums like reddit. Alas, not all of it has been well-informed.

Quite a bit of misunderstanding was expressed. Let me try to clear it.

21

Isn’t this just “Data types à la carte”?

Similarities

I Requests and their interpreters

I Extensibility: more requests

I Open Unions

Differences

I lack the encapsulation of effects

I lack effect inference

The biggest confusion is about extensible effects and Swierstra’s data

types à la carte. There are many similarities, to be sure. One of them

is open unions – which have been implemented already in Liang et al.

MTL paper. This is not surprising: any extensible interpreter has to

have open unions for terms it interprets. The EDSL paper has open

unions too.

22

Isn’t this just “Data types à la carte”?

data Incr t = Incr Int t
data Recall t = Recall (Int → t)

incr :: (Incr :<: f) ⇒ Int → Term f ()
incr i = inject (Incr i (Pure ()))
recall :: (Recall :<: f) ⇒ Term f Int
recall = inject (Recall Pure)

This is an example from the “Data types à la carte” paper, the

implementation of a State effect with two operations: to increment

the integer state and to get it. Defining and sending of the requests is

essentially the same as with extensible effects.

23

Isn’t this just “Data types à la carte”?

newtype Mem = Mem Int
class Functor f ⇒ Run f where

runAlgebra :: f (Mem → (a, Mem)) → (Mem → (a, Mem))

instance Run Incr where
runAlgebra (Incr k r) (Mem i) = r (Mem (i + k))

instance Run Recall where
runAlgebra (Recall r) (Mem i) = r i (Mem i)

instance (Run f , Run g) ⇒ Run (f : + : g) where
runAlgebra (Inl r) = runAlgebra r
runAlgebra (Inr r) = runAlgebra r

Lack of encapsulation

I Type class Run is global (and unnecessary)

This is the handler part: and it is very different. With extensible

effects, we never had to define a type class for a handler, had we?

23

Isn’t this just “Data types à la carte”?

newtype Mem = Mem Int
class Functor f ⇒ Run f where

runAlgebra :: f (Mem → (a, Mem)) → (Mem → (a, Mem))

run :: Run f ⇒ Term f a → Mem → (a, Mem)
run = foldTerm (,) runAlgebra

Lack of encapsulation

I Type class Run is global (and unnecessary)

I run handles all effects rather than some of them

I Term f is extensible but not shrinkable

The main difference from extensible effects is in the signature of run:

its return type is not a Term f’ a. That is, run is a complete

interpreter, rather than a handler of some requests, letting other

handlers do their part. There is no effect encapsulation.

Correspondingly, open unions in the “Data types à la carte” paper do

not support the decomposition operation.

24

Isn’t this just a Free Monad?

data VE w r = Val w |E (Union r (VE w r))
instance Functor (Union r) where

Free Monad is an accident

I The bind on VE w r is never used

I There are other implementations, without Functor

If we look carefully at the type VE, we see that VE w r with the

flipped arguments is a free monad, over a functor Union r. This is

somewhat of an accident. A handler needs to rethrow any request it

does not understand. One way of implementing it is for the handler to

forward the request to a handler upstairs, and then relay its reply.

For the latter, the handler needs to send a reply to a request of an

unknown form. The Functor constraint is enough to ensure that. In

this design, the handler is able to do finalization for any request, even

the ones it does not understand. However, the request relay may be

implemented differently, without the functor constraint. In that case,

the handler can do finalization only for known requests.

25

Typeable is ugly! OverlappingInstances are ugly!

module OpenUnion1 ... where

data Union r v where
Union :: (Functor t, Typeable1 t) ⇒ Id (t v) → Union r v

class Member (t :: ∗ → ∗) r
instance Member t (t B r)
instance Member t r ⇒ Member t (t’ B r)

However,

I other implementations of open unions use neither Typeable
nor OverlappingInstances

I OverlappingInstances in Member: no closed type families
until GHC 7.8

I These are all implementation details

You may be wondering what Typeable and OverlappingInstances I am

talking about. They appear in one implementation of open unions,

OpenUnion1, which I have not shown you. Here I have to reveal the

details. I did not show you the implementation deliberately: there are

other implementations of open unions, which use neither feature.

Also, OverlappingInstances were the artifact: GHC 7.8 released the

other day supports closed type families, and the overlapping instances

are no longer needed. So the main message: there is nothing in

extensible effects that needs these features. Let’s not focus on

implementation details.

26

Extensible effects vs Algebraic effects?

The general coroutine effect

data Yield a b v = Yield a (b → v) deriving (Typeable, Functor)

yield :: (Typeable a, Member (Yield a b) r) ⇒ a → Eff r b
yield x = send (inj ◦ Yield x)

data Y r a b = Done |Y a (b → Eff r (Y r a b))

runC :: Typeable a ⇒ Eff (Yield a b B r) w → Eff r (Y r a b)
runC m = loop (admin m) where
loop (Val x) = return Done
loop (E u) = handle relay u loop $

\(Yield x k) → return (Y x (loop ◦ k))

General delimited continuation effects are not algebraic

Here is a simple implementations of generalized coroutines, which can

be resumed more than once. Such coroutines are equivalent in

expressive power to delimited control. Delimited control effects are

not algebraic. So, extensible effects easily deals with non-algebraic

effects.

27

OCaml polymorphic variants vs OpenUnion?

I Tags do not have to be declared, extensible type

I Order does not matter

I Static check: all possibilities are handled

I Alas: pattern-match doesn’t remove variants
No encapsulation

‘ta 1
− : [> ‘ta of int] = ‘ta 1

27

OCaml polymorphic variants vs OpenUnion?

I Tags do not have to be declared, extensible type

I Order does not matter

I Static check: all possibilities are handled

I Alas: pattern-match doesn’t remove variants
No encapsulation

fun x → if x then ‘ta 1 else ‘ tb 2.0
− : bool → [> ‘ta of int | ‘ tb of float] = <fun>

let f = fun x → if x then ‘tb 2.0 else ‘ ta 1
val f : bool → [> ‘ta of int | ‘ tb of float] = <fun>

27

OCaml polymorphic variants vs OpenUnion?

I Tags do not have to be declared, extensible type

I Order does not matter

I Static check: all possibilities are handled

I Alas: pattern-match doesn’t remove variants
No encapsulation

let f = fun x → if x then ‘tb 2.0 else ‘ ta 1
val f : bool → [> ‘ta of int | ‘ tb of float] = <fun>

fun x → match f x with ‘ ta x → x;;
Error : This pattern matches values of type [< ‘ta of ’ a]

but a pattern was expected which matches values of type
[> ‘ta of int | ‘ tb of float]

The first variant type does not allow tag(s) ‘ tb

27

OCaml polymorphic variants vs OpenUnion?

I Tags do not have to be declared, extensible type

I Order does not matter

I Static check: all possibilities are handled

I Alas: pattern-match doesn’t remove variants
No encapsulation

let f = fun x → if x then ‘tb 2.0 else ‘ ta 1
val f : bool → [> ‘ta of int | ‘ tb of float] = <fun>

fun x → match f x with ‘ ta (y: int) → None | y → Some y;;
− : bool → [> ‘ta of int | ‘ tb of float] option = <fun>

28

Conclusions

A framework for extensible effects

I modularity, extensibility, encapsulation of effects

I type-and-effect system

I handling effects individually or in groups, interleaving

I subsumes MTL

Effect is an interaction

Think in terms of desired effects rather than MTL layers

what effect we want to achieve rather than which monad
transformer to use

We have presented an extension of Cartwright and Felleisen approach
to modular effect handling, and described one of its implementation
in Haskell. Our framework induces a type and effect system for
Haskell. It subsumes MTL: it can be used quite like MTL but offers
flexibility of effect handling and interaction, without fixed lifting.
The take-away is the view of effects as interaction, between an
expression and the interpreter. And the other thought: when
designing a program we should start thinking what effect we want to
achieve rather than which monad transformer to use. Using ReaderT
or StateT or something else is an implementation detail. Once we
know what effect to achieve we can write a handler, or interpreter, to
implement the desired operation on the World, obeying the desired
equations. And we are done.
Defining a new class for each effect is possible but not needed at all.
With monad transformers, a class per effect is meant to hide the
ordering of transformer layers in a monad transformer stack. Effect
libraries abstract over the implementation details out of the box.
Crutches – extra classes – are unnecessary.

Some papers become popular, some other, just as inspirational, sink to

obscurity. I’m happy have a chance to bring attention to Cartwright

and Felleisen’s paper, which should be read and remembered.

