
Reflection without Remorse
Revealing a hidden sequence to speed up monadic reflection

Atze van der Ploeg
Centrum Wiskunde & Informatica

ploeg@cwi.nl

Oleg Kiselyov

oleg@okmij.org

Abstract
A series of list appends or monadic binds for many monads per-
forms algorithmically worse when left-associated. Continuation-
passing style (CPS) is well-known to cure this severe dependence
of performance on the association pattern. The advantage of CPS
dwindles or disappears if we have to examine or modify the inter-
mediate result of that series of appends or binds, before continuing
the series. Such examination is frequently needed, for example, to
control search in non-determinism monads.

We present an alternative approach that is just as general as CPS
but more robust: it makes series of binds and other such opera-
tions efficient regardless of the association pattern – and also pro-
vides efficient access to intermediate results. The key is to represent
such a conceptual sequence as an efficient sequence data structure.
Efficient sequence data structures from the literature are homoge-
neous and cannot be applied as they are in a type-safe way to series
of monadic binds. We generalize them to type aligned sequences
and show how to construct their (assuredly order-preserving) im-
plementations. We demonstrate that our solution solves previously
undocumented, severe performance problems in iteratees, LogicT
transformers, free monads and extensible effects.

Keywords performance, monads, reflection, data structures

1. Introduction
It is well-known that list-concatenation (++) is not efficient when
its left argument is itself the result of a concatenation. A popular
solution to this problem is to use continuation passing style in the
form of difference lists. We recall this problem and how contin-
uation passing style remedies it in Sections 2 and 3 respectively.
However, continuation passing style only solves the performance
problem for certain usage patterns: if we need to observe intermedi-
ate results of concatenations, or build concatenations with sub-lists
of other concatenations, then performance quickly degenerates. In
other words: continuation passing style again lead to performance
problems if we alternate between building and observing.

In this paper, we show that this pattern also occurs in many other
situations, which at first blush have nothing to do with lists. In many
implementations of monads (e.g., iteratees and non-determinsm

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Haskell ’14, September 6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3041-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2633357.2633360

monads), a series of binds (�=) or choices (mplus), is quite like
a series of list appends: they perform worse when left-associated.
Like with lists, continuation-passing style makes such series per-
form algorithmically well regardless of the association pattern [22].
However, several monads also support monadic reflection [5],
a way to observe and modify (a representation of) the current
state of the computation. For example, the current state of a non-
deterministic computation may be observed as a stream of results.
We may remove the top result and continue with the rest – which
is exactly what is needed to implement committed choice [14].
Such monadic reflection destroys the performance advantage of the
continuation-passing style. This paper shows that one does not have
to regret reflection.

For lists, the solution to the append-and-observe problem is to
use a more suited sequence data structure, i.e. one that supports
both head/tail and append operations efficiently. Such data struc-
tures can give an asymptotic improvement over both regular lists
and difference lists. The surprise of this paper is that such efficient
data structures can also give an asymptotic improvement for other
problematic occurrences of the build-and-observe pattern, in partic-
ular, monads and monadic reflection. The key insight is that we can
reveal the hidden, abstract sequence of monadic binds: we can rep-
resent is as a concrete sequence. By then choosing the most suited
sequence data structure for the problem at hand, performance can
be greatly improved.

However, the literature on efficient sequences deals with homo-
geneous collections. In a ‘sequence’ of binds, the type of ‘elements’
may vary. To solve this problem, we introduce a generalization of
sequences called type aligned sequences: heterogeneous sequences
where the types enforce the element order. In this way, we can solve
the performance problem in any situation exhibiting the problem-
atic pattern, in a completely type-safe way.

Our motivation for this research was that we noticed that both
direct and continuation passing style led to performance prob-
lems in Monadic Functional Reactive Programming[21] and Log-
icT non-determinism monads[14]. After introducing and motivat-
ing our solution on a simple example, namely trees with tree sub-
stitution, we describe these motivating occurrences of the problem
and how our solution can be applied. We also describe how our
solution gives a drop in replacement for the free monads[20] that
has better performance characteristic than previous approaches: it
allows us to efficiently bind, pattern match on the free monad term
and alternate between these operations. As an application of this
improved free monad, we discuss how it can be used to efficiently
support monadic reflection in extensible effects[15].

We begin with some background: Section 2 recalls the prob-
lematic build-and-observe pattern in several guises, and we discuss
continuation passing style and its performance problems in Section
3. Then we present our contributions:



• We present a solution to build-and-observe problem for any
monoid where left-associated expressions are more costly than
right associated expressions, giving an asymptotic runtime im-
provement over both direct and continuation passing style.
(Section 4)
• We generalize our solution for monoids to monads, making

left-associated bind expressions as well as monadic reflection
efficient. (Section 4)
• We introduce type aligned sequences. As an example, we show

an implementation of efficient type aligned queues. (Section 5)
• We show how our method solves previously undocumented, se-

vere performance problems with monadic reflection in iteratees,
LogicT transformers,free monads and extensible effects. (Sec-
tion 6)

And in Section 7 we conclude.
The code accompanying this paper is available at:

https://github.com/atzeus/reflectionwithoutremorse
The code in this paper is in Haskell, but our approach can be used
in any language with GADTs (indexed data types).

2. The problematic pattern and its cost
In this background section we recall the performance problems of
associative operators that traverse their left argument but not their
right argument. In particular, we discuss list concatenation, tree
substitution and generic tree substitution. We show that the runtime
cost of equivalent expressions involving such operators can differ
asymptotically.

2.1 A first example: list concatenation
To analyze the performance problems of list concatenation, we
recall the relevant standard definitions:

data [a] = [] | a : [a]

[] ++ r = r
(h : t) ++ r = h : t ++ r

To append two lists, we must traverse all elements of the first list.
Hence, reducing x++y to normal form requires |x| case distinctions,
from now on called steps, where |x| is the length of x plus one (for
the [] constructor).

One might argue that this is not a problem: thanks to laziness,
observing the head of x++y is just observing the head of x, plus one
extra step. To observe the n-th element of a list we must traverse the
list anyway: concatenation just adds one extra step per element.

The real problem arises if the left argument is itself the result
of a concatenation. For example, in the expression (x ++ y) ++ z,
the list x must be traversed twice: it occurs twice in a left hand side
argument to ++. Hence, this expression runs in in 2|x| + |y| steps,
whereas the equivalent expression x++(y++z) runs in just |x|+ |y|
steps. In this way, a wrong grouping of expressions involving ++
can easily lead to severe performance problems, as we shall see in
full generality in §2.4.

2.2 Another example: Tree substitution
A different guise of the same problem occurs with trees and an
operation which substitutes the leaves of a tree with another tree:

data Tree = Node Tree Tree
| Leaf

(←↩) :: Tree → Tree → Tree
Leaf ←↩ y = y
(Node l r) ←↩ y = Node (l ←↩ y) (r ←↩ y)

The performance situation is the same: reducing x ←↩ y to
normal form costs |x| steps, where |x| is the now the number of
nodes in x. As a consequence, (x ←↩ y) ←↩ z runs in 2|x| + |y|
steps, whereas the equivalent expression x ←↩ (y ←↩ z) runs in
|x|+ |y| steps.

For lists, this problem can be solved by simply using a catenable
(meaning with fast concatenation) sequence data structure instead
of a regular head-tail list. For trees, the solution is not so obvious.
Should we investigate a new specialized data structure for trees or
browse the literature to see if someone else has already invented it?
(Hint: No.)

2.3 A Monadic example: Generic trees
The performance degradation from a bad association occurs not
only with monoids, such as lists and trees. If we generalize our tree
to a generic tree, with data at the leaves, then substitution becomes
the monadic bind (�=)1:

data Tree a = Node (Tree a) (Tree a)
| Leaf a

(←↩) :: Tree a → (a → Tree b) → Tree b
(Leaf x) ←↩ f = f x
(Node l r) ←↩ f = Node (l ←↩ f) (r ←↩ f)

instance Monad Tree where return = Leaf; (�=) =(←↩)

The performance situation is obviously the same: the only thing
that changed is that←↩ now takes a function as its right argument.
Although ←↩ and �= are not associative operators in the strict
sense, they satisfy the similar associativity monad law:

(m �= f) �= g ≡ m �= (λx→ f x �= g)

We now see that the situation is the same: (m�=f)�= g runs
in |m| + |m�= f| steps, whereas the equivalent m�= (λx →
f x�= g) runs in

|m|+ (|m�= f| − |m|) = |m�= f|

steps, where we subtract |m| from |m�= f| since m will not be
traversed twice.

Note that while bind is not strictly an associative operator, the
following operator, known as Kleisli composition, is strictly an
associative operator:

(≫) :: Monad m ⇒ (a → m b) → (b → m c) → (a → m c)
f ≫ g = λ x → f x �= g

The similarity with the situation with lists and non-generic trees
can then be made even stronger: (p ≫ q) ≫ r is more costly
than the equivalent p≫ (q≫ r).

2.4 Asymptotic runtime overhead
In general, the problem occurs with any associative (or satisfying
the associativity monad law) operator that traverses its left argu-
ment but not its right argument that operates on some recursive
data type X and the following monotonicity requirement holds:

|x|+ |y| ≥ |x⊕ y|

where |x| is the size of x: the number of values of type X contained
in the value x.
If an operator ⊕ has the problematic pattern, the expression x ⊕
(y ⊕ z) runs in |x| + |y| steps. If we iterate this pattern, we get a
right-associated expression, as visualized in Figure 1(a):

a1 ⊕ (a2 ⊕ (a3 ⊕ ... (an−1 ⊕ an) ... ))

1 This example is taken from [22].



⊕

a1 ⊕

a2 ⊕

a3 ⊕

an−1 an

(a) A right-associated expression

⊕

⊕

⊕

⊕

a1 a2

a3

an−1

an

(b) A left-associated expression

Figure 1: Equivalent left- and right-associated expressions.

Such a right associated expression runs in
∑n−1

i=1 |ai | steps. Con-
versely, the expression (x ⊕ y) ⊕ z runs in 2|x| + |y| steps, and
if we iterate this pattern we obtain a left-associated expression, as
visualized in Figure 1(b):

(((a1 ⊕ a2)⊕ a3) · · · ⊕ an−1)⊕ an

Although such a left-associated expression is equivalent to the cor-
responding right-associated expression, the performance situation
is drastically different: it runs in

∑n−1
i=1 (n − i)|ai | steps.

This can lead to asymptotic runtime overhead: a left-associated
expression is asymptotically slower than the equivalent right-
associated expression. This becomes more evident if we assume
that all elements have size one, i.e. |ai | = 1. In this case a right as-
sociated expression will take just n steps, whereas a left-associated
expression will take a quadratic number of steps:

n−1∑
i=1

(n − i) =
n−1∑
i=1

i =
n(n − 1)

2

Hence the asymptotic run-time of a right associated expression is
O(n) and the run-time of a left-associated expression is O(n2).

Of course, these are the most extreme cases: most expres-
sions will not be completely right- or left-associated. However,
any expression that is not completely right-associated will yield an
overhead. We cannot expect the programmer to only form right-
associated expressions, especially when using laziness: the pro-
grammer must then make sure that every time the operator is used,
the left hand side cannot be itself a result of this operator.

3. A popular partial solution: Continuation
passing style

A popular way to alleviate such performance problems for certain
usage patterns is to use continuation passing style. We illustrate
this technique with difference lists, which use continuation passing
style to speed up list concatenation. We then show that difference
lists only avoid performance problems if we do not alternate be-
tween building and observing and that the same holds for continu-
ation passing style in general.

3.1 Difference lists
The trick of difference lists [8] is to only build right-associated ex-
pressions. More precisely, difference lists are functions for building
right-associated expressions, i.e. functions of the form:

λ t → a1 ++ (a2 ++ (a3 ++ (a4 ++ ... ++ t)))

And hence we define difference lists as functions from lists to lists:

◦

◦

◦

◦

(a1++) (a2++)

(a3++)

(an−1++)

(an++)

Figure 2: Difference list with worst case conversion characteristics.

type DiffList a = [a] → [a]

We can convert a difference list to a regular list by simply feeding
it the empty list:

abs :: DiffList a → [a]
abs a = a []

To convert a list to a difference list, we partially apply ++:

rep :: [a] → DiffList a
rep = (++)

Concatenation is then simply function composition, since (a ++) ◦
(b ++) ≡ λt→ a ++ (b ++ t)2 :

(+̂+) :: DiffList a → DiffList a → DiffList a

(+̂+) = (◦)

The trick is then to concatenate using difference lists, and then
convert the result to a list when needed. Since this will always
produce a right-associated expression, the overhead associated with
expressions that are not right-associated is avoided.

However, the problem with this technique is that converting a
list to a difference list is expensive in the long run. Conversion of a
list l to a difference list is simply (l++), which, when the final result
is observed, contributes the costs of |l| steps, adding one operation
to each node in the list. Hence, if we convert back and forth n times,
this will cost n|l| steps. Of course, converting the same list back and
forth a number of times is a bit of a contrived situation. However,
the problem also occurs if we convert a difference list to a list and
convert part of the list back to a difference list.

Another, more subtle problem is that conversion in the other
direction, from a difference list to a list, is not a constant time
operation. We cannot observe anything directly on a difference
list, for example we cannot see whether it is empty, and hence
conversion to a regular list is often required. This conversion is
not cheap: in the worst case the difference list consists of a left-
associated expression of the following form, which is visualized in
Figure 2:

((((a1++) ◦ (a2++)) ◦ (a3++)) ... ++ (an−1++)) ◦ (an++)

Converting such a difference list to list, by applying [] to it, then re-
quires n invocations of ◦ to reduce to the following list expression:

a0 ++ (a1 ++ (a2 ++ (a3 ++ ... ++ (an ++ []))))

Only after these operations we can reduce further and inspect the
resulting list to see whether it is empty or not. Hence, observing
(parts of) intermediate lists can also lead to performance problems.

2 We use the notation (x ++) as a shorthand for (λy→ x ++ y).



To summarize: difference lists only solve performance problems
if our usage of lists is strictly separated into a build (i.e. concate-
nation) phase and an observation phase. If we alternate between
building and observing, as is often needed, then performance prob-
lems will resurface.

3.2 General Continuation passing style
The trick of difference lists, i.e. continuation passing style, can be
applied in many situations. For example, it can be applied to any
monoid3:

type DiffMonoid a = a → a
abs :: Monoid a ⇒ DiffMonoid a → a
abs a = a mzero
rep :: Monoid a ⇒ a → DiffMonoid a
rep = mappend
instance Monoid a ⇒ Monoid (DiffMonoid a) where

mempty = rep mempty
mappend = (◦)

If we apply the trick to monads, we get the codensity monad trans-
former [9], which is highly related to the continuation monad [16]:

type CodensityT m a = ∀ b. (a → m b) → m b
abs :: Monad m ⇒ CodensityT m a → m a
abs a = a return
rep :: Monad m ⇒ m a → CodensityT m a
rep = (�=)
instance Monad m ⇒ Monad (CodensityT m) where

return a = rep ( return a)
−− or equivalently : λ k → k a

m �= f = m ◦ flip f
−− or equivalently : λ k → m (λa → f a k)

Voigtländer [22] has proposed the use of the codensity monad trans-
former for solving the performance problems of left-associated ex-
pressions. As with difference lists, this works fine if our usage is
separated in a build and an observations phase. However, if we
have another usage pattern, alternating between building and ob-
serving, the same problems as with difference lists occurs: contin-
uation passing style reintroduces performance problems.

4. Solving the problem
The main insight for our solution is that expressions of the form:

a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ an

are sequences and that such abstract sequences should be repre-
sented explicitly. With the previous approaches such sequences are
only represented implicitly. More precisely, when directly using⊕,
these sequences are implicitly represented at runtime as trees where
the leaves are the elements and nodes are (delayed) function appli-
cations. When using continuation passing style, such sequences are
also represented as trees, but now the leaves are functions repre-
senting the elements and the nodes are function composition. By
making representation of these sequences explicit, we can choose a
more suited sequence data structure and performance problems can
be solved for any usage pattern.

We first illustrate our solution by applying it to tree substitution.
We then show that applying our solution to generic trees requires
type aligned sequences and how such type aligned sequences can
be used to solve the problem. Afterwards, we discuss the general
solution.

4.1 A first example: tree substitution
In the case of non-generic trees, such explicitly represented expres-
sions can be defined simply as follows:

3 To reduce clutter, we ignore the fact that DiffMonoid and CodensityT
should actually be a newtype in Haskell.

type TreeExp = CQueue Tree

where CQueue is a efficient sequence data structure, which we as-
sume to be an instance of the type class for sequences defined in
Figure 3(a). Very efficient purely functional sequence data struc-
tures exist: data structures where both concatenation and head/tail
access run in amortized constant time [18], and even data structures
where both run in worst case constant time [12, 18].

We want to support partial conversion from such an explicitly
represented expression: we want to be able to efficiently observe
the top of the tree and obtain the children of the tree as explicitly
represented expressions. For this reason, we change the type of the
children of the tree to explicitly represented expressions:

data Tree = Node TreeExp TreeExp
| Leaf

Reflecting this change, the operator ←↩ no longer takes a single
tree as its second argument, but rather an explicitly represented
expression resulting in a tree:

(←↩) :: Tree → TreeExp → Tree
Leaf ←↩ y = val y
(Node l r) ←↩ y = Node (l .̂/ y) (r .̂/ y)

Where .̂/ is the constant time concatenation operation defined on
the efficient sequence data structure. Notice that←↩ is not recursive
anymore: it is a constant time operation!

To convert between an explicitly represented expression and the
result of that expression, we define the following function:

val :: TreeExp → Tree
val s = case viewl s of

EmptyL → Leaf
h �̂ t → h ←↩ t

Where viewl is a function that allows us to view the sequence from
the left: see if it is empty or obtain the head and tail. Notice that
val is also not recursive and hence also runs in constant time. In
contrast to continuation passing style, converting an explicitly rep-
resented expression to an observable value does not mean convert-
ing the entire explicitly represented expression. Instead, val only
converts the top of the tree: the children of the tree are still explic-
itly represented expressions. In this way, we do not add an extra
operation to each node for each conversion.

Finally, converting a tree to an explicitly represented expression
is done by simply constructing a singleton sequence:

expr :: Tree → TreeExp
expr = singleton

The (←↩) operator with the original type can then be defined as
follows:

(←̂↩) :: Tree → Tree → Tree
l ←̂↩ r = l ←↩ expr r

All performance problems have disappeared: both a←̂↩(b←̂↩c)
and (a←̂↩b)←̂↩c cost only a constant number of operations and
conversions are also efficient. Hence, this approach also solves
performance problems if we alternate between building trees using
substitution and observing the result of such substitutions.

4.2 Solving the performance problems of generic trees using
type aligned sequences

But what if we want to apply our solution to generic trees? We must
then explicitly represent expressions of the form:

m�= f1�= f2�= f3 ...�= fn

The problem is that each fi has type a → Tree b, for some a and b,
and these types can differ between elements. This means we cannot



class Sequence s where
empty :: s a
singleton :: a → s a
(.̂/) :: s a → s a → s a
viewl :: s a → ViewL s a

data ViewL s a where
EmptyL :: ViewL s a
(�̂) :: a → s a → ViewL s a

(a) A type class for regular sequences.

class TSequence s where
tempty :: s c x x
tsingleton :: c x y → s c x y
(./) :: s c x y → s c y z → s c x z
tviewl :: s c x y → TViewl s c x y

data TViewl s c x y where
TEmptyL :: TViewl s c x x
(�) :: c x y → s c y z → TViewl s c x z

(b) A type class for type aligned sequences.

Figure 3: Type classes for type aligned and regular sequences.

use a regular sequence: to use it all elements must be of the same
type.

To be able to apply our solution to such situations, we generalize
sequences to type aligned sequences: sequences parametrized by a
type constructor c, such that each element is of type c a b, for some
a and b. If the last type argument to c of an element is a, then first
type argument to c in the next element (if any) must be a. If we
set the type constructor c to (→), we get type aligned sequences
of functions: the output type of a function is then always the input
type to the next function.

In the next section we discuss type aligned sequences in depth
and show how such type aligned sequences can be defined. For now,
let us assume that we have an efficient type aligned sequence data
structure called TCQueue, which is an instance of the type aligned
sequence type class defined in Figure 3(b).

The elements in the sequence described above are of type
a → Tree b for some a and b, except the first element m. We
need a type constructor to describe this pattern:

type TreeCont a b = a → Tree b

A type aligned sequence where each element is a TreeCont is then
of the following type4:

type TreeCExp a b = TCQueue TreeCont a b

To also represent the first element in the above expression, m, as a
TreeCont, we convert a Tree into an TreeCont as follows:

toCont :: Tree a → TreeCont () a
toCont m = λ () → m

An explicitly represented expression of the above form then has
type:

type TreeExp b = TreeCExp () b

We can then adopt the code for generic trees in much the same way
as for non-generic trees:

data Tree a = Node (TreeExp a) (TreeExp a)
| Leaf a

(←↩) :: Tree a → TreeCExp a b → Tree a
Leaf a ←↩ f = val f a
(Node l r) ←↩ f = Node (l ./ f) (r ./ f)

val :: TreeCExp a b→ (a → Tree b)
val s = case viewl s of

TEmptyL → Leaf
h � t → λ x → h x ←↩ t

expr = singleton
l ←̂↩ r = l ←↩ expr r

4 To reduce clutter, we ignore that TreeCont must be a newtype for this to
work in current Haskell.

In this way, the performance problems for any usage pattern of
generic trees have also disappeared by using type aligned se-
quences.

4.3 The general case
In general the problem occurs if we have some recursive data type
X and a monotonic associative operator traversing its left argument
but not its right argument. The solution is to apply the following
steps:

1. In the definition of the data type X replace all self-references
with a (type aligned) sequence which represents expressions
involving the problematic operator explicitly.

2. Instead of implementing the original operator, implement the
operator such that its right argument is an explicitly represented
expression and use efficient concatenation to implement the
operator.

3. Define functions to convert between values and explicitly rep-
resented expressions.

4. Define the operator with the original type, using the new version
of the operator and a conversion to an explicitly represented
expression of the right hand side.

5. Use the functions to convert between explicitly represented
expression and values where needed.

A type aligned sequence must be used if the type of the right
argument of the operator depends on the type of the left argument
of the operator.

Notice that explicitly representing expressions in this way
means that applying the operator, ⊕, with the identity element
does not immediate yield the original value, since (a ⊕ identity)
and (a) are different expressions. However, if we recursively con-
vert the children of (a ⊕ identity) and (a) from explicitly repre-
sented expression to their results, we will observe exactly the same.
Hence, the identity element is an identity element up to observa-
tion. Associativity laws directly hold, since sequence concatenation
is associative.

Typically, this problem arises for operators in instances of type
classes such as Monoid, Monad, MonadPlus or Category. If we
define an alternative type class where the operator instead takes
an explicitly represented expression as its right hand side, we can
factor out steps 3 and 4: they are the same for any instance of the
type class in which the implementation of the operator traverses the
left argument but not the right.

We illustrate this for the Monad type class. For monads, we are
concerned with expression of the form m�=f1�=f2�=f3 ...�=
fn as we saw for generic trees. We define the types of the explicit
representation of such expressions analogously to generic trees:

type MCont m a b = a → m b
type MCExp m a b = TCQueue (MCont m) a b



type MExp m a = MCExp m () a

The alternative type class for Monad is then essentially the
same as Monad, except that the alternative version of bind (�̂=)
now takes an explicitly represented expression as a right hand side
argument:

class PMonad m where
return ’ :: a → m a

(�̂=) :: m a → MCExp m a b → m b

For each instance of this type class, step 1 above should have been
performed on the type m, and the operation of (�̂=) should be
constant time by invoking ./.

We can then define the conversion from and to explicitly repre-
sented expressions for any instance of PMonad:

val :: PMonad m ⇒ MCExp m a b → (a → m b)
val (MExp q) = case tviewl q of

TEmptyL → return’

h � t → λ x → h x �̂= t
expr = tsingleton

Finally, we can then define an instance for Monad using these def-
initions:

instance PMonad m ⇒ Monad m where
return = return ’

m �= f = m �̂= expr f

One could also factor out the choice of sequence datastructure,
making it an argument to PMonad and a type argument to X. In
this way, the programmer can choose the most efficient sequence
datastructure for each particular usage of his or her monad. While
this technique has merit, we do not apply it in this paper for
presentational reasons.

For Monoid, MonadPlus and Category steps 3 and 4 can be
factored out in a analogous way. The code for these alternative type
classes is included in the code accompanying this paper.

5. Type aligned sequences
In the previous section, we saw that type aligned sequences are
required to explicitly represent expressions involving operators
where the type of the left argument depends on the type of the
right argument. We now introduce type aligned sequences, discuss
their relation with regular sequences, and show an example of how
a sequence data type can be converted into a type aligned sequence
data type.

5.1 Definition and intuition
Type aligned sequences are best explained by an example: a type
aligned sequence of functions is a sequence f1, f2, f3 ... fn such that
the composition of these functions f1 ◦ f2 ◦ f3 ◦ ... ◦ fn is well typed.
In other words: the result type of each function in the sequence
must be the same as the argument type of the next function (if any).
In general, the elements of a type aligned sequence do not have to
be functions, i.e. values of type a → b, but can be values of type
(c a b), for some binary type constructor c. Hence, we define a type
aligned sequence to be a sequence of elements of the type (c aibi )
with the side-condition bi−1 = ai . If s is the type of a type aligned
sequence data structure, then (s c a b) is the type of a type aligned
sequence where the first element has type (c a x), for some x, and
the last element has type (c y b), for some y.

It may be instructive to think of a type aligned sequence as a
path through a directed graph. In this directed graph each node is
a type and there is an edge from type a to type b for each value
of type (c a b). Hence, we call a value of type (c a b) a c-edge.

A type aligned sequence of type (s c a b) is then a sequence of c-
edges such that they form a path from a to b trough this graph: the
target of each edge is the source of the next edge.

Type aligned sequences can be defined using Generalized Alge-
braic Data Types (GADTs) [3]. As a simple example of this, con-
sider a type aligned list:

data TList c x y where
Nil :: TList c x x
( :̂ ) :: c x y → TList c y z → TList c x z

In the graph interpretation, the empty type aligned sequence corre-
sponds to an empty path, and hence the empty list is a path from x
to x, for any x. The Cons constructor adds one c-edge to the front
of a path, the types ensure that the target of this c-edge is the source
of the rest the path.

5.2 Relation with regular sequences
The only difference between regular sequences and type aligned
sequences are the types: TList differs from the ordinary list only in
the more precise types of its constructors. In fact, type aligned se-
quences are a generalization of regular sequences: any type aligned
sequence can be used as a regular sequence, but not the other way
around. We can use a type aligned sequence as a regular sequence
by effectively “partially erasing” the extra types with the following
construction:

data AsUnitLoop a b c where UL :: a → AsUnitLoop a () ()

By using this construction, there exists an edge from () to () for
each value of type a in the graph interpretation. Since there are no
other edges, the graph effectively has just one node: the other types
are unreachable. Hence, a regular list a1 : a2 : a3 ... an : [] of type
[a] corresponds to a type aligned list:

UL a1 :̂ UL a2 :̂ UL a3 ... UL an :̂ Nil

of type TList (AsUnitLoop a) () () . This type aligned list corre-
sponds to a path of length n through the graph consisting solely of
self-loops on (), where each edge corresponds to a value of type a.

We can use this construction to provide an instance for the
regular sequence class ( Figure 3(a)) for any instance of the type
aligned sequence class (Figure 3(b)):

type AsSequence s a = s (AsUnitLoop a) () ()

instance TSequence s ⇒ Sequence (AsSequence s) where
empty = tempty
singleton = tsingleton ◦ UL
(++) = (./)
viewl s = case tviewl s of

EmptyL → TEmptyL
UL h � t → h �̂ t

A benefit of using type aligned sequences in this way, instead
of directly using regular sequences, is that type aligned sequences
rule out a class of implementation bugs: the types in a type aligned
sequence enforce the ordering of the elements. Hence, accidentally
switching two elements will result in a type error, as the resulting
sequence may not be a path. In contrast, in regular sequences the
types do not enforce the ordering of the elements and an accidental
change of order in, for instance, the definition of concatenation
would have gone unnoticed by the type checker.

In general, sequences, i.e. words over some alphabet, are free
monoids, whereas paths through a directed graph are free cate-
gories [1]. Sequences in programming languages typically are ho-
mogeneous: they require that each element has the same type. The
alphabet is then the set of values of the given type. Similarly, type
aligned sequences are paths through the directed graph where the



data Pair c a b where
(×) :: c a w → c w b → Pair c a b

data Buffer c a b where
B1 :: c a b → Buffer c a b
B2 :: P c a b → Buffer c a b

data Queue c a b where
Q0 :: Queue c a a
Q1 :: c a b → Queue c a b
QN :: Buffer c a x → Queue (Pair c) x y

→ Buffer c y b → Queue c a b

( |.) :: Queue c a w → c w b → Queue c a b
q |. b = ...
viewl :: Queue c a b → TViewl Queue c a b
viewl q = ...

Figure 4: A type aligned queue data structure.

edges are formed by the values of type (c a b), for types all a and
b.

Indeed, any sequence data type can be made an instance of
Monoid, without assuming anything about the elements of the
sequence. Similarly, any type aligned sequence data type can be
made an instance of Category, without assuming anything about
the elements of the type aligned sequence:

instance Sequence s ⇒ Monoid (s a) where
mempty = empty ; mappend = (.̂/)

instance TSequence s ⇒ Category (s c) where
id = tempty ; (◦) = flip (./)

The fact that we can use any type aligned sequence as a regular
sequence also has a theoretical motivation: a monoid corresponds
to a category with just one object, the elements in the monoid
are now arrows (morphisms) from this one object to itself and the
monoid operation is arrow composition [1]. Hence, a free monoid
corresponds to the free category over a graph with just one element,
where the self-edges correspond to the elements of the alphabet.
This is exactly what we did with AsUnitLoop above: it makes every
value of type a into a self-edge on the node ().

5.3 An example of making sequences type aligned: efficient
queues

Generalizing the types of a sequence data type so that it becomes a
type aligned sequence data type, means generalizing the construc-
tor types, and assuring (that is, “proving” to the type checker) that
all operations on the data type preserve the element order. This
generalization requires some creativity but in our experience,it is
a straightforward operation. In the code accompanying this paper
we show type aligned versions of finger trees [7] and of a worst
case constant time catenable queue [18, 19].

As a not entirely trivial example of turning a sequence data
structure into a type aligned sequence data structure, consider the
(non-catenable) queue shown in Figure 4. This data structure is es-
sentially the same as the queue presented in Okaski’s Purely func-
tional Data Structures [19, §8.4] but the types have been general-
ized.

To generalize this queue to a type aligned sequence data struc-
ture, we needed to generalize not only the types of the constructors
of the queue, but also the types of the constructors of the pairs and
buffers of which it consists. Before generalizing the types, both ele-
ments of a pair had the same type, but now the elements are c-edges
such that they form a path of length two. A buffer can hold either
a single element or a pair and the types of these constructors have

data It i a = Get ( i → It i a) | Done a

instance Monad (It i) where
return = Done
(Ret x) �= g = g x
(Get f) �= g = Get (f ≫ g)

get :: It i i
get = Get return

(a) Iteratees before applying our solution.

data It i a = Get (MExp (It i) i a) | Done a

instance PMonad s (It i) where
return ’ = Done

(Done x) �̂= g = val g x

(Get f) �̂= g = Get (f ./ g)

get :: TSequence s ⇒ It i i
get = Get tempty

(b) Iteratees after applying our solution.

Figure 5: Iteratees before and after applying our solution.

been generalized straightforwardly. Slightly less obvious is gener-
alizing the types of the constructors of a queue. A queue may con-
sist of nested queues: if a queue has more than one element, it is
represented as two buffers and a queue of pairs. With generalized
types, the type of this queue of pairs is a type aligned queue holding
(Pair c)-edges, i.e. paths of length two.

The only difference in the operations, namely en-queuing and
viewing the head/tail, is their type signatures, the operations them-
selves are left unchanged and are hence not shown. The full code
for these type aligned queues is included in the code accompanying
this paper.

6. Fast Monadic Reflection
In this section we show how our solution can be used in various
real-life monads. In particular, several monads offer monadic re-
flection: a way to observe, or reify, the internal state of the com-
putation, represented in a suitable data structure. For example, the
internal state of a non-determinism monad can be observed as the
stream of choices. This terminology is due to Filinski [5] who mod-
eled it after the terminology of Wand and Friedman [23]. Monadic
reflection leads to alternating between building and observing, and
hence leads to previously undocumented, severe performance prob-
lems. In this section we demonstrate several examples of how we
can factor out sequences in monads such that monadic reflection
can be efficiently supported. In particular, we discuss iteratees (and
related constructs), LogicT transformers, free monads and extensi-
ble effects.

6.1 Iteratees and related monads
As a first example of how we can apply our solution to a practical
example, consider iteratees [13]: a style of incremental input pro-
cessing that overcomes the problems of lazy I/O and handle-based
I/O. We consider a simplified version of iteratees where an itera-
tee is a monadic computation that can request an input element, as
shown in Figure 5(a).

An iteratee is in one of two possible states: the constructors of
the It data type. If an iteratee is Done it simply carries the value it
produces. If an iteratee needs an input element, it is a Get value,
carrying a function that when given the input element returns the



next iteratee state. A Monad instance for such iteratees is then
defined straightforwardly. In this definition, the (≫) operator is
Kleisli composition (f≫ g = λx → f x �= g) as introduced in
section 2.3.

Although it can be easy to miss, the definition of the monadic
bind, like its definition in the original paper, exhibits the problem-
atic pattern: it traverses its left argument but not its right argument.
It does not matter that (�=) invokes itself by using function com-
position instead of application, this just obfuscates the problem.

As example of the performance problem is the following iteratee
computation, that gets n elements from the input and then returns
their sum:

sumInput :: Int → It Int Int
sumInput n = Get ( foldl (≫) return ( replicate (n − 1) f))
where f x = get �= return ◦ (+ x)

Where replicate n e is a function the creates a list of the length
n, where each element is e. The sumInput function yields an
expression of the form:

Get (((( return ≫ f) ≫ f) ≫ f) ... ≫ f)

Figure 6 shows that when the argument to Get is called with a new
input element x, it costs O(n) steps to obtain the next iteratee state:

Get ((((( return ◦ (+ x)) ≫ f) ≫ f) ≫ f) ... ≫ f)

This very similar to the original expression, exhibiting the same
problem. Hence, the running time of feeding this iteratee computa-
tion n elements and obtaining their sum is quadratic. The sumInput
function can easily be made to run in linear time by simply switch-
ing from foldl to foldr. However, in general solving such perfor-
mance problems by avoiding the problematic pattern is not as sim-
ple: we must then make sure that that each left argument to bind
cannot be the result of a bind.

We can solve the problem with repeated binds by using the co-
density monad transformer, as defined in Section 3.2, as proposed
by Voigtländer [22]. When using this method, we only use coden-
sity transformed iteratees to build monadic expressions:

type ItCo i a = CodensityT (It i ) a

We then redefine get so that it gives a codensity transformed itera-
tee:

getCo :: ItCo i i
getCo = rep get

A monadic expression build in this way will then always result in
a right-associated expression when converted to a regular iteratee
computation, thus avoiding the problem of repeated binds.

We now find ourselves in a familiar situation: this method makes
alternating between building and observing problematic. An exam-
ple of this is the following, often useful, parallel iteratee compo-
sition function, defined as a regular (non-codensity transformed)
iteratee function:

par :: It i a → It i b → It i ( It i a, It i b)
par l r
| Done ← l = Done (l, r)
| Done ← r = Done (l, r)
| Get f ← l , Get g ← r = get �= λx → par (f x) (g x)

This operator runs both iteratees in parallel, feeding each input
element to both, until at one of the iteratees is done. Afterwards,
the remaining iteratee computation of both arguments is returned,
which can then be composed again with other iteratees using par
and�=. The par function is an instance of monadic reflection: we
observe the internal state of both iteratees.

If we want to use par on codensity transformed iteratees, we
need to redefine it as follows:

parCo :: ItCo i a → ItCo i b
→ ItCo i (ItCo i a, ItCo i b)

parCo l r = rep (par (abs l ) (abs r)) �=
( λ ( l , r) → return (rep l , rep r))

We need to eliminate the codensity transformer using abs to ob-
serve the states of both iteratees. After applying the original par
function, we want to be able to compose the resulting iteratees
again with �= and parCo. However, they are no longer coden-
sity transformed iteratees, while other iteratees are in this form to
avoid the problems with bind. We need to convert the rest of the
resulting iteratees back to codensity transformed form, which adds
an extra operation per Get in the rest of the iteratees. Hence, the
runtime cost of parCo is quadratic in the number of input elements
before either of the arguments to any iteratee expression containing

Our solution can be applied to the problematic iteratees code, as
is shown in Figure 5(b). The only change in par is the recursive call,
which now is (par (val f x) (val g x)). By using an efficient type
aligned sequence data structure, the performance of iteratees im-
proves dramatically, without constraining ourselves by disallowing
functions involving monadic reflection like par. The code for itera-
tees with our solution applied to it is included in the code accompa-
nying this paper, as well as a benchmark demonstrating the perfor-
mance problem of the implementation as presented in the original
paper.

A related construction is monadic coroutines, which are like it-
eratees except that they also output an element each time they re-
quest an input element. Blažević [2] presents an extensive library
for such coroutines, but his coroutine definition suffers from the
same problem as the original iteratee definition. The implicit se-
quence of binds can be factored out straightforwardly using our
method to avoid such performance problems.

Another guise of the same situation occurs in monadic FRP [21]:
a framework which essentially applies courtines in an functional re-
active programming (FRP) setting. In monadic FRP, a combinator
very similar to par is at the heart of composing reactive computa-
tions and the bind in the paper has the same problem as the original
iteratees. In fact, the motivation for this work is that we noticed
that our monadic FRP program became progressively slower, due
to repeated application of bind on the results of par, and eventually
came to a grinding halt. Since par is used often in monadic FRP,
and coroutines can live for a long time, being used in many invo-
cations of par, the use of the codensity monad would also lead to
a severe slowdown. With our solution applied, monadic FRP pro-
grams no longer become progressively slower, running efficiently
no matter what the usage pattern.

6.2 LogicT Monad Transformers
The MonadPlus type class extends the Monad interface with sup-
port for non-deterministic choice with backtracking. The most ob-
vious instance of this interface is the list monad: bind is then
concatMap (with flipped arguments) and mplus is concatenation.
The usage of list concatenation can lead to performance problems,
which can be solved by simply using a catenable queue instead.

Kiselyov, Shan, Friedman and Sabry [14] showed that a large
class of logical effects, namely cut, soft cut, interleaving and fair
conjunction, can all be expressed when a single function is added
to the interface. This function, called msplit, essentially splits the
logical computation into a computation of the first result and com-
putation of the rest of the results. More precisely, this function has
type:

class MonadPlus m ⇒ MonadLogic m where
msplit :: m a → m (Maybe (a, m a))

It takes a logical computation and turns it into another logical
computation, namely one which returns Nothing if the original



$

≫

≫

≫

≫

return f1

f2

f3

fn

x

�

�=

�=

�=

�=

Done x f1

f2

f3

fn

→

�=

�=

�=

Get

return ◦ (+x)

f2

f3

fn

→

�=

�=

Get

≫

return ◦ (+x) f2

f3

fn

�

�=

Get

≫

≫

return ◦ (+x) f2

f3

fn

→

Get

≫

≫

≫

return ◦ (+x) f2

f3

fn

Figure 6: Example of an inefficient iteratee computation. The subscript i in fi indicates the index of the occurrence of f.

newtype ML m a = ML { getML :: m (Maybe (a, ML m a)) }
single a = return (Just (a,mzero))

instance Monad m ⇒ Monad (ML m) where
return = ML ◦ single
(ML m) �= f = ML $ m �= λx → case x of

Nothing → return Nothing
Just (h,t) → getML (mplus (f h) (t �= f))

instance Monad m ⇒ MonadPlus (ML m) where
mzero = ML (return Nothing)
mplus (ML a) b = ML $ a �= λx → case x of

Nothing → getML b
Just (h,t) → return (Just (h,mplus t b))

instance MonadTrans ML where
lift m = ML (m �= single)

instance Monad m ⇒ MonadLogic (ML m) where
msplit (ML m) = lift m

Figure 7: A stream implementation of MonadLogic.

logical computation had no results, and otherwise returns a Just
value carrying a tuple of the first result and the logical computation
of the rest of the results. This is an instance of monadic reflection:
msplit allows us to observe the internal state of the monad as a
stream of results. The implementation of this msplit function for
lists or other sequence data structures is straightforward: it converts
the empty sequence to Nothing and a non-empty sequence to a Just
value of the head and tail.

However, an efficient monad transformer that adds non-de-
terminism to an arbitrary monad is not defined so easily. In a
functional pearl [6], Hinze systematically derives such a non-
determinism monad transformer implementation. He then notes
that a left-associated mplus expression has quadratic performance,
and solves this by using continuation passing style. Note that
there is no problem with bind for a non-determinism monad: like
concatMap for lists, it traverses both the left argument and (the
result of) the right argument. Kiselyov et al. show how the monad
transformer implementation of Hinze can be adapted such that it is
also be an instance of MonadLogic. Although it can be really tricky
to see this directly from the code, this instance of MonadLogic has
severe performance problems. Effectively, their implementation of
msplit corresponds to converting a difference lists to a list and
converting to tail of the list to a difference list again. Hence, each
invocation of msplit will add one extra operation per result in the
remainder of the logical computation.

This implementation uses continuation passing style with two
continuations, but the point of this paper is that it is better to
make the sequence explicit instead of representing it as a tree
of functions (i.e. CPS). Hence, we do not apply our method to
this implementation, but to a standard stream implementation of
backtracking [24] as show in Figure 7. In this implementation,
the ML type is essentially a list where each node of the list is
the result of a computation in the underlying monad. The list can
be empty (Nothing) or a head and tail (Just (a,ML m a)). The
definitions are then analogous to the definitions for the lists: mplus
is concatenation and�= is like concatMap.

Notice that ML is not the same as the ListT construction:

newtype ListT m a = ListT { runListT :: m [a] }
instance Monad m ⇒ Monad (ListT m) where ...

This construction only yields a monad if the argument monad, m,
is commutative [10]. The difference is that in ML each node in
the “list” is the result of a computation in the underlying monad,
whereas with the ListT construction the entire list is the result of a
single computation in the underlying monad.

An example of the asymptotic performance problem is the fol-
lowing function which obtains at most n solutions of a logical com-
putation.

seqN :: MonadLogic m ⇒ Int → m a → m [a]
seqN n m
| n ≡ 0 = return []
| otherwise = msplit m �= λx → case x of

Nothing → return []
Just (a,m) → liftM (a:) (seqN (n−1) m)

Figure 8(a)5shows, for different implementations, the running time
of obtaining n natural numbers using seqN, where the natural
numbers are defined as follows:

nats = natsFrom 1 where
natsFrom n = return n 8mplus8 natsFrom (n + 1)

Obtaining a number of solutions requires us to recursively split
the logical computation, and hence the two continuation implemen-
tation as implemented in hackage package LogicT has quadratic
runtime. Of course, this is just a micro-benchmark constructed to
illustrate the problem. However, this problem does not only occur
on the natural numbers: it occurs any time we request only some,
instead of all, solutions to a logical computation. This is highly
counter-intuitive: it is much faster to obtain all results than a some

5 These measurements are the median of 5 runs and were performed on an
AMD Phenom II X4 905e Processor CPU running Linux 3.2.0 on binaries
produced with the GHC 7.6.3 (optimization level 2). The fixed stream
implementation uses a worst case constant time catenable queue.



results. Moreover, since we are talking about monad transformers,
requesting all results in not always an option: it may invoke unde-
sired and/or irrevocable effects in the underlying monad.

The same problem occurs with the interleave operator as de-
scribed by Kiselyov et al., which ensures fair consideration be-
tween two branches of a logical computation. An example usage
of this operator is the following the logical computation6:

unfair = do x ← nats 8mplus8 return 0
if x ≡ 0 then return x else mzero

The behavior of mplus in these implementations is that it first con-
siders all solutions from its left argument, and only afterwards con-
siders the solutions of its right argument. Since nats has an infinite
number of results, this computation will never yield a solution. If
interleave is used instead of mplus, then solutions from nats and
return 0 are considered alternately and the computation will yield
a solution. This interleave operator is defined in terms of mplus
and msplit as follows:

interleave :: m a → m a → m a
interleave l r = msplit l �= λx → case x of

Nothing → r
Just (h,t) → return h 8mplus8 interleave r t

Since interleave recursively splits the remaining computation of
both arguments, any usage of it while using a two continuation
implementation of backtracking will lead to performance problems.
For instance, the following logical computation:

test = choose [1... n] 8 interleave 8 choose [n... 1]
where choose l = foldr mplus mzero (map return l)

also runs in O(n2). The same problem occurs when using using the
fair conjunction operator, which is defined in terms of interleave.
The cut and soft cut operators are also problematic, but much less
severely: they only split the logical computation once.

Obtaining only a limited number of solutions and using the
interleaving or fair conjunction operators is not problematic when
using the ML implementation of MonadLogic: we can observe
results directly by running a computation in the underlying monad,
there is no conversion involved. Instead, the problem is now mplus:
it recursively visit the left hand argument but not the right hand
argument. Figure 8(b) shows the running time of obtaining all
solutions of a left-associated mplus expression:

test :: MonadPlus m ⇒ Int → m Int
test n = foldl mplus mzero (map return [1... n])

Now the runtime of the ML implementation is quadratic. The dual
continuation implementation does not suffer the same problem, as it
was originally derived by Hinze to solve this problem. The solution
to speed up the ML implementation is then simply to apply the
steps that we presented in Section 4.3 for the MonadPlus structure.
As this process is straightforward, we do not dwell on it here.
The adapted ML monad is included in the code accompanying this
paper.

As can be seen from the graph, after applying our method
the problem with mplus disappears: the runtime is now linear.
Moreover, this stream implementation with our method applied to it
is the only implementation which is efficiently supports both msplit
and mplus.

6.3 Free Monads
Swierstra [20] shows how a monad instance can be defined for any
functor, a construction known as a free monad [1]. This construc-
tion is defined as follows:

6 (a 8x 8 b) is an alternative notation for (x a b).

data FreeMonad f a = Pure a
| Impure (f (FreeMonad f a))

instance Functor f ⇒ Monad (FreeMonad f) where
return = Pure
(Pure x) �= f = f x
(Impure t) �= f = Impure (fmap (�= f) t)

Swierstra then notes that several well known monads are free mon-
ads. For example, the Maybe monad is a free monad over the fol-
lowing functor:

data One a = One deriving Functor

Now (Pure a) corresponds to (Just a) and (Impure One) corre-
sponds to Nothing.

However, for many functors this construction leads to asymp-
totic problems. Consider for example the following Functor:

newtype Get i a = Get ( i → a) deriving Functor

A free monad over this functor corresponds to the iteratees we saw
in Section 6.1. It should come as no surprise that the performance
problem of iteratees did not go away by formulating it as a free
monad. Again, we could use continuation passing style, but this
would make functions like par expensive.

We solve these problem for all free monads by simply applying
our solution. The definition of free monads then becomes:

data FreeMonad f a = Pure a
| Impure (f (MExp (FreeMonad f) a))

instance Functor f ⇒ PMonad (FreeMonad f) where
return ’ = Pure

(Pure x) �̂= f = val f x

(Impure t) �̂= f = Impure (fmap (./ f) t)

As usual, the code for these adopted free monads is included in the
code accompanying this paper, as well as a benchmark demonstrat-
ing the performance problem and that our method solves it.

6.4 Extensible effects
Recently Kiselyov, Sabry, Swords and Foppa introduced extensible
effects [15]: a framework for composing and implementing compu-
tational effects that overcomes the problems of monad transformers
in terms of efficiency, expressiveness and ease of notation. In this
framework an effect is an interaction between a client and a han-
dler: the client sends a value describing the desired effect to the
handler, which in turn executes the desired effect and passes the
result to the client.

The approach of Kiselyov et al. uses functors to describe both
which effect to request and how to continue afterwards. For exam-
ple, both the request to modify a state and how to proceed after-
wards, are represented by the following functor:

data ModifyState s w =
ModState (s → s) (s → w) deriving Functor

The first argument tells the handler how to modify the state,
whereas the second argument tells the handler how to continue
afterwards, it takes the new state and then produces some w. The
free monad over this functor is then the value that is interpreted by
the handler: if the value is Impure (ModState f c) it applies the
function f to the state and calls the function c with the new state.
This may again yield an Impure value and the process continues
until the handler sees a Pure value.

The extensible in extensible effects comes from the fact that
handlers do not interpret a free monad over a single functor, but
a free monad over an open union of functors. An open union is a
value that can be of any type in a set of types. This distinguishes



0 5,000 10,000 15,000 20,000

0

0.5

1

1.5

n

Ti
m

e
(s

ec
on

ds
)

Stream (fixed)
Stream (not fixed)

2 continuations

(a) Running time splitting a logical computation of natural numbers n times.

0 5,000 10,000 15,000 20,000

0

0.5

1

1.5

n

Ti
m

e
(s

ec
on

ds
)

(b) Running time of observing all results in a left-associated
mplus expression with n elements.

Figure 8: Running time of msplit and mplus micro benchmarks for LogicT.

it from a closed union, for example Either a b, which has a list
of types. Kiselyov et al. then show an implementation of an open
unions of functors, which in itself is again a functor. In this way
handlers for different effects can be stacked: if a handlers does not
handle the desired effect, the value describing the effect is passed
to the next handler in the stack.

However, as we saw in the previous section, many functors
give rise to performance problems when using a (non-adapted)
free monad. For functors describing effects, this is the case if the
effect produces some result which is then passed to a continuation
function. This is always the case, except for exceptions.

Kiselyov et al. avoid this problem by using a variant of free
monads using continuation passing style. This has the advantage
that it avoids the performance problems of wrong groupings of
expressions involving bind, but it has the disadvantage that handlers
must be written in continuation passing style. In a related paper,
Kammar et al. [11] avoid the performance problem by (implicitly)
applying the Codensity monad. This has the disadvantage of an
extra transformational step, making it hard for the handler writer
to understand exactly what is going on.

Both approaches lead to performance problems when effects re-
quiring reflection such as iteratees, LogicT transformers or delim-
ited continuations are modeled. With our solution, extensible ef-
fects can directly be expressed as (adopted) free monads over open
unions, without the need for manual continuation passing style or
Template Haskell. Moreover, effects that require reflection can then
be efficiently supported. An example implementation of extensible
effects as efficient free monads is included in the code accompany-
ing this paper, as well as a benchmark involving reflection in the
form of a logical cut effect, that is quadratic in the original imple-
mentation, but linear in our adapted implementation.

7. Conclusion
Monotonic associative operators that traverse their left argument,
but not their right argument, can lead to asymptotic overhead. A
popular cure is to use continuation passing style, but this cure is
only effective if our usage is strictly separated into a build and an
observation phase, otherwise the cure is as bad as the disease.

We presented a solution that solves such performance problems
for any usage pattern, even when alternating between building
and observing. Our solution reveals a hidden sequence, namely
repeated applications of such a problematic operator, and makes it
concrete using an efficient sequence datastructure. Self references
in the involved recursive data type are changed to such sequence

to support partial conversion. In this way, both the operator and
observing its result are efficient.

To support operators where the type of the right argument de-
pends on the type of the left argument, such as the monadic bind,
we introduced a generalization of sequences called type aligned
sequences. Type aligned sequences enforce the ordering of their el-
ements, and hence rule out ordering bugs.

Monadic reflection, i.e. a way to observe, or reify, the internal
state of a monadic computation requires us to alternating between
building and observing. We showed that reflection does not have
to lead to remorse: our solution efficiently supports reflection. We
have demonstrated that our solution yields an asymptotic runtime
improvement in iteratees (and related constructs), LogicT trans-
formers, free monads and extensible effects.

Our solution is not limited to the examples we discussed in this
paper. In the accompanying code, we show how sequences can be
factored out in delimited continuations [4] and term monads [17].
Given the simplicity of the problematic pattern and the widespread
usage of continuation passing style, we suspect that there are many
more applications of our solution hiding in corners where we have
not looked yet.

Acknowledgment
We thank Jan Rutten for helpful discussions.

References
[1] S. Awodey. Category theory. Oxford University Press, 2006.

[2] M. Blažević. Coroutine pipelines. The Monad Reader, 19:29–50,
2011.

[3] J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

[4] R. K. Dyvbig, S. Peyton Jones, and A. Sabry. A monadic framework
for delimited continuations. J. of Functional Programming, 17(6):
687–730, 2007.

[5] A. Filinski. Representing monads. In Proc. of the 21th Symposium on
Principles of Programming Languages, pages 446–457, 1994.

[6] R. Hinze. Deriving backtracking monad transformers. In Proc. of
the 5th International Conference on Functional Programming, pages
186–197, 2000.

[7] R. Hinze and R. Paterson. Finger trees: A simple general-purpose data
structure. J. Funct. Program., 16(2):197–217, Mar. 2006.

[8] J. Hughes. A novel representation of lists and its application to the
function reverse. Information Processing Letters, 22(3):141 – 144,
1986.



[9] M. Jaskelioff. Modular monad transformers. In Transactions on
Programming Languages and Systems, pages 64–79, 2009.

[10] M. P. Jones and L. Duponcheel. Composing monads. Research Report
YALEU/DCS/RR-1004, Yale University, December 1993.

[11] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In Proc. of
the ’13 International Conference on Functional Programming, 2013.

[12] H. Kaplan and R. E. Tarjan. Purely functional, real-time deques with
catenation. J. of the ACM, 46(5):577–603, Sept. 1999.

[13] O. Kiselyov. Iteratees. In Proc. of the 11th International Symposium
on Functional and Logic Programming, pages 166–181, 2012.

[14] O. Kiselyov, C. Shan, D. P. Friedman, and A. Sabry. Backtracking,
interleaving, and terminating monad transformers (functional pearl).
In Proc. of the 10th International Conference on Functional Program-
ming, pages 192–203, 2005.

[15] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: An alterna-
tive to monad transformers. In Proc. of the ’13 Symposium on Haskell,
pages 59–70, 2013.

[16] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Proc. of the 22nd Symposium on Principles of Pro-
gramming Languages, pages 333–343, 1995.

[17] C. Lin. Programming monads operationally with unimo. In Proc. of
the 11th International Conference on Functional Programming, pages
274–285, 2006.

[18] C. Okasaki. Simple and efficient purely functional queues and deques.
J. of Functional Programming, 5:583–592, 10 1995.

[19] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[20] W. Swierstra. Data types à la carte. J. of Functional Programming, 18
(4):423–436, 2008.

[21] A. van der Ploeg. Monadic functional reactive programming. In Proc.
of the 2013 Symposium on Haskell, pages 117–128, 2013.

[22] J. Voigtländer. Asymptotic improvement of computations over free
monads. In Proc. of the 9th International Conference on Mathematics
of Program Construction, pages 388–403, 2008.

[23] M. Wand and D. P. Friedman. The mystery of the tower revealed: A
nonreflective description of the reflective tower. LISP and Symbolic
Computation, 1(1):11–37, 1988.

[24] M. Wand and D. Vaillancourt. Relating models of backtracking. In
Proc. of the 9th International Conference on Functional Program-
ming, pages 54–65, 2004.


