Reflection without Remorse

Revealing a hidden sequence to speed up monadic reflection

Atze van der Ploeg
Centrum Wiskunde & Informatica
ploeg@cwi.nl

Oleg Kiselyov
oleg@okmij.org

Abstract
A series of list appends or monadic binds for many monads performs algorithmically worse when left-associated. Continuation-passing style (CPS) is well-known to cure this severe dependence of performance on the association pattern. The advantage of CPS dwindles or disappears if we have to examine or modify the intermediate result of that series of appends or binds, before continuing the series. Such examination is frequently needed, for example, to control search in non-determinism monads.

We present an alternative approach that is just as general as CPS but more robust: it makes series of binds and other such operations efficient regardless of the association pattern – and also provides efficient access to intermediate results. The key is to represent such a conceptual sequence as an efficient sequence data structure. Efficient sequence data structures from the literature are homogeneous and cannot be applied as they are in a type-safe way to series of monadic binds. We generalize them to type aligned sequences and show how to construct their (assuredly order-preserving) implementations. We demonstrate that our solution solves previously undocumented, severe performance problems in iteratees, LogicT transformers, free monads and extensible effects.

Keywords performance, monads, reflection, data structures

1. Introduction
It is well-known that list-concatenation (++) is not efficient when its left argument is itself the result of a concatenation. A popular solution to this problem is to use continuation passing style in the form of difference lists. We recall this problem and how continuation passing style remedies it in Sections 2 and 3 respectively. However, continuation passing style only solves the performance problem for certain usage patterns: if we need to observe intermediate results of concatenations, or build concatenations with sub-lists of other concatenations, then performance quickly degenerates. In other words: continuation passing style again lead to performance problems if we alternate between building and observing.

In this paper, we show that this pattern also occurs in many other situations, which at first blush have nothing to do with lists. In many implementations of monads (e.g., iteratees and non-determinism monads), a series of binds (>>=) or choices (mplus), is quite like a series of list appends: they perform worse when left-associated. Like with lists, continuation-passing style makes such series perform algorithmically well regardless of the association pattern [22]. However, several monads also support monadic reflection [5], a way to observe and modify (a representation of) the current state of the computation. For example, the current state of a non-deterministic computation may be observed as a stream of results. We may remove the top result and continue with the rest – which is exactly what is needed to implement committed choice [14]. Such monadic reflection destroys the performance advantage of the continuation-passing style. This paper shows that one does not have to regret reflection.

For lists, the solution to the append-and-observe problem is to use a more suited sequence data structure, i.e. one that supports both head/tail and append operations efficiently. Such data structures can give an asymptotic improvement over both regular lists and difference lists. The surprise of this paper is that such efficient data structures can also give an asymptotic improvement for other problematic occurrences of the build-and-observe pattern, in particular, monads and monadic reflection. The key insight is that we can reveal the hidden, abstract sequence of monadic binds: we can represent it as a concrete sequence. By then choosing the most suited sequence data structure for the problem at hand, performance can be greatly improved.

However, the literature on efficient sequences deals with homogeneous collections. In a ‘sequence’ of binds, the type of ‘elements’ may vary. To solve this problem, we introduce a generalization of sequences called type aligned sequences: heterogeneous sequences where the types enforce the element order. In this way, we can solve the performance problem in any situation exhibiting the problematic pattern, in a completely type-safe way.

Our motivation for this research was that we noticed that both direct and continuation passing style led to performance problems in Monadic Functional Reactive Programming[21] and LogicT non-determinism monads[14]. After introducing and motivating our solution on a simple example, namely trees with tree substitution, we describe these motivating occurrences of the problem and how our solution can be applied. We also describe how our solution gives a drop in replacement for the free monad[20] that has better performance characteristic than previous approaches: it allows us to efficiently bind, pattern match on the free monad term and alternate between these operations. As an application of this improved free monad, we discuss how it can be used to efficiently support monadic reflection in extensible effects[15].

We begin with some background: Section 2 recalls the problematic build-and-observe pattern in several guises, and we discuss continuation passing style and its performance problems in Section 3. Then we present our contributions:
We present a solution to build-and-observe problem for any
monoid where left-associated expressions are more costly than
right associated expressions, giving an asymptotic runtime im-
provement over both direct and continuation passing style. (Sec-
tion 4)

- We generalize our solution for monoids to monads, making
left-associated bind expressions as well as monadic reflection
efficient. (Section 4)

- We introduce type aligned sequences. As an example, we show
an implementation of efficient type aligned queues. (Section 5)

- We show how our method solves previously undocumented, se-
vere performance problems with monadic reflection in itera-
tes, LogicT transformers, free monads and extensible effects. (Sec-
tion 6)

And in Section 7 we conclude.

The code accompanying this paper is available at:
https://github.com/atzeus/reflectionwithoutremorse
The code in this paper is in Haskell, but our approach can be used in
any language with GADTs (indexed data types).

2. The problematic pattern and its cost

In this background section we recall the performance problems of
associative operators that traverse their left argument but not their
right argument. In particular, we discuss list concatenation, tree
substitution and generic tree substitution. We show that the runtime
cost of equivalent expressions involving such operators can differ
asymptotically.

2.1 A first example: list concatenation

To analyze the performance problems of list concatenation, we
recall the relevant standard definitions:

```plaintext
data [a] = [] | a : [a]
[] :+: r = r
(h : t) :+: r = h : t :+: r
```

To append two lists, we must traverse all elements of the first list.
Hence, reducing x :+: y to normal form requires |x| case distinc-
tions, from now on called steps, where |x| is the length of x plus one (for
the [] constructor).

One might argue that this is not a problem: thanks to laziness,
observer the head of x :+: y is just observing the head of x, plus one
extra step. To observe the n-th element of a list we must traverse the
list anyway: concatenation just adds one extra step per element.

The real problem arises if the left argument is itself the result of
a concatenation. For example, in the expression (x :+: y) :+: z,
the list x must be traversed twice: it occurs twice in a left hand side
argument to +:. Hence, this expression runs in 2|x| + |y| steps,
whereas the equivalent expression x :+: (y :+: z) runs in just |x| + |y|
steps. In this way, a wrong grouping of expressions involving +:
can easily lead to severe performance problems, as we shall see in
full generality in §2.4.

2.2 Another example: Tree substitution

A different guise of the same problem occurs with trees and an
operation which substitutes the leaves of a tree with another tree:

```plaintext
data Tree = Node (Tree) (Tree)  
| Leaf
(↩) :: Tree -> Tree -> Tree
Leaf = y = y
(Node l r) = Node (l = y) (r = y)
```

The performance situation is the same: reducing x y to
normal form costs |x| steps, where |x| is the now the number of
nodes in x. As a consequence, (x y) z runs in 2|x| + |y|
steps, whereas the equivalent expression x (y z) runs in
|x| + |y| steps.

For lists, this problem can be solved by simply using a catenable
(meaning with fast concatenation) sequence data structure instead
of a regular head-tail list. For trees, the solution is not so obvious.
Should we investigate a new specialized data structure for trees or
browse the literature to see if someone else has already invented it?
(Hint: No.)

2.3 A Monadic example: Generic trees

The performance degradation from a bad association occurs not
only with monoids, such as lists and trees. If we generalize our tree
to a generic tree, with data at the leaves, then substitution becomes
the monadic bind (≫=):

```plaintext
instance Monad Tree where return = Leaf; (≫=) = (↩)
```

The performance situation is obviously the same: the only thing
that changed is that now takes a function as its right argument.
Although (↩) and (≫=) are not associative operators in the strict
sense, they satisfy the similar associativity monad law:

```
(m ≫= f) ≫= g ≡ m ≫= (λx → f x) ≫= g
```

We now see that the situation is the same: (m ≫= f) ≫= g runs
in |m| + |m ≫= f| steps, whereas the equivalent m ≫= (λx →
f x) ≫= g) runs in

```
|m| + (|m ≫= f| − |m|) = |m ≫= f|
```

steps, where we subtract |m| from |m ≫= f| since m will not be
traversed twice.

Note that while bind is not strictly an associative operator, the
following operator, known as Kleisli composition, is strictly an
associative operator:

```
(≫) :: Monad m ⇒ (a → m b) → (b → m c) → (a → m c)
f ≫ g = λx → f x ≫= g
```

The similarity with the situation with lists and non-generic trees
then can be made even stronger: (p ≫ q) ≫ r is more costly than
the equivalent p ≫ (q ≫ r).

2.4 Asymptotic runtime overhead

In general, the problem occurs with any associative (or satisfying
the associativity monad law) operator that traverses its left argu-
ment but not its right argument that operates on some recursive
data type X and the following monotonicity requirement holds:

```
|x| + |y| ≥ |x ⊕ y|
```

where |x| is the size of x: the number of values of type X contained
in the value x.

If an operator ⊕ has the problematic pattern, the expression x ⊕
(y ⊕ z) runs in |x| + |y| steps. If we iterate this pattern, we get a
right-associated expression, as visualized in Figure 1(a):

```
a₁ ⊕ (a₂ ⊕ (a₃ ⊕ ... (aₙ₋₁ ⊕ aₙ) ... )
```

1This example is taken from [22].
Such a right associated expression runs in $\sum_{i=1}^{n-1} a_i$ steps. Conversely, the expression $(x \oplus y) \oplus z$ runs in $2|x| + |y|$ steps, and if we iterate this pattern we obtain a \textit{left-associated expression}, as visualized in Figure 1(b):

$$(((a_1 \oplus a_2) \oplus a_3) \cdots \oplus a_{n-1}) \oplus a_n$$

Although such a left-associated expression is \textit{equivalent} to the corresponding right-associated expression, the performance situation is drastically different: it runs in $\sum_{i=1}^{n-1} (n-i) |a_i|$ steps.

This can lead to \textit{asymptotic runtime overhead}: a left-associated expression is asymptotically slower than the equivalent right-associated expression. This becomes more evident if we assume that all elements have size one, i.e. $|a_i| = 1$. In this case a right-associated expression will take just n steps, whereas a left-associated expression will take a quadratic number of steps:

$$\sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

Hence the asymptotic run-time of a right associated expression is $\mathcal{O}(n)$ and the run-time of a left-associated expression is $\mathcal{O}(n^2)$.

Of course, these are the most extreme cases: most expressions will not be completely right- or left-associated. However, any expression that is not completely right-associated will yield an overhead. We cannot expect the programmer to only form right-associated expressions, especially when using laziness: the programmer must then make sure that every time the operator is used, the left hand side \textit{cannot} be itself a result of this operator.

3. A popular partial solution: Continuation passing style

A popular way to alleviate such performance problems for certain usage patterns is to use \textit{continuation passing style}. We illustrate this technique with difference lists, which use continuation passing style to speed up list concatenation. We then show that difference lists only avoid performance problems if we do not alternate between building and observing and that the same holds for continuation passing style in general.

3.1 Difference lists

The trick of difference lists \cite{8} is to \textit{only} build right-associated expressions. More precisely, difference lists are \textit{functions} for building right-associated expressions, i.e. functions of the form:

$$\lambda t \rightarrow a_1 \oplus (a_2 \oplus (a_3 \oplus (a_4 \oplus \ldots \oplus t)))$$

And hence we define difference lists as functions from lists to lists:

$$\text{type} \; \text{DiffList} \; a = [a] \rightarrow [a]$$

We can convert a difference list to a regular list by simply feeding it the empty list:

$$\text{abs :: DiffList} \; a \rightarrow [a]$$

$$\text{abs} \; a = a \; []$$

To convert a list to a difference list, we partially apply \oplus:

$$\text{rep :: [a] \rightarrow DiffList} \; a$$

$$\text{rep} = (\oplus)$$

Concatenation is then simply function composition, since $(a \oplus) \circ (b \oplus) \equiv \lambda x \rightarrow a \oplus (b \oplus x)$:

$$(\oplus) \circ \text{DiffList} \; a \rightarrow \text{DiffList} \; a \rightarrow \text{DiffList} \; a$$

$$((\oplus) \circ \text{DiffList} \; a \rightarrow \text{DiffList} \; a \rightarrow \text{DiffList} \; a \rightarrow \circ) = (\circ)$$

The trick is then to concatenate using difference lists, and then convert the result to a list when needed. Since this will always produce a right-associated expression, the overhead associated with expressions that are not right-associated is avoided.

However, the problem with this technique is that converting a list to a difference list is expensive in the long run. Conversion of a list to a difference list is simply $(! \circ \oplus)$, which, when the final result is observed, contributes the costs of $||$ steps, adding one operation to each node in the list. Hence, if we convert back and forth n times, this will cost $n||$ steps. Of course, converting the same list back and forth a number of times is a bit of a contrived situation. However, the problem also occurs if we convert a difference list to a list and convert part of the list back to a difference list.

Another, more subtle problem is that conversion in the other direction, from a difference list to a list, is not a constant time operation. We cannot \textit{observe} anything directly on a difference list, for example we cannot see whether it is empty, and hence conversion to a regular list is often required. This conversion is not cheap: in the worst case the difference list consists of a left-associated expression of the following form, which is visualized in Figure 2:

$$(((a_1 \oplus) \circ (a_2 \oplus)) \circ (a_3 \oplus)) \cdots \oplus (a_{n-1} \oplus) \circ (a_n \oplus)$$

Converting such a difference list to list, by applying $[]$ to it, then requires n invocations of \circ to reduce to the following list expression:

$$a_0 \oplus (a_1 \oplus (a_2 \oplus (a_3 \oplus \ldots \oplus (a_n \oplus []))))$$

Only after these operations we can reduce further and inspect the resulting list to see whether it is empty or not. Hence, observing (parts of) intermediate lists can also lead to performance problems.

\footnote{We use the notation $(x \oplus)$ as a shorthand for $(\lambda y \rightarrow x \oplus y)$.}
To summarize: difference lists only solve performance problems if our usage of lists is strictly separated into a build (i.e. concatenation) phase and an observation phase. If we alternate between building and observing, as is often needed, then performance problems will resurface.

3.2 General Continuation passing style

The trick of difference lists, i.e. continuation passing style, can be applied in many situations. For example, it can be applied to any monoid:\footnote{To reduce clutter, we ignore the fact that DiffMonoid and CodensityT should actually be a newtype in Haskell.}

```
type DiffMonoid a = a → a
abs :: Monoid m → DiffMonoid m → m m
abs a = a mzero
rep :: Monoid m → a → DiffMonoid m
rep = mappend
instance Monoid m ⇒ Monoid (DiffMonoid m) where
  mempty = rep mempty
  mappend = (•)
```

If we apply the trick to monads, we get the codensity monad transformer [9], which is highly related to the continuation monad [16]:

```
type CodensityT m a = T (m a) → a
abs :: Monad m ⇒ Monoid m → CodensityT m a → m a
abs a = a return
rep :: Monad m ⇒ m a → CodensityT m a
rep = ((rep • mzero)
instance Monoid m ⇒ Monoid (CodensityT m) where
  return a = rep (return a)
  m >>= f = m ∘ flip f
    or equivalently: λk → k a
  m ≡ f = m ∘ flip f
      or equivalently: λk → m (λa → f a k)
```

Voigtlander [22] has proposed the use of the codensity monad transformer for solving the performance problems of left-associated expressions. As with difference lists, this works fine if our usage is separated in a build and an observations phase. However, if we have another usage pattern, alternating between building and observing, the same problems as with difference lists occurs: continuation passing style reintroduces performance problems.

4. Solving the problem

The main insight for our solution is that expressions of the form:

```
a_0 ⊕ a_1 ⊕ a_2 ⊕ ⋅⋅⋅ ⊕ a_n
```

are sequences and that such abstract sequences should be represented explicitly. With the previous approaches such sequences are only represented implicitly. More precisely, when directly using ⊕, these sequences are implicitly represented at runtime as trees where the leaves are the elements and nodes are (delayed) function applications. When using continuation passing style, such sequences are also represented as trees, but now the leaves are functions representing the elements and the nodes are function composition. By making representation of these sequences explicit, we can choose a more suited sequence data structure and performance problems can be solved for any usage pattern.

We first illustrate our solution by applying it to tree substitution. We then show that applying our solution to generic trees requires type aligned sequences and how such type aligned sequences can be used to solve the problem. Afterwards, we discuss the general solution.

4.1 A first example: tree substitution

In the case of non-generic trees, such explicitly represented expressions can be defined simply as follows:

```
type TreeExp = CQueue Tree
```

where CQueue is an efficient sequence data structure, which we assume to be an instance of the type class for sequences defined in Figure 3(a). Very efficient purely functional sequence data structures exist: data structures where both concatenation and head/tail access run in amortized constant time [18], and even data structures where both run in worst case constant time [12, 18].

We want to support partial conversion from such an explicitly represented expression: we want to be able to efficiently observe the top of the tree and obtain the children of the tree as explicitly represented expressions. For this reason, we change the type of the children of the tree to explicitly represented expressions:

```
data Tree = Node TreeExp TreeExp
  | Leaf
```

Reflecting this change, the operator ⨿ no longer takes a single tree as its second argument, but rather an explicitly represented expression resulting in a tree:

```
(⨯) : Tree → TreeExp → Tree
  Leaf ⨿ y = val y
  (Node l r) ⨿ y = Node (l ⨿ y) (r ⨿ y)
```

Where ⨿ is the constant time concatenation operation defined on the efficient sequence data structure. Notice that ⨿ is not recursive anymore: it is a constant time operation!

To convert between an explicitly represented expression and the result of that expression, we define the following function:

```
val :: TreeExp → Tree
val s = case view s of
  EmptyL → Leaf
  h ⊕ t → h ⨿ t
```

Where view is a function that allows us to view the sequence from the left: see if it is empty or obtain the head and tail. Notice that val is also not recursive and hence also runs in constant time. In contrast to continuation passing style, converting an explicitly represented expression to an observable value does not mean converting the entire explicitly represented expression. Instead, val only converts the top of the tree: the children of the tree are still explicitly represented expressions. In this way, we do not add an extra operation to each node for each conversion.

Finally, converting a tree to an explicitly represented expression is done by simply constructing a singleton sequence:

```
expr :: Tree → TreeExp
expr = singleton
```

The (⨯) operator with the original type can then be defined as follows:

```
(⨯) : Tree → Tree → Tree
  l ⨿ r = l ⨿ expr r
```

All performance problems have disappeared: both \(a ⨿ (b ⨿ c)\) and \((a ⨿ b) ⨿ c\) cost only a constant number of operations and conversions are also efficient. Hence, this approach also solves performance problems if we alternate between building trees using substitution and observing the result of such substitutions.

4.2 Solving the performance problems of generic trees using type aligned sequences

But what if we want to apply our solution to generic trees? We must then explicitly represent expressions of the form:

```
m ⨿ f_1 ⨿ f_2 ⨿ f_3 ... ⨿ f_n
```

The problem is that each \(f_i\) has type \(a → Tree b\), for some \(a\) and \(b\), and these types can differ between elements. This means we cannot
sequences to use a regular sequence: to use it all elements must be of the same type constructor.

To be able to apply our solution to such situations, we generalize sequences to type aligned sequences: sequences parametrized by a type constructor `c`, such that each element is of type `c a b`, for some `a` and `b`. If the first type argument to `c` of an element is `a`, then first type argument to `c` in the next element (if any) must be `a`. If we set the type constructor `c` to `{}`, we get type aligned sequences of functions: the output type of a function is then always the input type to the next function.

To also represent the first element in the above expression, we need a type constructor to describe this pattern:

```haskell
type TreeCont a b = a → Tree b
```

A type aligned sequence where each element is a `TreeCont` is then of the following type:

```haskell
type TreeExp a b = TCQueue TreeCont a b
```

To also represent the first element in the above expression, `m`, as a `TreeCont`, we convert a `Tree` into an `TreeCont` as follows:

```haskell
toCont :: Tree a → TreeCont () a
toCont m = λ () → m
```

An explicitly represented expression of the above form then has type:

```haskell
type TreeExp b = TreeExp () b
```

We can then adopt the code for generic trees in much the same way as for non-generic trees:

```haskell
data Tree a = Node (TreeExp a) (TreeExp a)
  | Leaf a

  (⋯) :: Tree a → TreeExp a b → Tree a
Leaf a ←f = val f a
(Node l r) ←f = Node (l ⋆f) (r ⋆f)

val :: TreeExp a b → (a → Tree b)
val s = case viewl s of
  TEmptyL → Leaf
  a ←t → λx → h x ←t

expr = singleton
1 ←r = 1 ←expr r
```

In this way, the performance problems for any usage pattern of generic trees have also disappeared by using type aligned sequences.

4.3 The general case

In general the problem occurs if we have some recursive data type `X` and a monotonic associative operator traversing its left argument but not its right argument. The solution is to apply the following steps:

1. In the definition of the data type `X` replace all self-references with a (type aligned) sequence which represents expressions involving the problematic operator explicitly.
2. Instead of implementing the original operator, implement the operator such that its right argument is an explicitly represented expression and use efficient concatenation to implement the operator.
3. Define functions to convert between values and explicitly represented expressions.
4. Define the operator with the original type, using the new version of the operator and a conversion to an explicitly represented expression of the right hand side.
5. Use the functions to convert between explicitly represented expression and values where needed.

A type aligned sequence must be used if the type of the right argument of the operator depends on the type of the left argument of the operator.

Notice that explicitly representing expressions in this way means that applying the operator, `⊕`, with the identity element does not immediate yield the original value, since `(a ⊕ identity)` and `(a)` are different expressions. However, if we recursively convert the children of `(a ⊕ identity)` and `(a)` from explicitly represented expression to their results, we will observe exactly the same. Hence, the identity element is an identity element up to observation. Associativity laws directly hold, since sequence concatenation is associative.

Typically, this problem arises for operators in instances of type classes such as `Monoid`, `Monad`, `MonadPlus` or `Category`. If we define an alternative type class where the operator instead takes an explicitly represented expression as its right hand side, we can factor out steps 3 and 4: they are the same for any instance of the type class in which the implementation of the operator traverses the left argument but not the right.

We illustrate this for the `Monad` type class. For monads, we are concerned with expression of the form `m ≫= f1 ≫= f2 ≫= f3 ... ≫= fn` as we saw for generic trees. We define the types of the explicit representation of such expressions analogously to generic trees:

```haskell
type MCont m a b = a → m b

type MExp m a b = TCQueue (MCont m) a b
```
type MExp m a = MCExp m (_ _ a

The alternative type class for Monad is then essentially the same as Monad, except that the alternative version of bind (___\) now takes an explicitly represented expression as a right hand side argument:
class PMonad m where
 return' :: a __ m a
 (___) :: m a __ MExp m a b __ m b

For each instance of this type class, step 1 above should have been performed on the type m, and the operation of (___) should be constant time by invoking ___.
We can then define the conversion from and to explicitly represented expressions for any instance of PMonad:
val :: PMonad m __ MExp m a b __ m b
val (MExp q) = case tviewl q of
 TEmptyL __ return'
 h __ t __ __ x __ __ t
expr = tsingleton

Finally, we can then define an instance for Monad using these definitions:
instance PMonad m __ Monad m where
 return = return'
 m __ f __ m __ expr f

One could also factor out the choice of sequence datastructure, making it an argument to PMonad and a type argument to X. In this way, the programmer can choose the most efficient sequence datastructure for each particular usage of his or her monad. While this technique has merit, we do not apply it in this paper for presentational reasons.

For Monoid, MonadPlus and Category steps 3 and 4 can be factored out in an analogous way. The code for these alternative type classes is included in the code accompanying this paper.

5. Type aligned sequences
In the previous section, we saw that type aligned sequences are required to explicitly represent expressions involving operators where the type of the left argument depends on the type of the right argument. We now introduce type aligned sequences, discuss their relation with regular sequences, and show an example of how a sequence data type can be converted into a type aligned sequence data type.

5.1 Definition and intuition
Type aligned sequences are best explained by an example: a type aligned sequence of functions is a sequence f_1, f_2, f_3 ... f_n such that the composition of these functions f_1 __ f_2 __ f_3 __ ... f_n is well typed. In other words: the result type of each function in the sequence must be the same as the argument type of the next function (if any). In general, the elements of a type aligned sequence do not have to be functions, i.e. values of type a __ b, but can be values of type (c a b), for some binary type constructor c. Hence, we define a type aligned sequence to be a sequence of elements of the type (c a b), with the side-condition b_{i-1} = a_i. If s is the type of a type aligned sequence data structure, then (s c a b) is the type of a type aligned sequence where the first element has type (c a x), for some x, and the last element has type (c y b), for some y.

It may be instructive to think of a type aligned sequence as a path through a directed graph. In this directed graph each node is a type and there is an edge from type a to type b for each value of type (c a b). Hence, we call a value of type (c a b) a c-edge. A type aligned sequence of type (s c a b) is then a sequence of c-edges such that they form a path from a to b through this graph: the target of each edge is the source of the next edge.

Type aligned sequences can be defined using Generalized Algebraic Data Types (GADTs) [3]. As a simple example of this, consider a type aligned list:
data TList c x y where
 Nil :: TList c x x
 (__) :: c x y __ TList c y z __ TList c x z

In the graph interpretation, the empty type aligned sequence corresponds to an empty path, and hence the empty list is a path from x to x, for any x. The Cons constructor adds one c-edge to the front of a path, the types ensure that the target of this c-edge is the source of the rest the path.

5.2 Relation with regular sequences
The only difference between regular sequences and type aligned sequences are the types: TList differs from the ordinary list only in the more precise types of its constructors. In fact, type aligned sequences are a generalization of regular sequences: any type aligned sequence can be used as a regular sequence, but not the other way around. We can use a type aligned sequence as a regular sequence by effectively “partially erasing” the extra types with the following construction:
data AsUnitLoop a b c where
 UL :: a __ AsUnitLoop a (_ _)

By using this construction, there exists an edge from (_) to (_) for each value of type a in the graph interpretation. Since there are no other edges, the graph effectively has just one node: the other types are unreachable. Hence, a regular list a_1 : a_2 : a_3 ... a_n : [] of type [a] corresponds to a type aligned list:

UL a_1 : UL a_2 : UL a_3 ... UL a_n : Nil

of type TList (AsUnitLoop a) (_ _). This type aligned list corresponds to a path of length n through the graph consisting solely of self-loops on (_), where each edge corresponds to a value of type a.

We can use this construction to provide an instance for the regular sequence class (Figure 3(a)) for any instance of the type aligned sequence class (Figure 3(b)):
type AsSequence s a = s (AsUnitLoop a) (_ _)

instance TSequence s => Sequence (AsSequence s) where
 empty = tempty
 singleton = tsingleton __ UL
 (+) = (__)
 viewl s = case tviewl s of
 EmptyL __ TEmptyL
 UL h __ t __ __ h __ t

A benefit of using type aligned sequences in this way, instead of directly using regular sequences, is that type aligned sequences rule out a class of implementation bugs: the types in a type aligned sequence enforce the ordering of the elements. Hence, accidentally switching two elements will result in a type error, as the resulting sequence may not be a path. In contrast, in regular sequences the types do not enforce the ordering of the elements and an accidental change of order in, for instance, the definition of concatenation would have gone unnoticed by the type checker.

In general, sequences, i.e. words over some alphabet, are free monoids, whereas paths through a directed graph are free categories [1]. Sequences in programming languages typically are homogenous: they require that each element has the same type. The alphabet is then the set of values of the given type. Similarly, type aligned sequences are paths through the directed graph where the
data Pair c a b where
 (x) :: c a w → c w b → Pair c a b

data Buffer c a b where
 B1 :: c a b → Buffer c a b
 B2 :: P c a b → Buffer c a b

data Queue c a b where
 Q0 :: Queue c a a
 Q1 :: c a b → Queue c a b
 QN :: Buffer c x y → Queue (Pair c) x y → Buffer c y b → Queue c a b

 (▷) :: Queue c a w → c w b → Queue c a b
 q ▷ b = ...
 viewl :: Queue c a b → TViewl Queue c a b
 viewl q = ...

Figure 4: A type aligned queue data structure.

edges are formed by the values of type (c a b), for types all a and b.

Indeed, any sequence data type can be made an instance of Monoid, without assuming anything about the elements of the sequence. Similarly, any type aligned sequence data type can be made an instance of Category, without assuming anything about the elements of the type aligned sequence:

instance Sequence s ⇒ Monoid (s a) where
 mempty = empty ; mappend = (\<>)

instance TSequence s ⇒ Category (s c) where
 id = mempty ; (\<> flip (\<>))

The fact that we can use any type aligned sequence as a regular sequence also has a theoretical motivation: a monoid corresponds to a category with just one object, the elements in the monoid are now arrows (morphisms) from this one object to itself and the monoid operation is arrow composition [1]. Hence, a free monoid corresponds to the free category over a graph with just one element, where the self-edges correspond to the elements of the alphabet. This is exactly what we did with AsUnitLoop above: it makes every value of type a into a self-edge on the node (\).

5.3 An example of making sequences type aligned: efficient queues

Generalizing the types of a sequence data type so that it becomes a type aligned sequence data type, means generalizing the constructor types, and assuring (that is, “proving” to the type checker) that all operations on the data type preserve the element order. This generalization requires some creativity but in our experience, it is a straightforward operation. In the code accompanying this paper we show type aligned versions of finger trees [7] and of a worst case constant time catenable queue [18, 19].

As a not entirely trivial example of turning a sequence data structure into a type aligned sequence data structure, consider the (non-catenable) queue shown in Figure 4. This data structure is essentially the same as the queue presented in Okasaki’s Purely functional Data Structures [19, §8.4] but the types have been generalized.

To generalize this queue to a type aligned sequence data structure, we needed to generalize not only the types of the constructors of the queue, but also the types of the constructors of the pairs and buffers of which it consists. Before generalizing the types, both elements of a pair had the same type, but now the elements are e-edges such that they form a path of length two. A buffer can hold either a single element or a pair and the types of these constructors have been generalized straightforwardly. Slightly less obvious is generalizing the types of the constructors of a queue. A queue may consist of nested queues: if a queue has more than one element, it is represented as two buffers and a queue of pairs. With generalized types, the type of this queue of pairs is a type aligned queue holding (Pair c)-edges, i.e. paths of length two.

The only difference in the operations, namely en-queuing and viewing the head/tail, is their type signatures, the operations themselves are left unchanged and are hence not shown. The full code for these type aligned queues is included in the code accompanying this paper.

6. Fast Monadic Reflection

In this section we show how our solution can be used in various real-life monads. In particular, several monads offer monadic reflection: a way to observe, or reify, the internal state of the computation, represented in a suitable data structure. For example, the internal state of a non-determinism monad can be observed as the stream of choices. This terminology is due to Filinski [5] who modeled it after the terminology of Wand and Friedman [23]. Monadic reflection leads to alternating between building and observing, and hence leads to previously undocumented, severe performance problems. In this section we demonstrate several examples of how we can factor out sequences in monads such that monadic reflection can be efficiently supported. In particular, we discuss iteratees (and related constructs), LogicT transformers, free monads and extensible effects.

6.1 Iteratees and related monads

As a first example of how we can apply our solution to a practical example, consider iteratees [13]: a style of incremental input processing that overcomes the problems of lazy I/O and handle-based I/O. We consider a simplified version of iteratees where an iteratee is a monadic computation that can request an input element, as shown in Figure 5(a).

An iteratee is in one of two possible states: the constructors of the It data type. If an iteratee is Done it simply carries the value it produces. If an iteratee needs an input element, it is a Get value, carrying a function that when given the input element returns the
next iteratee state. A Monad instance for such iteratees is then defined straightforwardly. In this definition, the \(\Rightarrow \) operator is Kleisli composition \(f \Rightarrow g = \lambda x \rightarrow f x \gg g \) as introduced in section 2.3.

Although it can be easy to miss, the definition of the monadic bind, like its definition in the original paper, exhibits the problematic pattern: it traverses its left argument but not its right argument. It does not matter that \(\Rightarrow \Rightarrow \) invokes itself by using function composition instead of application, this just obfuscates the problem.

As example of the performance problem is the following iteratee computation, that gets \(n \) elements from the input and then returns their sum:

\[
\text{sumInput} :: \text{Int} \rightarrow \text{It} \text{Int} \\
\text{sumInput n} = \text{Get} \left(\text{foldl} \left(\Rightarrow \Rightarrow \right) \text{return} \left(\text{replicate} \left(n - 1 \right) f \right) \right)
\]

where \text{replicate} \(n \) \(e \) is a function the creates a list of the length \(n \), where each element is \(e \). The \text{sumInput} function yields an expression of the form:

\[
\text{Get} \left(\left(\left(\text{return} \Rightarrow f \right) \Rightarrow f \right) \Rightarrow f \right) \ldots \Rightarrow f
\]

Figure 6 shows that when the argument to \text{Get} is called with a new input element \(x \), it costs \(O(n) \) steps to obtain the next iteratee state:

\[
\text{Get} \left(\left(\left(\text{return} \circ \left(+ x \right) \right) \Rightarrow f \right) \Rightarrow f \right) \Rightarrow f \ldots \Rightarrow f
\]

This very similar to the original expression, exhibiting the same problem. Hence, the running time of feeding this iteratee computation \(n \) elements and obtaining their sum is quadratic. The \text{sumInput} function can easily be made to run in linear time by simply switching from \text{foldl} to \text{foldr}. However, in general solving such performance problems by avoiding the problematic pattern is not as simple: we must then make sure that that each left argument to bind cannot be the result of a bind.

We can solve the problem with repeated binds by using the codensity monad transformer, as defined in Section 3.2, as proposed by Voigtlander [22]. When using this method, we only use codensity transformed iteratees to build monadic expressions:

\[
\text{type ItCo i a} = \text{CodensityT} \left(\text{It} \ i \ a \right)
\]

We then redefine \text{get} so that it gives a codensity transformed iteratee:

\[
\text{getCo} :: \text{ItCo} i i \Rightarrow \text{ItCo} i a
\]

A monadic expression build in this way will then always result in a right-associated expression when converted to a regular iteratee computation, thus avoiding the problem of repeated binds.

We now find ourselves in a familiar situation: this method makes alternating between building and observing problematic. An example of this is the following, often useful, parallel iteratee compose function, defined as a regular (non-codensity transformed) iteratee function:

\[
\text{par} :: \text{ItCo} i a \rightarrow \text{It} i b \rightarrow \text{It} i \left(\text{It} i a, \text{It} i b \right)
\]

\[
\text{parCo} :: \text{ItCo} i a \rightarrow \text{ItCo} i b \\
\rightarrow \text{ItCo} i \left(\text{ItCo} i a, \text{ItCo} i b \right)
\]

\[
\text{parCo} \ i r = \text{Get} \left(\text{rep} \left(\text{par} \ \left(\text{abs} \ 1 \right) \left(\text{abs} \ r \right) \right) \Rightarrow \left(\lambda \left(l, r \right) \rightarrow \text{return} \left(\text{rep} 1, \text{rep} r \right) \right) \right)
\]

We need to eliminate the codensity transformer using \text{abs} to observe the states of both iteratees. After applying the original \text{par} function, we want to be able to compose the resulting iteratees again with \(\Rightarrow \Rightarrow \) and \text{parCo}. However, they no longer codensity transformed iteratees, while other iteratees are in this form to avoid the problems with bind. We need to convert the rest of the resulting iteratees back to codensity transformed form, which adds an extra operation per \text{Get} in the rest of the iteratees. Hence, the runtime cost of \text{parCo} is quadratic in the number of input elements before either of the arguments to any iteratee expression containing \text{par}.

Our solution can be applied to the problematic iteratees code, as is shown in Figure 5(b). The only change in \text{par} is the recursive call, which now is \(\left(\text{par} \ \left(\text{val} f \ x \right) \ \left(\text{val} g \ x \right) \right) \). By using an efficient type aligned sequence data structure, the performance of iteratees improves dramatically, without constraining ourselves by disallowing functions involving monadic reflection like \text{par}. The code for iteratees with our solution applied to it is included in the code accompanying this paper, as well as a benchmark demonstrating the performance problem of the implementation as presented in the original paper.

A related construction is monadic \text{coroutines}, which are like iteratees except that they also output an element each time they request an input element. Blažević [2] presents an extensive library for such coroutines, but his coroutine definition suffers from the same problem as the original iteratee definition. The implicit sequence of binds can be factored out straightforwardly using our method to avoid such performance problems.

Another guise of the same situation occurs in monadic FRP [21]: a framework which essentially applies coroutines in an functional reactive programming (FRP) setting. In monadic FRP, a combinator very similar to \text{par} is at the heart of composing reactive computations and the bind in the paper has the same problem as the original iteratees. In fact, the motivation for this work is that we noticed that our monadic FRP program became progressively slower, due to repeated application of bind on the results of par, and eventually came to a grinding halt. Since par is used often in monadic FRP, and coroutines can live for a long time, being used in many invocations of par, the use of the codensity monad would also lead to a severe slowdown. With our solution applied, monadic FRP programs no longer become progressively slower, running efficiently no matter what the usage pattern.

6.2 LogicT Monad Transformers

The MonadPlus type class extends the Monad interface with support for non-deterministic choice with backtracking. The most obvious instance of this interface is the list monad: bind is then \text{concatMap} (with flipped arguments) and \text{mplus} is concatenation. The usage of list concatenation can lead to performance problems, which can be solved by simply using a catenable queue instead.

Kiselyov, Shan, Friedman and Sabry [14] showed that a large class of logical effects, namely cut, soft cut, interleaving and fair conjunction, can all be expressed when a single function is added to the interface. This function, called \text{msplit}, essentially splits the logical computation into a computation of the first result and computation of the rest of the results. More precisely, this function has type:

\[
\text{class MonadPlus m} \Rightarrow \text{MonadLogic m where}
\]

\[
\text{msplit :: m a} \rightarrow m \left(\text{Maybe} \ a, \text{Maybe} \ a \right)
\]

It takes a logical computation and turns it into another logical computation, namely one which returns Nothing if the original
logical computation had no results, and otherwise returns a Just value carrying a tuple of the first result and the logical computation of the rest of the results. This is an instance of monadic reflection: msplit allows us to observe the internal state of the monad as a stream of results. The implementation of this msplit function for lists or other sequence data structures is straightforward: it converts the empty sequence to Nothing and a non-empty sequence to a Just value of the head and tail.

However, an efficient monad transformer that adds non-determinism to an arbitrary monad is not defined so easily. In a functional pearl [6], Hinze systematically derives such a non-determinism monad transformer implementation. He then notes that a left-associated mplus expression has quadratic performance, and solves this by using continuation passing style. Note that there is no problem with bind for a non-determinism monad: like concatMap for lists, it traverses both the left argument and (the result of) the right argument. Kiselyov et al. show how the monad transformer implementation of Hinze can be adapted such that it is also an instance of MonadLogic. Although it can be really tricky to see this directly from the code, this instance of MonadLogic has severe performance problems. Effectively, their implementation of msplit corresponds to converting a difference lists to a list and converting to tail of the list to a difference list again. Hence, each invocation of msplit will add one extra operation per result in the remainder of the logical computation.

This implementation uses continuation passing style with two continuations, but the point of this paper is that it is better to make the sequence explicit instead of representing it as a tree of functions (i.e. CPS). Hence, we do not apply our method to this implementation, but to a standard stream implementation of backtracking [24] as show in Figure 7. In this implementation, the ML type is essentially a list where each node of the list is the result of a computation in the underlying monad. The list can be empty (Nothing) or a head and tail (Just (a,ML m a)). The definitions are then analogous to the definitions for the lists: mplus is concatenation and >>= is like concatMap.

Notice that ML is not the same as the ListT construction:

```
newtype ListT m a = ListT { runListT :: m [a] }

instance Monad m => Monad (ListT m) where
  return = ML (return Nothing)
  mzero = ML (return Nothing)
  mplus (ML a) b = ML (a >>= λx -> case x of Nothing → return Nothing
                          Just (h,t) → getML b
                          Just (h,t) → return (Just (h,mplus t b))

instance Monad trans mL where
  lift m = ML (m >>= single)

instance Monad m => MonadLogic (ML m) where
  msplit (ML m) = lift m
```

```
Figure 7: A stream implementation of MonadLogic.
```

This construction only yields a monad if the argument monad, m, is commutative [10]. The difference is that in ML each node in the “list” is the result of a computation in the underlying monad, whereas with the ListT construction the *entire* list is the result of a single computation in the underlying monad.

An example of the asymptotic performance problem is the following function which obtains at most n solutions of a logical computation.

```
seqN :: MonadLogic m ⇒ Int → m a → m [a]
seqN n m |
                     | n == 0 = return []
                     | otherwise = msplit m >>= λx → case x of Nothing → return []
                                                   Just (a,m) → liftM (a:) (seqN (n−1) m)
```

```
Figure 8(a)5 shows, for different implementations, the running time of obtaining $n$ natural numbers using seqN, where the natural numbers are defined as follows:

```
nats = natsFrom 1 where
 natsFrom n = return n 'mplus' natsFrom (n + 1)
```

Obtaining a number of solutions requires us to recursively split the logical computation, and hence the two continuation implementation as implemented in haskage package LogicT has quadratic runtime. Of course, this is just a micro-benchmark constructed to illustrate the problem. However, this problem does not only occur on the natural numbers: it occurs any time we request only some, instead of all, solutions to a logical computation. This is highly counter-intuitive: it is much faster to obtain all results than a some

5 These measurements are the median of 5 runs and were performed on an AMD Phenom II X4 905e Processor CPU running Linux 3.2.0 on binaries produced with the GHC 7.6.3 (optimization level 2). The fixed stream implementation uses a worst case constant time catenable queue.
results. Moreover, since we are talking about monad transformers, requesting all results in not always an option; it may invoke undesired and/or irrecoverable effects in the underlying monad.

The same problem occurs with the `interleave` operator as described by Kiselyov et al., which ensures fair consideration between two branches of a logical computation. An example usage of this operator is the following the logical computation:\footnote{\(\text{a } \text{x } \text{b}\) is an alternative notation for \((\text{x } \text{a } \text{b})\).}:

\[
\text{unfair } = \text{do } x \leftarrow \text{nats } \text{mplus' } \text{return } 0 \\
\quad \text{if } x \equiv 0 \text{ then } \text{return } x \text{ else } \text{mzero}
\]

The behavior of mplus in these implementations is that it first considers all solutions from its left argument, and only afterwards considers the solutions of its right argument. Since nats has an infinite number of results, this computation will never yield a solution. If interleave is used instead of mplus, then solutions from nats and return 0 are considered alternately and the computation will yield a solution. This interleave operator is defined in terms of mplus and `msplit` as follows:

- `interleave :: m a \to m a \to m a`
- `interleave l r = msplit l \gg= \lambda x \rightarrow \text{case x of Nothing } \rightarrow r \\
  \quad \text{Just } (h, t) \rightarrow \text{return } h \text{ 'mplus' } \text{interleave } r t`

Since interleave recursively splits the remaining computation of both arguments, any usage of it while using a two continuation implementation of backtracking will lead to performance problems. For instance, the following logical computation:

\[
\text{test } = \text{choose } [1...n] \text{ 'interleave' 'choose } [n...1] \\
\quad \text{where choose } l = \text{foldr mplus mzero } (\text{map return } l)
\]

also runs in \(O(n^2)\). The same problem occurs when using the fair conjunction operator, which is defined in terms of interleave. The cut and soft cut operators are also problematic, but much less severely: they only split the logical computation once.

Obtaining only a limited number of solutions and using the interleaving or fair conjunction operators is not problematic when using the ML implementation of MonadLogic: we can observe results directly by running a computation in the underlying monad, there is no conversion involved. Instead, the problem is now mplus: it recursively visit the left hand argument but not the right hand argument. Figure 8(b) shows the running time of obtaining all solutions of a left-associated mplus expression:

\[
\text{test } :: \text{MonadPlus m } \Rightarrow \text{Int } \to \text{m Int} \\
\text{test } n = \text{foldl mplus mzero } (\text{map return } [1...n])
\]

Now the runtime of the ML implementation is quadratic. The dual continuation implementation does not suffer the same problem, as it was originally derived by Hinze to solve this problem. The solution to speed up the ML implementation is simply to apply the steps that we presented in Section 4.3 for the MonadPlus structure. As this process is straightforward, we do not dwell on it here. The adapted ML monad is included in the code accompanying this paper.

As can be seen from the graph, after applying our method the problem with mplus disappears: the runtime is now linear. Moreover, this stream implementation with our method applied to it is the \emph{only} implementation which is efficiently supports both msplit and mplus.

### 6.3 Free Monads

Swierstra \cite{swierstra2009} shows how a monad instance can be defined for any functor, a construction known as a \emph{free monad} \cite{riskat2012}. This construction is defined as follows:

\[
\text{data FreeMonad } f \ a = \text{Pure } a \\
\quad \mid \text{Impure } (f \ (\text{FreeMonad } f \ a))
\]

\[
\text{instance Functor } f :\Rightarrow \text{Monad } (\text{FreeMonad } f) \text{ where return } = \text{Pure} \\
\quad (\text{Pure } x) \gg= f \ x \\
\quad (\text{Impure } t) \gg= f \Rightarrow \text{Impure } (\text{fmap } (\gg=) \ f \ t)
\]

Swierstra then notes that several well known monads are free monads. For example, the Maybe monad is a free monad over the following functor:

\[
\text{data One } a = \text{One deriving Functor}
\]

Now (\text{Pure } a) corresponds to (\text{Just } a) and (\text{Impure One}) corresponds to \text{Nothing}.

However, for many functors this construction leads to asymptotic problems. Consider for example the following Functor:

\[
\text{newtype Get } i \ a = \text{Get } (i \rightarrow a) \text{ deriving Functor}
\]

A free monad over this functor corresponds to the iteratees we saw in Section 6.1. It should come as no surprise that the performance problem of iteratees did not go away by formulating it as a free monad. Again, we could use continuation passing style, but this would make functions like par expensive.

We solve these problem for all free monads by simply applying our solution. The definition of free monads then becomes:

\[
\text{data FreeMonad } f \ a = \text{Pure } a \\
\quad \mid \text{Impure } (f \ (\text{MExp } (\text{FreeMonad } f \ a)))
\]

\[
\text{instance Functor } f :\Rightarrow \text{PMonad } (\text{FreeMonad } f) \text{ where return } = \text{Pure} \\
\quad (\text{Pure } x) \gg= f \ x \\
\quad (\text{Impure } t) \gg= g \Rightarrow \text{Impure } (\text{fmap } (\gg=) \ f \ t)
\]

As usual, the code for these adopted free monads is included in the code accompanying this paper, as well as a benchmark demonstrating the performance problem and that our method solves it.

### 6.4 Extensible effects

Recently Kiselyov, Sabry, Swords and Foppa introduced \emph{extensible effects} \cite{Kiselyov2017}: a framework for composing and implementing computational effects that overcomes the problems of monad transformers in terms of efficiency, expressiveness and ease of notation. In this framework an effect is an interaction between a client and a handler: the client sends a value describing the desired effect to the handler, which in turn executes the desired effect and passes the result to the client.

The approach of Kiselyov et al. uses functors to describe both which effect to request and how to proceed after-

\[
\text{data ModifyState } s \ w = \text{ModState } (s \to s) \ (s \to w) \text{ deriving Functor}
\]

The first argument tells the handler how to modify the state, whereas the second argument tells the handler how to continue afterwards, it takes the new state and then produces some \(w\). The free monad over this functor is then the value that is interpreted by the handler: if the value is \text{Impure } (\text{ModState } f \ c) it applies the function \(f\) to the state and calls the function \(c\) with the new state. This may again yield an \text{Impure} value and the process continues until the handler sees a \text{Pure} value.

The \emph{extensible} in extensible effects comes from the fact that handlers do not interpret a free monad over a single functor, but a free monad over an \emph{open union} of functors. An open union is a value that can be of any type in a \emph{set} of types. This distinguishes
it from a closed union, for example Either a b, which has a list of types. Kiselyov et al. then show an implementation of an open union of functors, which in itself is again a functor. In this way handlers for different effects can be stacking if a handlers does not handle the desired effect, the value describing the effect is passed to the next handler in the stack.

However, as we saw in the previous section, many functors give rise to performance problems when using a (non-adapted) free monad. For functors describing effects, this is the case if the effect produces some result which is then passed to a continuation function. This is always the case, except for exceptions.

Kiselyov et al. avoid this problem by using a variant of free monads using continuation passing style. This has the advantage that it avoids the performance problems of wrong groupings of expressions involving bind, but it has the disadvantage that handlers must be written in continuation passing style. In a related paper, Kammar et al. [11] avoid the performance problem by (implicitly) applying the Codensity monad. This has the disadvantage of an extra transformational step, making it hard for the handler writer to understand exactly what is going on.

Both approaches lead to performance problems when effects requiring reflection such as iteratees, LogicT transformers or delimited continuations are modeled. With our solution, extensible effects can directly be expressed as (adopted) free monads over open unions, without the need for manual continuation passing style or Template Haskell. Moreover, effects that require reflection can then be efficiently supported. An example implementation of extensible effects as efficient free monads is included in the code accompanying this paper, as well as a benchmark involving reflection in the form of a logical cut effect, that is quadratic in the original implementation, but linear in our adapted implementation.

7. Conclusion

Monotonic associative operators that traverse their left argument, but not their right argument, can lead to asymptotic overhead. A popular cure is to use continuation passing style, but this cure is only effective if our usage is strictly separated into a build and an observation phase, otherwise the cure is as bad as the disease.

We presented a solution that solves such performance problems for any usage pattern, even when alternating between building and observing. Our solution reveals a hidden sequence, namely repeated applications of such a problematic operator, and makes it concrete using an efficient sequence datastructure. Self references in the involved recursive data type are changed to such sequence to support partial conversion. In this way, both the operator and observing its result are efficient.

To support operators where the type of the right argument depends on the type of the left argument, such as the monadic bind, we introduced a generalization of sequences called type aligned sequences. Type aligned sequences enforce the ordering of their elements, and hence rule out ordering bugs.

Monadic reflection, i.e. a way to observe, or reify, the internal state of a monadic computation requires us to alternating between building and observing. We showed that reflection does not have to lead to remorse: our solution efficiently supports reflection. We have demonstrated that our solution yields an asymptotic runtime improvement in iteratees (and related constructs), LogicT transformers, free monads and extensible effects.

Our solution is not limited to the examples we discussed in this paper. In the accompanying code, we show how sequences can be factored out in delimited continuations [4] and term monads [17]. Given the simplicity of the problematic pattern and the widespread usage of continuation passing style, we suspect that there are many more applications of our solution hiding in corners where we have not looked yet.

Acknowledgment

We thank Jan Rutten for helpful discussions.

References