
1 Delimited continuations in Haskell

This section describes programming with delimited control in Haskell. Delimited
control, like its instance, exceptions, is an effect. Therefore, we have to use
monads. We will be using the monad Cont from a monad transformer library.
Although the Cont monad is familiar to many Haskell programmers, we will
nevertheless introduce it below. As well shall see, Cont is the monad for the
delimited control.

1.1 Introduction to the Cont monad programming

For the introduction we use one of the earlier OchaCaml examples

reset (3 +shift (λk → 5∗2)) − 1

and re-write it in Haskell in the monadic style. The re-writing is systematic,
even mechanical:

t1 = liftM2 (−)
(reset
(liftM2 (+) (return 3)

(shift (λk → liftM2 (∗) (return 5) (return 2)))))
(return 1)

The code does look like scheme, doesn’t it? The code mentions several identifiers
yet to be introduced: reset, shift , liftM2, and return. While one may guess the
meaning of reset and shift from the first part of the tutorial, liftM2 and return
may look obscure to some. They are defined in Haskell standard libraries. Their
types will help us understand their meaning. We will ask the Haskell interpreter
GHCi to show the type of 1 and the type of return 1:

∗>: type 1
1 :: Num a ⇒a
∗>: type (return 1)
(return 1) :: (Num a, Monad m) ⇒m a

Whereas 1 is a number, return 1 is a computation (in some monad m) that
produces the number, and may also do something else like printing – or, in our
case, throwing exceptions and performing other so-called control effects. Types
indeed can tell us a lot about expressions. After all, a type is an approximation
of expression’s behavior, outlining the behavior of an expression without running
it.

Likewise, comparing the type of the ordinary subtraction (−) with the type
of liftM2 (−) may give us a clue about liftM2:

∗>: type (−)
(−) :: Num a ⇒a →a → a
∗>: type liftM2 (−)
liftM2 (−) :: (Num a, Monad m) ⇒m a →m a →m a

1

Can you now guess what liftM2 does?
The Haskell interpreter has figured out (or, inferred) the type of the overall

expression t1, and can tell it to us

∗>: t t1
t1 :: Cont w Integer

It is an effectful expression, within a particular monad Cont w, which is parametrized
by the so-called answer-type, to be discussed in more detail in below. To see
the result, we have to run the expression, executing all its effects and obtaining
its eventual result:

∗>runC t1
−− 9

The expression t1 looks ugly, even to a Schemer. We can make it prettier:

t1’ = liftM2 (−)
(reset
(liftM2 (+) (return 3)

(shift (λk → return (5∗2)))))
(return 1)

resorting to a monad law. Can you tell which law we have used, and how?
A few syntactic, this time, embellishments – defining infix operators for

‘lifted’ numeric operations

infixl 6 −!,+!
infixl 7 ∗!

(−!),(+!),(∗!) :: (Num a, Monad m) ⇒m a →m a →m a
(−!) = liftM2 (−)
(+!) = liftM2 (+)
(∗!) = liftM2 (∗)

make the expression prettier still:

t12 = reset (return 3 +! shift (λk → return (5∗2))) −! return 1

The expression looks almost like the one in OchaCaml. The remaining returns
betray implicit effects of our expressions and of the operations on them. We can
banish these returns and make the code look exactly like the OchaCaml code.
We leave this task as a homework for an interested reader. In this tutorial, we
shall keep return, as a reminder of effects.

Let us re-write another previously seen OchaCaml example

fst (reset (fun () → let x = (”hi”,”bye”) in (x, x)))

into Haskell:

t13 = liftM fst (reset $ do
x ← shift (λk → return (”hi”,”bye”))
return (x, x))

2

∗>runC t13
”hi”

The let form of OchaCaml binds the result of a potentially effectful expression
to a local variable. In Haskell, we use the do form for that purpose.

1.2 Applying the extracted continuations

Earlier in the tutorial we have learned how to extract a delimited continuation
as a function, which we can later apply to various arguments. If we are going
to use the captured continuation within a single expression, we can combine
extraction with use:

t2 = reset (return 3 +! shift (λk → return (k (5∗2)))) −! return 1

∗>runC t2
−− 12

Rather than returning the extracted delimited continuation, we return the result
of the expression that uses that continuation. This is the most frequent pattern
of using shift .

We can apply the captured continuation more than once within the same
expression:

t3 :: Cont Int Int
t3 = reset (return 2 ∗! shift (λk → return $ k (k 10))) +! return 1

This time we have explicitly specified the expected type of the expression in
its signature. We did not have to do that: GHCi could have inferred the type.
Writing signatures of all top-level definitions is considered a good style, regard-
less of whether they could be inferred. After all, if we do not have even a vague
idea of what a new function is to do, perhaps we should not rush into writing
its code.

The type of t3 states that it is a computation that produces an Int and may
also throw ‘exceptions’ of the type Int. Therefore, we obtain an Int either way.
Can you determine the result of running the expression in your head, without
using GHCi? (Hint: if you have trouble, read further about the bubble-up
semantics, and then do the exercise using that semantics. After doing that, see
§1.4.3.)

1.3 The Cont monad

The Cont monad used so far comes from a monad transformer library, a part
of the Haskell Platform. For reference, we show its definition below. As
any monad, Cont is defined by a type constructor, which is, in our case, is
parametrized by the answer-type w.

newtype Cont w a = Cont{runCont ::(a →w) → w}

3

To complete the specification, we have to define two basic operations on Cont w a,
return and (>>=) (pronounced ‘bind’). In other words, we have to make Cont w
an instance of the class Monad:

instance Monad (Cont w) where
return x = Cont (λk →k x)
Cont m >>=f = Cont (λk →m (λv →runCont (f v) k))

Each monad is also an applicative functor:

instance Functor (Cont w) where
fmap f (Cont m) = Cont (λk →m (k ◦ f))

instance Applicative (Cont w) where
pure = return
m <∗> a = m >>=λh →fmap h a

The remaining operations to capture, delimit and run the Cont monad com-
putations are not part of the Haskell Platform libraries. These operations are
easy to define, as shown below:

runC :: Cont w w →w
runC m = runCont m id

reset :: Cont a a → Cont w a
reset = return ◦ runC

shift :: ((a → w) → Cont w w) →Cont w a
shift f = Cont (runC ◦ f)

1.4 Justifying the Cont implementation of delimited con-
trol

How do we know that the above definitions of shift and reset are ‘correct’
and that computed results shall always match those of OchaCaml? We need a
specification for delimited control, and we need to demonstrate that the Cont
implementation matches the specification.

1.4.1 The bubble-up semantics

For specification we take the so-called ‘bubble-up semantics’, which was the
original semantics of delimited control (prompt/control) introduced by Felleisen.
The bubble-up semantics was re-discovered for the so-called λµ-calculus, which
is the calculus for classical logic.

The operator shift introduces a bubble:

shift body 7→ 泡id body

The bubble percolates up, devouring the neighboring operations:

4

(泡 k body) +e1 7→ 泡(λx →(k x) +e1) body

(泡 k body) e1 7→ 泡(λx →(k x) e1) body

f (泡 k body) 7→ 泡(λx →f (k x)) body

if (泡 k body) then e1 else e2 7→ 泡(λx →if (k x) then e1 else e2) body

The operator reset ‘pricks’ (or, eliminates) the bubble:

reset (泡 k body) 7→ reset (body (λx →reset (k x)))

If an expression evaluates to a value rather than a bubble, reset just returns
the value.

reset value 7→ value

1.4.2 Proving that the implementation matches the specification

To start with, we η-expand the definition of shift :

shift body = Cont (λk →runC (body (λu →runCont (return u) k)))

to make clear the representation of the bubble in the Cont monad:

泡 ctx body = Cont (λk →runC (body (λu →runCont (ctx u) k)))

We will now demonstrate, using equational reasoning, that the Cont bubble
propagation matches the rules of the bubble-up semantics. We show the detailed
proof for one propagation rule:

(泡 k body) e1 7→ 泡(λx →(k x) e1) body

The others are similar.
It the applicative/monadic notation, the application of 泡 k body to an ef-

fectful expression e1 is written as 泡 ctx body <∗> e – or, expanding (<∗>) in
terms of bind, 泡 ctx body >>=λh →(fmap h e). We calculate:

泡 ctx body <∗> e
≡
泡 ctx body >>=λh →(fmap h e)
≡
Cont (λks → runC (body (λu → runCont (ctx u) ks))) >>=
λh → (fmap h e)
≡
Cont (λk →
(λks → runC (body (λu → runCont (ctx u) ks)))
(λv → runCont ((λh → (fmap h e)) v) k))
≡
Cont (λk →
(λks → runC (body (λu → runCont (ctx u) ks)))
(λv → runCont (fmap v e) k))
≡
Cont (λk →

5

runC (body (λu → runCont (ctx u) (λv → runCont (fmap v e) k))))
−− an inner expression is almost the same as
−− let g = (λv → fmap v e) in
−− ctx u >>=g ≡
−− Cont (λk1 → runCont (ctx u) (λv → runCont (g v) k1))
−− modulo the replacement of k1 with k
≡
Cont (λk →
runC (body (λu → runCont (ctx u >>=λv →fmap v e) k)))
≡
let ctx’ u = ctx u >>=λv →fmap v e in
Cont (λk → runC (body (λu → runCont (ctx’ u) k)))
≡
let ctx’ u = ctx u >>=λv →fmap v e in

泡 (λu → ctx u >>=λv →fmap v e) body
≡
泡 (λu → ctx u <∗> e) body

Which laws justify each step in the above equational derivation?
The result matches the conclusion of the bubble-up semantics rule:

(泡 k body) e1 7→ 泡(λx →(k x) e1) body

Let us check that the Cont bubble elimination matches the specification:

reset (泡 ctx body) 7→ reset (body (λx →reset (ctx x)))

We calculate:

reset (泡 ctx body)
≡
reset (Cont (λk → runC (body (λu → runCont (ctx u) k))))
≡
return (runC (Cont (λk → runC (body (λu → runCont (ctx u) k)))))
≡
return ((λk → runC (body (λu → runCont (ctx u) k))) id)
≡
return (runC (body (λu → runCont (ctx u) id)))
≡
reset (body (λu → runCont (ctx u) id))
≡
reset (body (λu → runC (ctx u)))

If the captured continuation, passed to the body, were of the type a → Cont w a,
we would have added return. The result of the equational reasoning would
have had matched the specification to the letter, keeping in mind that reset is
return ◦ runC. We observe that the continuation captured by shift is always a
pure function (that is, has no effects). Our definition of shift made this fact
explicit in the type of the captured continuation. Therefore, we do not need the
spurious return.

6

Finally the Cont-monad reset when applied to a value returns the value, as
required by the bubble-up semantics:

reset (return v)
≡
reset (Cont (λk → k v))
≡
return (runC (Cont (λk → k v)))
≡
return ((λk → k v) id)
≡
return v

Our implementation of delimited control indeed matches the specification.

1.4.3 Bubble-up semantics in practice

If determining the result of t3, §1.2, in your head was difficult, let us see how
the bubble-up semantics helps. The bubble-up semantics makes determining
the result of any expression with shift a pure mechanical operation:

runC (reset (return 2 ∗! shift (λk → return $ k (k 10))) +! return 1)

≡−− shift introduces the 泡

runC (reset (return 2 ∗! 泡 return (λk → return $ k (k 10))) +! return 1)

≡−− the 泡propagates up and devours return 2 ∗!
runC (reset

(泡 (λx → return 2 ∗! return x)
(λk → return $ k (k 10))) +! return 1)

≡−− simplifying using the monad law
runC (reset

(泡 (λx → return (2 ∗ x))
(λk → return $ k (k 10))) +! return 1)

≡−− reset pricks the 泡
runC (reset ((λk → return $ k (k 10)) (λx → runC (return (2 ∗ x))))

+! return 1)
≡−− runC ◦ return ≡id
runC (reset ((λk → return $ k (k 10)) (λx → 2 ∗ x)) +! return 1)
≡−− beta−reduction
runC (reset (return 40) +! return 1)
≡−− reset of a value
runC (return 40 +! return 1)
≡−− monad law (the addition of pure expressions)
runC (return 41)
≡
41

7

