
Lazy v. Yield:
Incremental, Linear Pretty-printing

Oleg Kiselyov, Simon Peyton-Jones, and Amr Sabry

1 oleg@okmij.org
2 simonpj@microsoft.com
3 sabry@cs.indiana.edu

Abstract. We propose a programming style for incremental stream pro-
cessing based on typed simple generators. It promotes modularity and
decoupling of producers and consumers just like lazy evaluation. Simple
generators, however, expose the implicit suspension and resumption in-
herent in lazy evaluation as computational effects, and hence are robust
in the presence of other effects. Simple generators let us accurately reason
about memory consumption. To substantiate our claims we give a new
solution to the notorious pretty-printing problem. Like earlier solutions,
it is linear, backtracking-free and with bounded latency. It is also simpler
to write and reason about, and is compatible with effects including IO,
letting us read the source document from a file, and format it as we read.

1 Introduction

Lazy evaluation is regarded as one of the main reasons why functional pro-
gramming matters [1]. Lazy evaluation lets us write producers and consumers
separately, whereas the two are inextricably intertwined in a call-by-value lan-
guage. This separation allows a modular style of programming, in which a variety
of producers, consumers, and transformers can readily be “plugged together.”
Lazy evaluation is also an elegant implementation of a form of coroutines, sus-
pending and resuming computations based on the demand for values, giving us
memory-efficient, incremental computation ‘for free’ [2–4].

Extensive experience in Haskell has, however, exposed severe drawbacks of
lazy evaluation, which are especially grievous for stream processing of large
amounts of data. Lazy evaluation is fundamentally incompatible with computa-
tional effects, can cause fatal memory leaks, and greatly inhibits modular reason-
ing, especially about termination and space consumption. Seemingly innocuous
and justified changes to the code or code compositions may lead to divergence,
or explosion in memory consumption. We review and illustrate these drawbacks
in more detail in §2.

It is therefore worth investigating alternatives to lazy evaluation, which are
nearly as convenient, modular, and conducive to incremental computation, and
yet are more robust under composition with computational effects. Since lazy
evaluation corresponds to an implicit and stylized use of coroutines [5–8], it is

2

natural to consider an explicit stylized use of coroutines. Such alternatives, his-
torically known as generators or iterators, have indeed been used to structure
programs using “pipelines” of producers and consumers [9] following Jackson’s
principles of program design [10]. They have recently re-emerged in various mod-
ern languages such as Ruby, Python, C#, and JavaScript. Although the details
differ, such languages offer an operator yield that captures a particular pattern
in which a computation is suspended, allowed to communicate with another
context, and then resumed.4

Survey [11] documents a rich variety of yield operators, whose most general
variant is tantamount to full first-class delimited continuations. In this paper we
study a much lighter-weight variant of yield, which we call simple generators. We
make the following specific contributions:

– We introduce typed simple generators (§3), offering a library of combinators
that support efficient stream producers, transducers, and consumers. Despite
their simplicity (implementable on a single linear stack without copying),
simple generators are capable to solve a variety of stream-processing prob-
lems that would normally require lazy evaluation, and yet compose readily
with effects.

– We show that simple generators are expressive enough to efficiently imple-
ment a particularly recondite problem: that of bounded-lookahead, linear-
time, incremental, pretty-printing (§4). This problem has been widely con-
sidered to require full coroutines or ‘tying of the knot,’ which in turn de-
mands lazy evaluation. Our new solution, derived in §5, is distinguished
by modularity and ease and precision of the analysis about latency, time,
and especially space. The overall pretty-printing becomes a composition of
independently developed, tested, and analyzed components. We can swap
the components, for example, replacing the component that traverses an in-
memory document with a generator that reads the document from a file.
The new structure helped us discover and correct edge cases neglected in
previous implementations.

– We give benchmarks in §5.4 to validate our analyses of space and time.
– Although we mostly use Haskell for concreteness and the ease of contrast-

ing yield and lazy evaluation, our approach extends to other languages.
Monadic style, needed to work with generators in Haskell, is a model of
call-by-value languages. Since monads make effects (sometimes painfully)
explicit, they give good guidance to implementing and using generators in
strict languages – as we demonstrate for OCaml.

Appendix A of the full paper http://okmij.org/ftp/continuations/PPYield/
yield-pp.pdf gives the derivation of optimal pretty-printing in all detail. The
complete Haskell and OCaml code accompanying the paper is available online
in the same directory.
4 In some other languages such as Java, the interleaving of execution between pro-

ducers and consumers is achieved with threads or even bytecode post-processing
(weaving).

3

2 The problem with laziness

The real virtue of lazy evaluation, emphasized in Hughes’s famous paper [1], is
that it supports modular programming by allowing the producer and consumer
of a data structure to be separated, and then composed in a variety of ways in
“plug-and-play” fashion. Alas, lazy evaluation is also fragile:

– Coroutining via lazy evaluation is incompatible with computational effects.
With effects, the evaluation order is significant and cannot be left implicit.
Adding effects requires re-writing of the code, and, as in call-by-value lan-
guages, tangles data producers and consumers (see §2.1);

– Lazy evaluation allows us to implement cyclic data transformers as well
as linear ones; this is called ‘tying the knot.’ A number of elegant Haskell
algorithms are written that way, e.g., the famous repmin [3]. Alas, it is par-
ticularly hard to reason about the termination of such algorithms, in part
because the types do not tell us anything about demand and supply of values
(see §2.2).

– Reasoning about space requirements of lazy algorithms is notoriously hard,
and non-modular: how much space a function may need depends on the
context. One case study [12] reports that it took three weeks to write a
prototype genomic data mining application in Haskell, and two months to
work around laziness frequently causing heap overflows. More examples are
discussed at the end of §3 and in a recent paper by the first author [13].

The rest of the section illustrates these problems and the next one demonstrates
how yield answers them.

2.1 Effects

Our running example is typical file processing: to read and print a file expanding
all tabs5. Ideally, reading file data, tab expansion itself, and writing the result
should be separated, so each can be replaced. For example, the programmer may
chose between two tab expansion algorithms: the näıve replacement of ’\t’ with 8
spaces, and the sophisticated one, adding spaces up to the next tab stop (the
multiple of 8). In idiomatic, lazy Haskell we start by writing the näıve tabX0 and
sophisticated algorithms tabX1 assuming that the input data are all in memory,
in a String. We do not worry how data got into memory or how it is written out:

tabX0, tabX1 :: String → String
tabX0 [] = []
tabX0 (’\t’: rest) = replicate 8 ’ ’ ++ tabX0 rest
tabX0 (c:rest) = c : tabX0 rest

tabX1 = go 0 where
go pos [] = []
go pos (’\ t’: rest) = let pos’ = (pos +8) − pos 8mod8 8 in

replicate (pos’ − pos) ’ ’ ++ go pos’ rest
go pos (c: rest) = c : go (if c == ’\n’ then 0 else pos +1) rest

5 We do not assume that the file is made of lines of bounded width.

4

The sophisticated version keeps a bit of local state, the pos argument, for the
current output position. The complete function is as follows:

expandFile lazy :: String → IO ()
expandFile lazy filename = do h ← openFile filename ReadMode

str ← hGetContents h
putStr (tabX0 str)

It opens the file, reads its contents, calls tabX0 to transform the contents, and
writes out the result. It is modular, in the sense that it would be the work of a
moment to replace tabX0 with tabX1, or by some other transformation entirely.

But we obviously don’t want to read in the entire contents of the file into
memory, then transform it, and then write it out. We would prefer to read
the file on demand, so to process arbitrarily large files in bounded memory.
Haskell’s hGetContents function does exactly that, returning a string containing
lazy thunks that, when forced (ultimately by putStr), read the file.

This on-demand input/output is called “lazy IO.” Although very convenient,
it is fraught with problems, including deadlocks and leaks of space, file descrip-
tors and other resources [13]. The problems are apparent already in our code. For
example, on file reading error an exception would be raised not in hGetContents
but rather at some later indeterminate point in putStr. Moreover, file reading
operations interleave uncontrollably with other IO operations, which may be fa-
tal if the input file is actually a pipe. These problems really do arise in practice;
the standard response is “you should use strict I/O.”6

Thus lazy evaluation indeed does not work with effects. If we use effects, we
have to re-write our tab-expansion code, for example, as follows:

expandFile strict :: String → IO ()
expandFile strict filename = do
h ← openFile filename ReadMode; loop h; hClose h
where loop h = do done ← hIsEOF h

if done then return () else hGetChar h �= check � loop h
check ’\ t’ = putStr (replicate 8 ’ ’)
check c = putStr [c]

We now distinguish EOF from other input errors. We explicitly close the file as
soon as we do not need it. Alas, the tab expansion, reading, and checking for
the end of data are all intertwined. Although we can abstract out processing
of a character, we cannot abstract out the processing of the entire stream, or
easily replace the näıve tab expansion algorithm with the smart tab expansion:
we have to re-write the whole reading-writing loop to thread the output pos. We
clearly see what John Hughes meant when saying that strict evaluation entangles
consumers and producers and inhibits modularity.

The same considerations would apply to any effectful producer or trans-
former. Thus, there is a real tension between the modular programming style
advocated in “Why functional programming matters” and computational effects.

6 e.g. http://stackoverflow.com/questions/2981582/haskell-lazy-i-o-and-closing-files.

5

2.2 Recursive knots

Richard Bird’s famous repmin function [3], shown below, has made a compelling
case for lazy evaluation. The function takes a tree and returns a new tree of
the same shape, with every leaf value replaced by the minimum leaf value of
the original tree. The new tree is constructed on-the-fly and the original tree is
traversed only once:

data Tree = Leaf Int | Node Tree Tree
repmin :: Tree → Tree
repmin t = tr where (mn, tr) = walk mn t

walk :: Int → Tree → (Int , Tree)
walk mn (Leaf n) = (n, Leaf mn)
walk mn (Node t1 t2) = (n1 8min8 n2, Node tr1 tr2)

where (n1,tr1) = walk mn t1
(n2,tr2) = walk mn t2

The main function walk takes the value to put into leaves and a tree and returns
its minimum leaf value and the transformed tree. In repmin we pass the minimum
leaf value computed by walk as an argument to walk itself, “tying the knot.”
Crucial is putting the minimum computation mn into a Leaf without evaluating
it. Once the computation is eventually evaluated, the resulting minimum value
shows up in all leaves. Lazy evaluation is indispensable for repmin.

Alas, small changes easily make the program diverge. For example, suppose
we only wish to replace those leaves whose value is more than twice the minimum.
If we replace the Leaf n case in walk with the following:

walk mn (Leaf n) | n >2 ∗ mn = (n, Leaf mn)
| otherwise = (n, Leaf n)

we get a divergent repmin. Now walk does need the value of mn before finishing
the traversal, demanding the value it is yet to produce. We may try one of the
following fixes:

walk mn (Leaf n) = (n, if n >2 ∗ mn then Leaf mn else Leaf n)

walk mn (Leaf n) = (n, Leaf (if n >2 ∗ mn then mn else n))

We leave it as an exercise to determine which one works. The answer is non-
obvious, requiring us to do global dataflow analysis in our head, determining
which terms are evaluated when. Even experienced functional programmers can
make mistakes, and often confess a lack of complete certainty about whether
the program is now right. However elegant, “tying the knot” is fragile. To make
matters worse, just imagine needing to modify repmin to print the leaves as they
are walked!

3 Yield

We now describe how yield can be used as an alternative to lazy evaluation that
is robust and compatible with arbitrary effects, and yet has attractive features
of lazy evaluation in untangling producers from consumers and allowing them
to be developed separately. Since there are many possible variants of yield [11],

6

as well as several Haskell libraries based on iteratees that are similar to ours,
we begin by reviewing some background, and then present our particular design
contrasting it others. Finally, we revisit the examples in the previous section
using our library.

Although we will be using Haskell to introduce yield, we will rely on monadic
style, which is a model of call-by-value languages. The modeling of simple gen-
erators in Haskell helps implementing them in other languages, such as OCaml.

3.1 Background

Our design of simple generators is inspired by CLU’s iterators [14] which are
themselves inspired by the generators of Alphard [15]. Generators of Alphard
were meant as a compositional abstraction of iteration: “generators abstract
over control as functions abstract over operations” [15]. These simple generators
can be viewed as asymmetric coroutines, a producer and a consumer, that pass
data in one direction only, from the producer to the consumer. Besides unidirec-
tionality, simple generators are further restricted: they can be nested but they
cannot run side-by-side (and so cannot solve problems like ‘same-fringe’).

More generally, generators with varying degrees of expressiveness have spread
to many languages. A uniform way to understand the variations in expressive-
ness is to view the various designs as imposing restrictions on delimited continu-
ations [11]. The most general design gives full first-class delimited continuations.
Some other (like that of Javascript) expose the continuation as a first-class ob-
ject in the form of an external iterator but restrict the continuation to be a
one-shot continuation. Even more restricted designs such as Ruby’s never ex-
pose the continuation and only provide internal iterators that can only be used
in the context of a foreach-like loop. One simple generators are also restricted in
that sense: they never expose the continuation and restrict the impliict continua-
tion to be one-shot. The restriction enables a simple and efficient implementation
of simple generators on a single linear stack without copying [14].

Haskell’s Hackage has a package generator for a very simple version of
Python generators. It is inefficient, relying on the full delimited continuation
monad, and, mainly, does not offer stream transducers.

Like generators, iteratees [13] provide incremental, compositional input pro-
cessing and a sound alternative to lazy IO. Whereas generators focus on produc-
tion of values, iteratees are designed around consumption [16]. There are many
implementations of iteratees in many languages: just Haskell Hackage has the li-
braries iteratee, enumerator, monad-coroutine, iterIO, pipes, conduit and
even broad categories ‘Enumerator’ and ‘Conduit’. Underlying all these iteratee
implementations is the resumption monad, which is tantamount to first-class,
multi-shot delimited continuations. Compared to simple generators, iteratees
are thus more expressive but much more heavier-weight. They cannot be imple-
mented on linear stack without copying or building auxiliary data structures.
The remarkable implementation simplicity and efficiency of simple generators
strongly motivates investigating and pushing the limits of their expressiveness.

7

−− Simple generators
type GenT e m = ReaderT (e → m ()) m
type Producer m e = GenT e m ()
type Consumer m e = e → m ()
type Transducer m1 m2 e1 e2 = Producer m1 e1 → Producer m2 e2

yield :: Monad m ⇒ e → Producer m e
runGenT :: Monad m ⇒ Producer m e → Consumer m e → m ()
foldG :: Monad m ⇒ (s → e → m s) → s → Producer (StateT s m) e → m s

newtype ReaderT env m a = ReaderT { runReaderT :: env → m a }
ask :: ReaderT env m r

newtype StateT s m a = StateT { runStateT :: s → m (a, s) }

Fig. 1. The interface of our Haskell yield library. For completeness, we also include the
ReaderT and StateT types from the transformers library.

type ’ a gen = unit → ’ a
type producer = unit gen
type consumer = exn → unit
type ’ a transducer = ’a gen → ’ a gen

val yield : exn → unit
val iterate : producer → consumer → unit
val foldG : (’ s → exn → ’ s) → ’ s → producer → (unit → ’ s)

Fig. 2. The interface of our OCaml library of simple generators. A yielded value is
encapsulated in an exception object.

3.2 Producers, Consumers, Transducers

Our design is lightweight: other than type abbreviations, it consists of just three
functions. It is summarized in the top portion of Fig. 1 and discussed in detail
in the remainder of this section. For comparison, Fig. 2 shows the corresponding
interface in OCaml.

The users of simple generators may regard GenT e m as an abstract monad:
the type GenT e m a is that of computations that emit values of type e and
eventually return a value of type a. The alias Producer emphasizes this interpre-
tation. The concrete type of GenT e m reveals that a producer is structured as
an environment (Reader) monad over an arbitrary m. The consumer is stored in
an environment that the generator can query, or “ask.” The consumer thus acts
as a loop body that the producer invokes to process the ‘emitted’ element.

With yield being the only primitive producer, and GenT e m being a monad,
we may write more complex producers, e.g., emitting characters read from a file:

fileGen :: MonadIO m ⇒ Producer m Char
fileGen = do h ← liftIO $ openFile ”/tmp/testf.txt ” ReadMode

loop h; liftIO $ hClose h
where loop h = do done ←liftIO $ hIsEOF h

if done then return ()

8

else liftIO (hGetChar h) �= yield � loop h

The standard System.IO function putChar is a sample consumer. We hook the
producer and putChar by simply saying fileGen 8runGenT8putChar, which prints
characters as they are read.

The type of yield is an instance of Consumer m a where m is GenT a m’.
Therefore, we can build consumers that transform the received element emitting
(producing) the result – in short, act as stream transducers. Since yield is a
consumer that immediately emits the consumed element, runGenT gen yield is
the same as gen, and \gen → runGenT gen yield is the identity transducer. Here
is a version of the näıve tab expander tabX0 from §2.1 expressed as a transducer:

tabY0 :: Monad m ⇒ Transducer (GenT String m) m Char String
tabY0 gen = runGenT gen con
where con ’\t’ = yield (replicate 8 ’ ’)

con c = yield [c]

Thus tabY0 fileGen is a producer that reads the file and tabifies it, and which
can be combined with a consumer like putStr using runGenT.

We may regard Producer e m as an effectful analogue of [e], representing a
sequence of elements whose production may require an effect m. Transducers
are hence analogues of list transformers, and the list combinators map, fold, etc.
have natural counterparts on generators. The following transducer is a map-like
one:

mapG :: Monad m ⇒ (e1 → e2) → Transducer (GenT e2 m) m e1 e2
mapG f gen = runGenT gen (yield ◦ f)

Since transducers are Producer-to-Producer functions, they can be combined
by functional composition – letting us add more stream processing stages by
composing-in more transducers. For example, a producer which reads the file,
upper-cases and tabifies it is composed as (tabY1 ◦ mapG toUpper) fileGen. The
library’s implementation in terms of an environment monad guarantees that such
whole stream processing happens in constant memory.

So far, we merely rewrote expandFile strict of §2.1 using our generator li-
brary. In contrast to §2.1, we can now replace the näıve tab expansion with a
sophisticated one without re-writing the file reader. Recall that the sophisticated
tab expansion has local state, the current output position. Since our library is
parametrized over a monad m, we add local state by merely instantiating m to
be the state monad.

tabY1 :: Monad m ⇒ Transducer (StateT Int (GenT String m)) m Char String
tabY1 gen = evalStateT (runGenT gen con) 0
where con e1 = get �= (\s → lift (f s e1)) �= put

f pos ’\ t’ = let pos’ = (pos +8) − pos 8mod8 8 in
yield (replicate (pos’ − pos) ’ ’) � return pos’

f pos c = yield [c] � return (if c == ’\n’ then 0 else pos +1)

To add the sophisticated tab expansion, all we need is to replace tabY0 with
tabY1 in the previous code fragments.

The examination of tabY1 points to further abstraction. The internal func-
tion f looks like tabX1 in the lazy evaluation example in §2.1, only without the
argument rest. Its type fits the pattern s → e → m s of a monadic state trans-

9

former (with the local state s being Int). We capture the pattern in combinator
similar to List.fold:

foldG :: Monad m ⇒ (s → e → m s) → s → Producer (StateT s m) e → m s
foldG f s0 gen = execStateT (runGenT gen consumer) s0
where consumer x = get �= (\s → lift $ f s x) �= put

We rewrite tabY1 using foldG as:
tabY1’ = foldG t 0 � return () where

t pos ’\ t’ = let pos’ = (pos +8) − pos 8mod8 8 in
yield (replicate (pos’ − pos) ’ ’) � return pos’

t pos c = yield [c] � return (if c == ’\n’ then 0 else pos +1)

(we will abbreviate foldG t s � return () as foldG t s.)

3.3 Cycles

The function repmin seems out of scope for generators, which are intended for
stream processing. The function repmin builds a tree rather than a stream. We
can bring repmin into the scope for generators by serializing the resulting tree
into a stream of XML-like nodes:

data TreeStream = BegNode | EndNode | LeafData Int
serializeX :: Tree → [TreeStream]

We now show how to write serializeX ◦ repmin with generators, with the ‘side
effect’ of being able to add arbitrary effects such as debug printing. We start by
writing the generator traverse that turns a tree into a producer of TreeStream
elements, and collect which collects the elements into a list:

traverse :: Monad m ⇒ Tree → Producer m TreeStream
traverse (Leaf i) = yield (LeafData i)
traverse (Node t1 t2) = do yield BegNode; traverse t1; traverse t2; yield EndNode

collect :: Monad m ⇒ Producer (StateT [e] m) e → m [e]
collect g = foldG (\s e → return $ e:s) [] g �= return ◦ reverse

Then collect ◦ traverse (in the Identity monad) is equivalent to serializeX. We now
need to insert a version of repmin that processes the TreeStream elements, re-
placing LeafData elements by the minimum. This operation clearly needs a look-
ahead buffer of type [TreeStream]. The first encountered LeafData node switches
on the look-ahead, triggering the accumulation, which continues through the
end. We will see a similar buffering in §5.2:

repminT gen = foldG go (0,[]) gen �= \(m,buf) → mapM (flush m) (reverse buf)
where go (m, []) BegNode = yield BegNode � return (m, [])

go (m, []) EndNode = yield EndNode � return (m, [])
go (m, []) (LeafData x) = return (x,[LeafData x])
go (m, b) (LeafData x) = return (x 8 min8 m,LeafData x : b)
go (m, b) e = return (m, e: b)

flush m (LeafData) = yield (LeafData m)
flush e = yield e

The serialized repmin-ed tree is then the result of the modular composition
collect ◦ repminT ◦ traverse. If we wish to add debug printing, we insert into the
cascade a stream transformer that re-emits the elements while printing them.

10

The stream transformer repminT obviously has unbounded look-ahead. Al-
though more difficult to discern, the original repmin also requires unbounded
look-ahead, with the tree itself used as an implicit look-ahead ‘buffer.’

4 Pretty-printing specification

Oppen [17] defined pretty-printing as a ‘nice’ formatting of a (tree-structured)
document within a fixed page width. The core of his specification of nice for-
matting – used in all other Haskell implementations – takes documents of the
following abstract form:

data Doc = Text String | Line | Doc :+: Doc | Group Doc

An abstract document is either a string (Text), a potential line break (Line), a
composition of two documents side-by-side (:+:), or a group. A group specifies a
unit whose linebreaks are interpreted consistently. If a group, with all Linebreaks
within it interpreted as spaces, fits onto the remainder of the line, the group is
formatted this way. Otherwise, the Linebreaks in the group (but not within
embedded groups) are treated as newlines. For example, the following simple
document:

doc1 = Group (Text ”A” :+: (Line :+: Group (Text ”B” :+: (Line :+: Text ”C”))))

would be formatted as shown on the left if the width of the page is 5 or more
characters, and as shown in the middle if the width of the page is 3 or 4 charac-
ters, and as shown on the right if the width of the page is 1 or 2 characters:

A B C A A
B C B

C

As an executable specification of the problem we take the following inefficient
pretty-printer (also used as a starting point by Chitil [18]):

type Fit = Bool type WidthLeft = Int
type Width = Int type PageWidth = Int

pretty1 :: PageWidth → Doc → String
pretty1 w d = fst $ format False w d where
format :: Fit → WidthLeft → Doc → (String, WidthLeft)
format f r (Text z) = (z, r − length z)
format True r Line = (” ”, r−1)
format False r Line = (”\n”,w)
format f r (d1 :+: d2) = (s1++ s2, r2)
where (s1,r1) = format f r d1

(s2, r2) = format f r1 d2
format f r (Group d) = format (f | | width d ≤ r) r d

width :: Doc →Width
width (Text z) = length z
width Line = 1
width (d1 :+: d2) = width d1 +width d2
width (Group d) = width d

The function pretty1 is invoked with the width of the page and the docu-
ment to format. It immediately invokes an interpreter, format, which recursively

11

traverses and formats the document maintaining a boolean-valued environment
variable f and an integer-valued state variable r. The flag f tells if the current
document is part of the group that fits on the current line. The flag affects the
formatting of Line. The state r tells the remaining available space on the current
line; the fit of a group is determined by comparing r with the expected length
of the group. This length is calculated by the function width which traverses the
document adding up the lengths of its constituent strings.

The executable specification of pretty-printing is clear but greatly inefficient:
in the worst case, it takes time exponential in the size n of the input document.
The width of an inner group may be repeatedly recomputed, as part of the
width computation for ancestor groups as they are being formatted. Further-
more, we cannot begin to format a group until we computed its width; therefore
the algorithm has an unbounded look-ahead and its latency is O(n). In contrast,
Oppen’s original algorithm which is imperative and uses explicit coroutines,
is linear in the size of the document, is independent of the page width w to
which the document is formatted, and is incremental with a latency bounded
by O(w). Attempts to algebraically derive just as efficient Haskell implementa-
tion have so far failed [19, 20]. Most Haskell pretty-printing libraries use some
form of backtracking and hence cannot have bounded latency. Standing out is
Chitil’s implementation [18], which matches the classical one in efficiency. It is
written however in an iterative style, which amounts to performing a manual
continuation-passing style transformation. Swierstra bolstered the case for lazi-
ness by showing that a linear, incremental lazy pretty-printing function exists
after all [21]. It crucially relies on tying the knot, and its non-divergence is hard
to see. Other analyses, in particular estimating space complexity, are difficult as
well. The code is complex, with five state parameters, one of which is computed
‘backwards.’ In fact the solution was developed as an attribute grammar, and
hand-translated into Haskell. (Swierstra et al. have since developed mechanical
translations and even embedding of attribute grammars in Haskell [4, 22].)

5 Stepwise generation of pretty-printer

We build an efficient pretty-printer by combining two key optimizations: (i)
avoiding re-computations of group width by memoization or pre-computation
and (ii) pruning, computing the width of a group only as far as needed to deter-
mine if the group fits on the line. These optimizations are present in one form
or another in all optimal pretty-printing implementations. Our development is
distinguished by a systematic, modular and compositional application of the op-
timizations. We build the pretty-printer as a cascade of separately developed,
tested and analyzed stream transducers. We stress the ease of analysis and its
composability.

Here is a general idea. To avoid re-computing group widths, we may compute
the width of all groups beforehand – for example, by traversing the whole doc-
ument tree and annotating each node with its width. The traversal is standard
post-order, linear in the size of the tree. Alas, the annotated tree needs as much

12

space as the original one. Since we have to traverse all children of the root node
to compute its width, we really have to build the whole annotated tree first
before we start formatting.

Applying the pruning optimization seems non-obvious, until we make the
traversal of the document tree incremental, as a generator of a stream of tra-
versed nodes. The width computation becomes a transducer that adds width an-
notations to stream elements. The annotated tree is never explicitly constructed.
Pruning becomes a straightforward optimization of the group width transducer,
bounding its look-ahead. We realize this plan below, step-wise. §5.1 converts the
document tree to a stream of nodes, which we then annotate with the horizontal
position. §5.2 modifies the annotations so they effectively become group width
annotations. §5.3 optimizes the annotation algorithm using pruning. The width-
annotated stream is formatted in §5.4. To save space, we focus on the key steps
and relegate the details to Appendix A of the full paper.

5.1 Generating document stream

The first step of our plan is converting the document tree to a stream of nodes.
The elements of the stream are of the following type:

data StreamB = TE String | LE | GBeg | GEnd

with constructors for Text and Line and a pair of constructors for entering and
leaving a group. The function genB generates a bare stream by in-order traversing
the document tree:

genB :: Monad m ⇒ Doc → Producer m StreamB

Analysis. As genB reaches a text or a line node, it (like traverse in §3) imme-
diately emits the corresponding stream element. Hence genB has unit latency.
Since genB is a simple in-order traversal of the tree, the total time to generate
the whole stream is linear in the size of the tree. The function needs stack space
proportional to the depth d of the tree since genB is not tail-recursive.

We annotate the stream elements with the rolling width, or the horizontal
position HP in a hypothetical formatting of the document in a single line:

type HP = Int
type HPB = Int
data StreamHPB = TEb HP String | LEb HP | GBegb HPB | GEndb HP

All stream elements except GBeg are annotated with the horizontal position
at the end of formatting of that element on the hypothetical single line. In
particular, GEnd is annotated with the final HP for its group. The node GBeg
is however annotated with the horizontal position HPB at the beginning of the
formatting of the group. In other words, each node is annotated with the sum
of the widths of all preceding nodes including the current. The annotation is
done by the simple state transducer trHPB, consuming StreamB and emitting
StreamHPB of annotated elements. The horizontal position is the state:

trHPB :: Monad m ⇒
Transducer (StateT HP (GenT StreamHPB m)) m StreamB StreamHPB

13

Analysis. The transforming function merely increments the current horizontal
position. It hence does constant amount of work, has unit latency and runs in
constant space. The total transformation time is linear in the size of the input
stream.

5.2 Determining group widths

The annotated stream is not directly suitable for formatting: when we encounter
a group, that is, a GBeg element, we have to decide if the group fits; hence we need
the width of the group, or the horizontal position of the group’s end. Therefore,
we transform StreamHPB into StreamHPA where GBeg will be annotated with
final rather than initial HP of the group, that is, the HP of the GEnd element
of the group. Clearly this requires look-ahead. Furthermore, since groups can be
nested, the look-ahead buffer must be structured, so that we can track several
groups in progress:

data StreamHPA = TEa HP String | LEa HP | GBega HP | GEnda HP
type Buffer m = [Buf StreamHPA m]

The overall look-ahead Buffer m is a list of simple buffers Buf that each cor-
respond to one unfinished, nested group. A Buf accumulates stream elements
corresponding a tree branch, after GBeg and up to and including the matching
GEnd. A simple buffer Buf should permit the following operations:

buf empty :: Monad m ⇒ Buf e m
(D) :: Monad m ⇒ Buf e m → e → Buf e m
(E) :: Monad m ⇒ e → Buf e m → Buf e m
buf ccat :: Monad m ⇒ Buf e m → Buf e m → Buf e m
buf emit :: Monad m ⇒ Buf e m → Producer m e

that is, the creation of the empty buffer, appending an element to the buffer
b D e and prepending an element e E b in constant time, concatenation of two
buffers in constant time, and emitting all elements in the buffer in linear time.

The producer of StreamHPA is also a state transducer, from the stream
StreamHPB built in the previous section. The state is the look-ahead Buffer m:

type St m = StateT (Buffer m) (GenT StreamHPA m)
trHPA :: Monad m ⇒ Transducer (St m) m StreamHPB StreamHPA
trHPA = foldG go [] where
go q (GBegb) = return (buf empty:q)
go (b:q) (GEndb p) = pop q (GBega p E (b D GEnda p))
go [] (TEb p) = yield (TEa p) � return [] −− ditto for LE
go (b:q) (TEb p) = return ((b D TEa p): q) −− ditto for LE

pop [] b = buf emit b � return []
pop (b’: q) b = return ((buf ccat b’ b): q)

GBeg adds a new layer to the Buffer ready to accumulate elements of the new
group. Text and Line elements outside of a group are emitted immediately to
the output stream. Otherwise, they are accumulated in the Buf of their parent
group. GEnd p supplies the final horizontal position p of the group, letting us
emit GBeg p and flush the accumulated elements in Buf. Since the terminated
group may be part of another, still unfinished group, we delay emitting elements

14

of the terminated group and put them into the look-ahead buffer of the parent
group. Only when the outer group is terminated we finally empty the look-ahead
buffer emitting all its elements.
Analysis. Since we cannot emit any group element until we see GEnd, the latency
is of the order of n, the size of the whole document (stream). The look-ahead
Buffer m is the extra space, again linear in n. Total time is determined by amor-
tization. Assume that each element of the input stream brings us the credit of 2.
We spend one credit to yield the element, and to put the element into the buffer
(in general, for any constant amount of work within go). Thus all elements in the
buffer have one credit left, enough to pay for the linear-time operation buf emit.
Thus, the total time complexity is linear in n.

Hooking up the stream StreamHPA to a linear-time constant-space formatter
(similar to the one in §5.4 below) gives the overall pretty-printer, with linear-
time complexity but unbounded, O(n) latency and the corresponding amount of
extra space. To bound the look-ahead we apply the second optimization below,
pruning.

5.3 Pruning

We have just seen that determining the width of each group is expensive since
we have to scan the whole group first. However, the exact group width is not
necessary: if the width is greater than the page width, we do not need to know
by how much. We introduce an ‘approximate horizontal position’ HPP:

data HPP = Small HP | TooFar
data StreamHPP = TEp HP String | LEp HP | GBegp HPP | GEndp HP

to use instead of the exact final horizontal position HP to annotate GBeg ele-
ments with. GBeg is annotated with TooFar if the final horizontal position of the
group is farther than the page width w away from the group’s initial horizontal
position. Computing HPP requires only bounded, by w, look-ahead. The stream
transformer trHPP below is the pruned version of trHPA of the previous section.

The look-ahead BufferP, like the look-ahead Buffer of trHPA, is a sequence
of simple Bufs that accumulate delayed elements following a GBeg up to and
including the corresponding GEnd. We need to efficiently access the sequence
from both ends however; the simple list no longer suffices. The Haskell basis
library provides the data structure Seq with the needed algorithmic properties
(we import Data.Sequence as S):

type BufferP m = (HPL, S.Seq (HPL, Buf StreamHPP m))
bufferP empty = (0,S.empty)
type HPL = Int

If HP is the beginning horizontal position of the group, HPL is a w-offset position:
any position after HPL is TooFar. For each accumulated group we compute HPL
and make it easily accessible. Furthermore, fst BufferP provides the HPL for the
outermost group, so we can easily see if the current HP is too far for that group.
If so, we can emit GBeg TooFar and empty its look-ahead Buf.

The transformer trHPP of StreamHPB to StreamHPP is the ‘pruned’ version
of trHPA:

15

type St m = StateT (BufferP m) (GenT StreamHPP m)
trHPP :: Monad m ⇒ PageWidth → Transducer (St m) m StreamHPB StreamHPP
trHPP w = foldG go bufferP empty where
...
check :: BufferP m → HP → GenT StreamHPP m ()
check (p0,q) p | p ≤ p0 && S.length q ≤ w = return (p0,q)
check (, q) p | (, b) : < q’ ← S.viewl q =

buf emit (GBegp TooFar E b) � check’ q’ p
check’ q p | (p’,) : < ← S.viewl q = check (p’, q) p

| otherwise = return bufferP empty

Except for check, it is essentially the same as trHPA of §5.2. The function check
prunes the look-ahead: it checks to see if the current horizontal position p exceeds
p0, the HPL of the outer group. If so, the outer group is wider than w, which lets
us immediately emit GBegpTooFar and the elements accumulated in the outer
Buf. The not-yet-terminated inner group may also turn out too wide: we have to
recursively check. The function check also prunes the look-ahead BufferP when
it becomes deeper than w, which may happen in the edge case of a document:

Group (Group (Group ... :+: Group ...) :+: Group (Group ... :+: Group ...))

whose StreamHPB includes an arbitrarily long sequence of GBeg p with the same
initial group position p. The first pruning criterion will not be triggered then. In
genB of §A.1 we have ensured that each group is at least one character-wide, with
no group as a sole child. Therefore, a group that contains at least w descendant
groups must be wider than w. Incidentally, this edge case has not been accounted
for in [21]; the latter algorithm would need to add yet another state parameter
to the formatting function.
Analysis. All S.Seq operations used in the code – adding to the left (C) or
to the right (B) end of the queue and deconstructing the left or the right end
with S.viewl or S.viewr – take constant amortized time. Therefore, the analysis of
trHPP is similar to the analysis of trHPA, modulo the fact that the total size of
the look-ahead BufferP is bounded by w. Therefore, latency and the extra space
for the look-ahead buffer are bounded by the page width. The total processing
time remains linear in the size of the input stream.

5.4 Putting it all together and benchmarking

The final step of pretty-printing is the formatting: transforming the pruned
StreamHPP to a stream of Strings. To format stream elements LE as spaces
or newlines, the formatter keeps track of an indicator if the current group and
its ancestors fit on the remainder of the line. The formatter trFormat is straight-
forward, with unit latency and the overall linear running time, operating in
constant space. The complete pretty-printer of a document is a cascade of the
width estimators and the formatter, applied to the initial stream generator:

pp :: Monad m ⇒ PageWidth → Doc → Producer m String
pp w = trFormat w ◦ trHPP w ◦ trHPB ◦ genB

Final Analysis. The total latency is the sum of latencies contributed by all
transducers, which is bounded by the page width w. Since all transducers process

16

the whole stream in time linear to the size of the stream, the total running time
of the pretty-printer is linear in the source document size. We need extra space:
O(w) for the look-ahead BufferP in trHPP and O(d) (where d is the document
depth) for the initial generator genB.

To validate the analyses, we ran a benchmark meant to resemble the full
binary tree prepared for pretty-printing. The benchmark, rather than writing

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2e+02 4e+02 6e+02 8e+02

C
P

U
 t

im
e

 (
s
)

Document size, Kbytes

 1

 1.5

 2

 2.5

 3

 10 15 20 25 30 35 40 45 50 55

C
P

U
 t

im
e

 (
s
)

Page width

the formatted document to a file, accumulates, in the Writer monad, its total
size and the number of lines. The benchmark was compiled with GHC -O2 version
7.0.4 and ran on a i386 FreeBSD 2GHz Pentium 4 system. The running times
(in seconds) are the medians of five consecutive runs. The figure on the left plots
the running time against the size of the formatted output, for the fixed page
size w = 50. The figure on the right plots the running time of pretty-printing
the same benchmark document (output size 414,870 bytes) against the different
values of the page width w. The benchmark validates the analyzes: the running
time is a linear function of the document length, independent of w.

6 Conclusions

We have described simple generators to complement or supplant lazy evaluation
in stream-processing programs. Like lazy evaluation, simple generators promote
modularity, stepwise development and incremental testing by decoupling stream
producers, consumers and transformers. Unlike lazy evaluation, simple genera-
tors are compatible with effects including IO, and allow modular, composable
reasoning about time, latency, and especially about space consumption. We have
implemented simple generators as libraries in Haskell and OCaml. The Haskell
monadic implementation guides implementations in other languages, making
connections with the visitor pattern and dynamic binding clear. In future work,
we will formalize the yield calculus and formally relate with call-by-need.

We have illustrated simple generators and demonstrated their expressive
power by solving the challenging efficient pretty-printing problem. Our imple-
mentation is a new and unexpected solution: efficient pretty-printing was be-
lieved to require full delimited continuations or coroutines, which simple genera-
tors do not provide. Like the other optimal solutions, it is linear in the size of the
input document and has bounded latency. Our solution however was assembled
from separately developed and tested components. We have also analyzed time

17

and space complexity component-by-component, combining the analyses at the
end. Our precise analyses discovered previously overlooked edge cases.

Acknowledgments. We thank S. Doaitse Swierstra for helpful discussions.
Many helpful suggestions by anonymous reviewers are gratefully acknowledged.

References

[1] Hughes, J.: Why functional programming matters. Comput. J. 32 (1989) 98–107
[2] McIlroy, M.D.: Power series, power serious. J. Funct. Program. 9 (1999) 325–337
[3] Bird, R.S.: Using circular programs to eliminate multiple traversals of data. Acta

Informatica 21 (1984) 239–250 10.1007/BF00264249.
[4] Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: how

to do aspect oriented programming in Haskell. In: ICFP. (2009) 245–256
[5] Henderson, P., Morris, Jr., J.H.: A lazy evaluator. In: POPL, New York, NY,

USA, ACM (1976) 95–103
[6] Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need

lambda calculus. In: POPL, New York, NY, USA, ACM (1995) 233–246
[7] Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control. In:

POPL, New York, NY, USA, ACM (2009) 153–164
[8] Chang, S., Van Horn, D., Felleisen, M.: Evaluating call-by-need on the control

stack. In: Trends in functional programming, Springer (2011) 1–15
[9] Kay, M.: You pull, I’ll push: on the polarity of pipelines. In: Proc. Balisage: The

Markup Conference. Volume 3 of Balisage Series on Markup Technologies. (2009)
[10] Jackson, M.A.: Principles of Program Design. Academic Press, Inc., Orlando, FL,

USA (1975)
[11] James, R.P., Sabry, A.: Yield: Mainstream deliminted continuations. In: Theory

and Practice of Delimited Continuations. (2011)
[12] Clare, A., King, R.D.: Data mining the yeast genome in a lazy functional language.

In: Practical Aspects of Declarative Languages. Volume 2562 of LNCS. Springer-
Verlag (2003) 19–36

[13] Kiselyov, O.: Iteratees. In: FLOPS. Volume 7294 of LNCS., Springer (2012)
166–181

[14] Liskov, B.: A history of CLU. Technical Report 561, MIT LCS (1992)
[15] Shaw, M., Wulf, W.A., London, R.L.: Abstraction and verification in Alphard:

defining and specifying iteration and generators. Comm. ACM 20 (1977) 553–564
[16] Lato, J.W.: Understandings of iteratees. http://johnlato.blogspot.com/2012/

06/understandings-of-iteratees.html (2012)
[17] Oppen, D.C.: Prettyprinting. ACM Trans. Program. Lang. Syst. 2 (1980) 465–483
[18] Chitil, O.: Pretty printing with lazy dequeues. ACM Trans. Program. Lang. Syst.

27 (2005) 163–184
[19] Hughes, J.: The design of a pretty-printing library. In: Advanced Functional

Programming, First Int. Spring School, Springer-Verlag (1995) 53–96
[20] Wadler, P.: A prettier printer. In: The Fun of Programming. A Symposium in

honour of Professor Richard Bird’s 60th birthday, Oxford (2003)
[21] Swierstra, S.D.: Linear, online, functional pretty printing (corrected and extended

version). Technical Report UU-CS-2004-025a, Utrecht University (2004)
[22] Dijkstra, A.: Stepping through Haskell. PhD thesis, Utrecht University, Depart-

ment of Information and Computing Sciences (2005)

18

A Detailed stepwise generation of pretty-printer

This section fills in the outline in §5 of the stepwise development of the optimal
pretty-printer, and gives the complete details. §A.1 converts the document tree to
a stream of nodes, which we annotate with the horizontal position in §A.2. §A.3
modifies the annotations so they effectively become group width annotations.
§A.4 optimizes the annotation algorithm using pruning. The width-annotated
stream is formatted in §A.5 and (more optimally) §A.6.

A.1 Generating document stream

The first step of our plan is converting the document tree to a stream of nodes,
to be transformed and eventually formatted. The elements of the stream are of
the following type:

data E ab a = TE a String | LE a | GBeg ab | GEnd a
type StreamB = E () ()

with the variants for a Text and Line element and for the entering and leaving a
group. The development in the main body of the paper, §5, defined a sequence
of closely-related data types StreamB, StreamHPB, etc. To avoid the need to
constantly re-define TE, LE and similar constructors, we introduce a single data
type E and suitably parametrize it by the annotations ab and a to cover the
whole range of data types in §5, from StreamB to StreamHPP. In the latter,
GBeg had a different annotation (an estimate of the horizontal position) from the
annotations on the other elements. StreamB, as before, describes an annotation-
free, bare stream.

The function genB generates a bare stream by in-order traversing the docu-
ment tree. The function is quite like traverse already explained in §3:

genB :: Monad m ⇒ Doc → GenT StreamB m ()
genB (Text ””) = return ()
genB (Text z) = yield (TE () z)
genB Line = yield (LE ())
genB (d1 :+: d2) = genB d1 � genB d2
genB (Group d0) | Just d ← norm d0 =

yield (GBeg ()) � genB d � yield (GEnd ())
where
norm (Group d) = norm d
norm (Text ””) = Nothing
norm (Text ”” :+: d) = norm d
norm d = Just d

genB = return ()

If the document were on a disk, in a sort of XML file, genB could be understood
as reading the file and emitting the nodes as they are parsed. The function genB
performs normalization of the document, ensuring that: (i) every group is strictly
wider than any of its children groups (thus eliminating Group (Group ...)); (ii) any
group is at least one-character wide. Normalization is often overlooked, yet crit-
ical: without it no pretty-printing algorithm can have bounded look-ahead. For
example, in a document with a branch (Group ◦ Group ◦ ... ◦ Group) (Text ””)

19

with an arbitrarily long sequence of Groups, any pretty-printing algorithm with-
out normalization has to scan the whole branch, which can be arbitrarily long,
to determine that it does not contribute to the width of the current branch. We
discuss this bad edge-case in more detail in §A.4.

Analysis. As genB reaches a text or a line node (whose content is reflected in
the formatted output), it immediately emits the corresponding stream element.
Hence genB has unit latency. Since genB is a simple in-order traversal of the
tree, the total time to generate the whole stream is linear in the size n of the
tree. The function needs stack space proportional to the depth d of the tree since
genB is not tail-recursive (and neither were formatting functions in §4).

A.2 Computing the horizontal position

We now annotate the stream elements with the rolling width, or the horizontal
position HP in a hypothetical formatting of the document in a single long line:

type HP = Int
type HPB = Int

type StreamHPB = E HPB HP

All stream elements except GBeg are annotated with the horizontal position
at the end of formatting of that element on the hypothetical single line. In
particular, GEnd is annotated with final HP for its group. The node GBeg is
however annotated with the horizontal position HPB at the beginning of the
formatting of the group. In other words, each node is annotated with the sum of
the widths of all preceding nodes including the current. The annotation is done
by the simple state transducer, consuming StreamB and emitting StreamHPB of
annotated elements. The horizontal position is the state:

trHPB :: Monad m ⇒
GenT StreamB (StateT HP (GenT StreamHPB m)) ()
→ GenT StreamHPB m ()

trHPB = foldG go 0
where
go :: Monad m ⇒ HP → StreamB → GenT StreamHPB m HP
go p (TE z) = let p’ = p +length z in

yield (TE p’ z) � return p’
go p (LE) = let p’ = p +1 in

yield (LE p’) � return p’
go p (GBeg) = yield (GBeg p) � return p
go p (GEnd) = yield (GEnd p) � return p

Here is the annotated stream generated for our sample document doc1 from §4:
Generated: GBeg 0
Generated: TE 1 ”A”
Generated: LE 2
Generated: GBeg 2
Generated: TE 3 ”B”
Generated: LE 4
Generated: TE 5 ”C”

20

Generated: GEnd 5
Generated: GEnd 5

The last HP is 5, at which the string ”C” and both groups end.

Analysis. The transforming function go does constant amount of work. There-
fore, trHPB has unit latency; total transformation time is linear in the size of
the input stream. The function trHPB works in constant space.

A.3 Determining group widths

The annotated stream is not directly suitable for formatting: when we encounter
a group, that is, a GBeg element, we have to decide if the group fits; hence we need
the width of the group, or the horizontal position of the group’s end. Therefore,
we transform StreamHPB into StreamHPA where GBeg will be annotated with
final rather than initial HP of the group, that is, the HP of the GEnd element
of the group. Clearly this requires look-ahead. Furthermore, since groups can be
nested, the look-ahead buffer must be structured, so we can track several groups
in progress:

type StreamHPA = E HP HP
type Buffer m = [Buf StreamHPA m]

The overall look-ahead Buffer m is a list of simple buffers Buf that each cor-
respond to one unfinished, nested group. A Buf accumulates stream elements
corresponding a tree branch, after GBeg and up to and including the matching
GEnd.

The simple buffer Buf should permit the following operations:
buf empty :: Monad m ⇒ Buf e m
(D) :: Monad m ⇒ Buf e m → e → Buf e m
(E) :: Monad m ⇒ e → Buf e m → Buf e m
buf ccat :: Monad m ⇒ Buf e m → Buf e m → Buf e m
buf emit :: Monad m ⇒ Buf e m → GenT e m ()

that is, the creation of the empty buffer, appending an element to the buffer
b D e and prepending an element e E b in constant time, concatenation of
two buffers in constant time, and emitting all elements in the buffer in linear
time. Essentially, Buf is a tree, which buf emit traverses. We chose the following
implementation for Buf:

type Buf e m = GenT e m ()
buf empty = return ()
b D e = b � yield e
e E b = yield e � b
buf ccat b1 b2 = b1 � b2
buf emit b = b

One may substitute any other implementation: All code below accesses the buffer
only through the abstract interface.

The producer of StreamHPA is also a state transducer, from the stream
StreamHPB built in the previous section. The look-ahead Buffer m is the state:

trHPA :: Monad m ⇒

21

GenT StreamHPB
(StateT (Buffer m) (GenT StreamHPA m)) ()

→ GenT StreamHPA m ()
trHPA = foldG go []
where
go q (GBeg) = return (buf empty:q)
go (b:q) e@(GEnd p) = pop q (GBeg p E (b De))
go [] e = yield e � return []
go (b:q) e = return ((b D e): q)

pop [] b = buf emit b � return []
pop (b’: q) b = return ((buf ccat b’ b): q)

GBeg adds a new layer to the Buffer ready to accumulate elements of the new
group. Text and Line elements outside of a group are emitted immediately to the
output stream. Otherwise, the are accumulated in the Buf of their parent group.
GEnd p brings us the final horizontal position p of the group, letting us emit
GBeg p and flush the accumulated elements in the Buf. Since the terminated
group may be part of another, still unfinished group, we delay the emitting
elements of the terminated group and put them into the look-ahead buffer of
the parent group. Only when the outer group is terminated we finally empty the
look-ahead buffer emitting all its elements. The following code, reflecting the
sequence of transformations so far:

runGenT (trHPA ◦ trHPB ◦ genB $ doc1)
(\i → putStrLn $ ”Generated: ” ++ show i)

prints StreamHPA for the sample document doc1:
Generated: GBeg 5
Generated: TE 1 ”A”
Generated: LE 2
Generated: GBeg 5
Generated: TE 3 ”B”
Generated: LE 4
Generated: TE 5 ”C”
Generated: GEnd 5
Generated: GEnd 5

Compared with streamHPB in §A.2, GBeg tells the final position of its group. We
stress the incremental development our algorithm: after one part of the overall
transformation is developed, we may immediately test it, and analyze it.

Analysis. Since we cannot emit any group element until we see GEnd, the latency
is of the order of n, the size of the whole document (stream). The look-ahead
Buffer m is the extra space, again linear in n. Total time is determined by amor-
tization. Assume that each element of the input stream brings us the credit of 2.
We spend one credit to yield the element, and to put the element into the buffer
(in general, for any constant amount of work within go). Thus all elements in the
buffer have one credit left, enough to pay for the linear-time operation buf emit.
Thus, the total time complexity is linear in n. Furthermore, we built the new
algorithm in incremental fashion, without all tied up in knots. Not only can we
clearly see non-divergence, we are also able to accurately and easily estimate
time and space complexities.

22

If we hook up the stream StreamHPA to a linear-time constant-space format-
ter (similar to the one in §A.6 below), we obtain the overall pretty-printer, with
linear-time complexity but unbounded, O(n) latency, taking the corresponding
amount of extra space. To bound the look-ahead we apply the second optimiza-
tion, pruning.

A.4 Pruning

We have just seen that determining the width of each group is expensive since
we have to scan the whole group first. However, the exact group width is not
necessary: if the width is greater than the page width, we do not need to know
by how much. We introduce an ‘approximate horizontal position’ HPP:

data HPP = Small HP | TooFar deriving Show

type StreamHPP = E HPP HP

to use instead of the exact final horizontal position HP to annotate GBeg ele-
ments with. GBeg is annotated with TooFar if the final horizontal position of the
group is farther than the page width w away from the group’s initial horizontal
position. Computing HPP requires only bounded, by w, look-ahead. The stream
transformer trHPP described in this section is the optimized, pruned, version of
trHPA of the previous section.

The look-ahead BufferP, like the look-ahead Buffer of trHPA, is a sequence
of simple Bufs that accumulate delayed elements following a GBeg up to and
including the corresponding GEnd. We will need to efficiently access the sequence
from both ends, however; the simple list no longer suffices. The Haskell basis
library provides the data structure Seq with the needed algorithmic properties
(we import Data.Sequence as S):

type BufferP m = (HPL, S.Seq (HPL, Buf StreamHPP m))
bufferP empty = (0,S.empty)
type HPL = Int

If HP is the beginning horizontal position of the group, HPL is a w-offset position:
any position after HPL is TooFar. For each accumulated group we compute HPL
and make it easily accessible. Furthermore, fst BufferP provides HPL for the
outermost group, so we can easily see if the current HP is too far for that group.
If so, we can emit GBeg TooFar and empty its look-ahead Buf.

The transformer trHPP of StreamHPB to StreamHPP is the ‘pruned’ version
of trHPA (we also add debug printing to show the trace of the consumed stream).
It is the state transducer with the state BufferP:

trHPP :: (Monad m, MonadIO m) ⇒
PageWidth
→ GenT StreamHPB

(StateT (BufferP m) (GenT StreamHPP m)) ()
→ GenT StreamHPP m ()

trHPP w = foldG go’ bufferP empty
where
go’ s e = do
liftIO ◦ putStrLn $ ”trHPP: read: ” ++ show e

23

go s e

go b@(,q) (TE p z) | S.null q =
yield (TE p z) � return b

go b@(,q) (LE p) | S.null q =
yield (LE p) � return b

go b@(,q) (GEnd p) | S.null q =
yield (GEnd p) � return b

go (, q) (GBeg p) | S.null q =
return (p+w,S.singleton (p+w,buf empty))

go (p0,q) (GBeg p) =
check (p0,q B (p+w,buf empty)) p

go (p0,q) (GEnd p) | q’ : > (,b) ← S.viewr q =
pop p0 q’ (GBeg (Small p) E (b D (GEnd p)))

go (p0,q) (TE p z) = check (p0,push (TE p z) q) p
go (p0,q) (LE p) = check (p0,push (LE p) q) p

push e q | q’ : > (p,b) ← S.viewr q =
q’ B (p,b D e)

pop p0 q b | S.null q =
buf emit b � return bufferP empty

pop p0 q b | q’ : > (p,b’) ← S.viewr q =
return (p0, q’ B (p,buf ccat b’ b))

check (p0,q) p | p ≤ p0 && S.length q ≤ w =
return (p0,q)

check (, q) p | (, b) : < q’ ← S.viewl q =
buf emit (GBeg TooFar E b) � check’ q’ p

check’ q p | (p’,) : < ← S.viewl q = check (p’, q) p
| otherwise = return bufferP empty

It is the longest function in our code. Except for check, it is essentially the same
as trHPA of §A.3. When no accumulation takes place (BufferP has no Bufs), input
stream elements are immediately relayed to the output stream. Receiving GBeg
switches on the accumulation. We compute HPL for that group as p+w and push
a new Buf to BufferP to accumulate the elements to be later emitted for that
group. GEnd p terminates the accumulation for the group. The accumulated
elements, preceded by GBeg (Small p), are added to the buffer of the parent
group or emitted, see pop.

The new, compared to trHPA, function check prunes the look-ahead: it checks
to see if the current horizontal position p exceeds p0, the HPL of the outer
group. If so, the outer group is wider than w, which lets us immediately emit
GBeg TooFar and the elements accumulated in the outer Buf. The not-yet-terminated
inner group may also turn out too wide: we have to recursively check.

The function check also prunes the look-ahead BufferP when it becomes
deeper than w, which may happen in the edge case of a document like the
following:

Group (

24

Group (Group ... :+: Group ...) :+:
Group (Group ... :+: Group ...))

whose StreamHPB includes an arbitrarily long sequence of GBeg p with the same
initial group position p. The first pruning criterion will not be triggered then.
Recall that genB of §A.1 has ensured that each group is at least one character-
wide, with no group as a sole child. Therefore, a group that contains at least w
descendant groups must be wider than w. Incidentally, this edge case has not
been accounted for in [21]; the latter algorithm would need to add yet another
state parameter to the formatting function. The clarity of our algorithm helped
us discover the edge case.

The sample pruned StreamHPP produced by trHPP for the page width 3 is
as follows:

trHPP: read: GBeg 0
trHPP: read: TE 1 ”A”
trHPP: read: LE 2
trHPP: read: GBeg 2
trHPP: read: TE 3 ”B”
trHPP: read: LE 4
Generated: GBeg TooFar
Generated: TE 1 ”A”
Generated: LE 2
trHPP: read: TE 5 ”C”
trHPP: read: GEnd 5
Generated: GBeg (Small 5)
Generated: TE 3 ”B”
Generated: LE 4
Generated: TE 5 ”C”
Generated: GEnd 5
trHPP: read: GEnd 5
Generated: GEnd 5

The listing contains the debugging messages printed as soon as an element of
the input StreamHPB is received. The receiving and emitting of stream elements
clearly interleave. When the looked-ahead group elements TE ”A”, LE, TE ”B”,
LE tell that the group must be already wider than the page width 3, we indeed
emit GBeg TooFar right away, without waiting for GEnd.

Analysis. All S.Seq operations used in the code – adding to the left (C) or
to the right (B) end of the queue and deconstructing the left or the right end
with S.viewl or S.viewr – take constant amortized time. Therefore, the analysis of
trHPP is similar to the analysis of trHPA, modulo the fact that the total size of
the look-ahead BufferP is bounded by w. Therefore, latency and the extra space
for the look-ahead buffer are bounded by the page width. The total processing
time remains linear in the size of the input stream.

A.5 Formatting

The final step of pretty-printing is the formatting: transforming the pruned
StreamHPP to a stream of Strings. To format stream elements TL as spaces

25

or newlines, the formatter keeps track of the boolean indicator if the current
group fits on the remainder of the line. Since groups nest, we maintain the stack
of boolean indicators:

type Fits = [Bool]

The formatter is the state transducer with the state (Fits,HPL). The HPL part
of the state is the horizontal position at the end of the current line. If the final
position of a group is over that HPL, the group does not fit. The group certainly
does not fit if its final position is TooFar:

trFormat0 :: Monad m ⇒
PageWidth
→ GenT StreamHPP (StateT (Fits, HPL) (GenT String m)) ()
→ GenT String m ()

trFormat0 w = foldG go ([False], w)
where
go (f , l) (TE z) = yield z � return (f , l)
go (f@(True:), l) (LE) = yield ” ” � return (f , l)
go (f@(False :), l) (LE p) = yield ”\n” � return (f , p+w)
go (f , l) (GBeg TooFar) = return (False : f , l)
go (f , l) (GBeg (Small p)) = return ((p ≤ l): f , l)
go (: f , l) (GEnd) = return (f , l)

The result of formatting the sample document for different page widths matches
the expected one, shown in §4.

Analysis. Since we immediately emit the received data, latency is unit. Overall
processing time is linear in the size of the stream. Alas, we need extra space for
the stack Fits, which we eliminate next.

A.6 Better Formatting

We exploit a particular form of the stack Fits of indicators if a group and its
ancestor groups fit within the rest of the current line. Clearly if a group fits,
all of its children groups fit as well. Therefore, if an element of the Fits stack is
False, the elements below must all be False. Conversely, if an element is True,
the elements above it, through the top of the stack, must all be True. Thus the
whole stack is adequately represented by a single number, the number of True
elements at the top:

type FitI = Int

The optimized formatting transducer is as follows:
trFormat :: Monad m ⇒

PageWidth
→ GenT StreamHPP (StateT (FitI, HPL) (GenT String m)) ()
→ GenT String m ()

trFormat w = foldG go (0,w)
where
go (f , l) (TE z) = yield z � return (f , l)
go (0, l) (LE p) = yield ”\n” � return (0, p+w)
go (f , l) (LE) = yield ” ” � return (f , l)
go (0, l) (GBeg TooFar) = return (0, l)

26

go (0, l) (GBeg (Small p)) = return
(if p ≤ l then 1 else 0, l)

go (f , l) (GBeg) = return (f +1,l)
go (0, l) (GEnd) = return (0, l)
go (f , l) (GEnd) = return (f−1,l)

Analysis. Like the earlier trFormat0, the formatter clearly has unit latency and
the overall linear running time. It now operates in constant space.

