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Abstract. We describe the first implementation of multi-prompt delim-
ited control operators in OCaml that is direct in that it captures only the
needed part of the control stack. The implementation is a library that
requires no changes to the OCaml compiler or run-time, so it is perfectly
compatible with existing OCaml source code and byte-code. The library
has been in fruitful practical use for four years.

We present the library as an implementation of an abstract machine
derived by elaborating the definitional machine. The abstract view lets
us distill a minimalistic API, scAPI, sufficient for implementing multi-
prompt delimited control. We argue that a language system that supports
exception and stack-overflow handling supports scAPI. Our library illus-
trates how to use scAPI to implement multi-prompt delimited control
in a typed language. The approach is general and can be used to add
multi-prompt delimited control to other existing language systems.

1 Introduction

The library delimcc of delimited control for byte-code OCaml was released at the
beginning of 2006 [1] and has been used for implementing (delimited) dynamic
binding [2], a very shallow embedding of a probabilistic domain-specific language
[3, 4], CGI programming with nested transactions [5], efficient and comprehen-
sible direct-style code generators [6], normalization of MapReduce-loop bodies
by evaluation [7], and automatic bundling of RPC requests [8].

The delimcc library was the first direct implementation of delimited control
in a typed, mainstream, mature language — it captures only the needed prefix of
the current continuation, requires no code transformations, and integrates with
native-language exceptions. Captured delimited continuations can be serialized,
stored, or migrated, then resumed in a different process.

The delimcc library is an OCaml library rather than a fork or a patch of the
OCaml system. Like the num library of arbitrary-precision numbers, delimcc gives
OCaml programmers new datatypes and operations, some backed by C code. The
delimcc library does not modify the OCaml compiler or run-time in any way,
so it ensures perfect binary compatibility with existing OCaml code and other
libraries. This library shows that delimited control can be implemented efficiently
(without copying the whole stack) and non-invasively in a typed language that



was not designed with delimited control in mind and that offers no compiler
plug-ins or run-time extensions beyond a basic foreign-function interface. Our
goal in this paper is to describe the implementation of delimcc with enough detail
and generality so that it can be replicated in other language systems.

The delimcc library implements the so-called multi-prompt delimited con-
trol operators that were first proposed by Gunter, Rémy, and Riecke [9] and
further developed by Dybvig, Peyton Jones, and Sabry [10]. The multi-prompt
operators turn out indispensable for normalization-by-evaluation for strong sums
[11]. Further applications of specifically multi-prompt operators include the im-
plementation of delimited dynamic binding [2] and the normalization of loop
bodies by evaluation [7]. The delimcc library turns out suitably fast, useful, and
working in practice. In this paper, we show that it also works in theory.

We describe the implementation and argue for its generality and correctness.
The correctness argument cannot be formal: after all, there is no formal speci-
fication of OCaml, with or without delimited control. We informally relate the
byte-code OCaml interpreter to an abstract machine, which we rigorously relate
to abstract machines for delimited control. The main insight is the discovery that
OCaml byte-code already has the facilities needed to implement delimited con-
trol efficiently. In fact, any language system accommodating exception handling
and recovery from control-stack overflow likely offers these facilities. Languages
that use recursion extensively typically deal with stack overflow [12].

Our contributions are as follows.

1. We state the semantics of multi-prompt delimited control in a form that
guides the implementer, in §3. We derive a minimalistic API, scAPI, suffi-
cient for implementing delimited control. For generality, we describe scAPI
in terms of an abstract state machine, which focuses on activation frame
manipulation while eliding idiosyncratic details of concrete language sys-
tems. Our scAPI includes the creation of ‘stable-point’ frames, completely
describing the machine state including the contents of non-scratch registers.
We should be able to identify the recent stable point frame and copy a part
of the stack between two stable points. We do not require marking of arbi-
trary frames, adding new types of frames, or even knowing the format of the
stack.

2. On the concrete example of the OCaml byte-code and delimcc, we demon-
strate in §4 using the scAPI to implement multi-prompt delimited control.!
OCaml happens to support scAPI, §4.2.

3. The implementation of delimcc poses challenging typing problems, which
previously [10, 13] were handled using unsafe coerce. We use reference cells
to derive in §4.1 a safe solution, free from any undefined behavior.

4. The experience with the delimcc library called for an extension of the simple
interface [10], to avoid a memory leak in multi-prompt shift, appendix B
of the full paper.? The new primitive push_delim_subcont reinstates the
captured continuation along with its delimiter.

! The Scheme implementation, mentioned on the delimcc web page, is another concrete
example of using scAPI, attesting to the generality of the approach.
2 Available at http://oknij.org/ftp/Computation/caml-shift.pdf



5. We describe serialization of captured delimited continuations so to make
them persistent. We show why serialized delimited continuations must refer
to some reachable data by name rather than incorporate everything by value.
Serialized delimited continuations should be, so to speak, twice delimited.?

We review the related work in §5 and then conclude. The performance of the
library proved adequate, see [4]. In particular, aborting part of the computa-
tion with delimcc is just as fast as raising an OCaml exception. We start by
introducing the multi-prompt delimited control and the delimcc library in §2.

The delimcc library source along with validation tests and sample code is
freely available from http://okmij.org/ftp/Computation/Continuations.html#
caml-shift.

2 Multi-prompt Delimited Control

Before discussing the implementation of delimcc, we introduce the library on
sample code, informally describing multi-prompt delimited control. The basic
delimcc interface, taken from [10], defines two abstract types and four functions:

type ’a prompt
type (’a,’b) subcont

val new_prompt : unit -> ’a prompt
val push_prompt : ’a prompt -> (unit -> ’a) -> ’a
val take_subcont : ’b prompt -> ((’a,’b) subcont -> unit -> ’b) -> ’a

val push_subcont : (’a,’b) subcont -> (unit -> ’a) -> ’b

whose semantics is formally discussed in §3. Intuitively, a value of the type ’a
prompt is an exception object, with operations to pack and extract a thunk of
the type unit -> ’a. The expression new_prompt () produces a fresh exception
object; take_subcont p (fun _ () -> e) packs fun () -> e into the excep-
tion object denoted by the prompt p, and raises the exception. The expression
push_prompt p (fun () -> e) is akin to OCaml’s try e with ... form, eval-
uating e and returning its result. Should e raise an exception p, it is caught, the
contained thunk is extracted, and the result of its evaluation is returned. All
other exceptions are re-raised. As an example, let us left fold over a file, reading
the file line-by-line and reducing using the given function f:

(* val fold_file: (’a -> string -> ’a) -> ’a -> in_channel -> ’a *)

let fold_file f z file = let ex = new_prompt () in

let rec loop z =
let inp =
try input_line file with End_of_file -> take_subcont ex (fun _ (O-> 2z)
in loop (f z inp)

in push_prompt ex (fun () -> loop z);;

3 Due to the lack of space, we refer the reader to the long title comments in the file
delimcc.ml for the explanation of the serialization.



For example, fold_file (fun z s -> z + 1) O cin returns the line count in
the input channel cin. The code for fold_file is exactly equivalent to

let fold_file f z file : ’a = let exception Ex of ’a in

let rec loop z =
let inp = try input_line file with End_of_file -> raise (Ex z)
in loop (f z inp)

in try loop z with Ex z -> z

if OCaml had local exception declaration such as those in SML. OCaml however
lacks such exception declarations.* The delimcc library thus fills this omission.

The exceptions thrown by take_subcont are restartable: take_subcont p
(fun sk () -> e) would bind sk to a ‘restart object’ before raising the excep-
tion p; e may return the object as part of its result. Given the restart object,
push_subcont restarts the exception, continuing the execution from the point
of take_subcont p till push_prompt p, returning the result of the latter. The
following should make it concrete. First we introduce shiftO that captures a
frequently occurring pattern

(* val shift0: ’a prompt -> ((°b -> ’a) -> ’a) -> ’b *)
let shiftO p f = take_subcont p (fun sk () ->
f (fun c -> push_prompt p (fun () -> push_subcont sk (fun () -> c))))

which is used as follows:

type ’a res = Value of ’a | Exc of ’a * (unit -> ’a res)
let accum p z str =
if str = "" then shift0 p (fun k -> Exc (z,fun OO -> k z))
else z + String.length str

We may view shiftO in this code as raising the exception p, with k bound to
the restart function. When k is applied to a value z, the execution continues as
if the entire shift0 expression had been replaced by z. Since the computation,
after restart, may raise the exception again, we have to be able to handle it,
hence the call to push_prompt. The function accum is meant to be a reducer
function passed to a fold:

let sum_arr arr = let p = new_prompt () in
push_prompt p (fun () -> Value (Array.fold_left (accum p) O arr));;

let t2 = sum_arr [| "FLOPS";"";"2010"11;;

< val t2 : int res = Exc (5, <fun>)

let t3 = match t2 with Exc (_,resume) -> resume ();;
— val t3 : int res = Value 9

The function sum_arr sums the lengths of all strings in a string array. Encoun-
tering an empty string throws an exception. The function sum_arr then returns

4 Placing exception declarations into an OCaml local module does not fully implement
SML local exceptions. In SML, a local exception declaration may refer to a bound
type variable. A type variable in OCaml cannot bind into a local structure.



Exc (z,resume) reporting the length so far. Evaluating resume () restarts
the exception and resumes the accumulation, returning either the final result
Value z or another exception. The same exception can be restarted more than
once, which is particularly useful for probabilistic programming [3]. The func-
tions accum and sum_arr have demonstrated the application of delimited control
to ‘invert’ an enumerator, that is, to convert the enumerator to a stream [14, 15].

We can use accum with fold_file defined earlier, to sum the lengths of the
strings read from the file, stopping at empty strings. Although fold_file itself
uses delimited control, the two take_subcont use different prompts and so act
unaware of each other.

The formal, small-step semantics of these delimited control operators was
specified in [9] (push_prompt was called set and take_subcont was called
cupto) — as a set of re-writing rules. The rules, which operate essentially on
the source code, greatly help a programmer to predict the evaluation result of
an expression. Alas, the rules offer little guidance for the implementer since
typical language systems are stateful machines, whose behavior is difficult to
correlate with pure source-code re-writing.

3 Abstract Machine for Multi-prompt Delimited Control

More useful for the implementer is semantics expressed in terms of an abstract
machine, whose components and steps can, hopefully, be related to an imple-
mentation of a concrete machine at hand. By abstracting away implementation
details, abstract state machines let us discern generally applicable lessons. Our
first lesson is the identification of a small scAPI for manipulating the control
stack. We further learn that any language system supporting exception handling
already implements a half of scAPI.

We start with the definitional machine introduced in [10, Figure 1] as a formal
specification of multi-prompt delimited control. We reproduce the definition in
appendix A for reference. The machine contains features that are recognizable
by implementers, such as ‘context’ — which is a sequence of activation frames,
commonly known as ‘(control) stack.” The machine however contains an extra
component, a list of contexts. It is not immediately clear what it may correspond
to in concrete machines, raising doubts if delimited control can be added to an
existing machine such as the OCaml byte-code without re-designing it.

These worries are unfounded. The machine of [10] can be converted into the
equivalent machine described below, which has no extra components such as
lists of control stacks. We prove the equivalence in appendix A. Our machine
Mgc, Figure 1, is bare-bone: it has no environment, arithmetic and many other
practically useful features, which are orthogonal and can be easily added. It
abstracts away all details except for control stack. The machine can be viewed
as a generalization of the environment-less version of the machine of [16].

The program for the machine is call-by-value A-calculus, augmented with
integral-valued prompts and delimited control operators. The operators here are
syntactic forms rather than constants: for example, newP evaluates each time to



Variables z,v,... Prompts p,qe N

Expressions e ::= v | ee | newP | pushPee | takeSCee | pushSCee

Values vu=uz | Are|p| D

Contexts D := 0O | De | vD | pushPDe | pushSCDe | takeSCDe
| takeSCp D | pushPp D
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(takeSCee', D, q) —
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(e, D[v0], q) e non-value
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(e, D
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(pushSCee’, D, q
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[takeSCe'], q) e non-value
e, Dl
[

e, D[pushSCe’], ¢) e non-value

(- e)o, D, q) = (elv/a], D,q)
(newP, D, q) — (q,D,q+1)
(pushPpe, D, q) — (e, D[pushP plJ], q)
(takeSCpv, D, q) — (vD1, D2,q) Ds[pushPpD1] = D, pushPpD’ ¢ D,
(pushSC D’e, D, q) — (e, D[D'],q)
(v, D[D1],q) = (D1[v], D, q) D, #0

(pushPpv, D, q) — (v, D, q)

Fig. 1. Abstract machine Mg for multi-prompt delimited control

a new prompt. In delimcc, we eschew extending the syntax of OCaml. Therefore,
we represent newP as a function application new_prompt (). Likewise, pushPpe
takes the form push_prompt p (fun () -> e) in delimcc. The operation D[u]
replaces the hole in context D with u, which may be either an expression or
another context; e[v/z]| stands for a capture-avoiding substitution of v for vari-
able x in expression e. Prompts p and contexts D may not appear in source
programs. The machine operates on configurations (e, D, q) of the current ex-
pression e, ‘stack’ D and the counter for generating fresh prompt names. The
initial configuration is (e, [, 0); the machine stops when it reaches (v,, q).
The machine exhibits familiar to the implementers features: D is a sequence
of activation frames, the ‘stack’; the first six transitions look like a function
call, pushing a new activation frame onto the stack; the last-but-one transition
is akin to the function return, popping the frame. (For generality, we only re-
quire the sequence of the popped frames D; to be non-empty.) The machine
also exhibits non-standard stack-manipulation operations: D[D’] in the pushSC
transition pushes several frames D’ at once onto the stack; the takeSC transition
involves locating a particular frame pushPpD; and splitting the stack at that
frame. The removed prefix D is passed as a value to the argument of takeSC;
in a real machine, the stack prefix D; would be copied onto heap, the ordinary



place of storing composite values. These non-standard stack operations thus con-
stitute an API, which we call scAPI, for implementing multi-prompt delimited
control.

To see how scAPI may be supported, we relate scAPI with exception han-
dling, a widely supported feature. As a specification of exception handling we
take an abstract machine Mgy, Figure 2. The program for M, is too call-by-value
A-calculus, extended with the operations to raise and catch exceptions. These
operations are indexed by exception types. A source programmer has an unlim-
ited supply of exception types to choose from. Exception types, however, are not
values and cannot be created at run-time.

Variables z,y,... Exceptions p, ...
Expressions e = v | ee | raisepe | try,ee
Values v =z | Az.e

Contexts D := 0 | De | vD | raise, D | try,De
Transitions between configurations (e, D)
(ee¢’, D) — (e, D[T€]) e non-value
(ve, D) +— (e, D[vO)]) e non-value

(raisepe, D) — (e, D[raise, ]) e non-value

(- €)v, D) — (elo/z], D)
(try,ee’, D) + (e, D[try,Oe'])
(raise, v, D) +— (e'v, D2) Dasltry, Di€'] = D, try, D'e ¢ D1

(v, D[D1]) = (Da[v], D) Dy #0
(try,ve', D) — (v, D)

Fig. 2. Abstract machine M, for exception handling

The comparison of Figures 1 and 2 shows many similarities. For example,
we observe that the expression pushP pv reduces to v in any evaluation context;
likewise, try, v e’ reduces to v for any D. One may also notice a similarity
between raising an exception and takeSC that disregards the captured continua-
tion. On the other hand, takeSC uses prompts whose new values can be created
at run-time; the set of exceptions is fixed during the program execution. To dis-
pel doubts, we state the equivalence result precisely, even more so as we rely on
it in the implementation.

First, we have to extend Mg, with integers serving as prompts, which can be
compared for equality using ==. Prompts cannot appear in source programs but
are generated by an operator newP, evaluating each time to a fresh value. We add
unit (), pairs (e, e) and pair projections fst and snd, and the conditional. We call
the extended machine M. Let M/j_ be Myc with a restriction on source programs:
no pushSC, all takeSC expressions must be of the form takeSCe (Ax.e’) where



x is not free in ¢’. Therefore, contexts D are not values of M}_. We define the
translation |-| of MJ_ expressions to the expressions of M., as follows (where p
is a dedicated exception type):

|[takeSCp (Az.e)| = raisep,(Az.¢€,p)

|pushPpe] = try, e(A\y.if p==sndy then fsty() else raise,, y)
It is homomorphism in the other cases. The intuition comes from mail-relay sys-
tems. The exception is an envelope, the prompt p is an address, the exception
handler is a relay station, which matches the address on the envelope with its
own. If the address matches, the station opens the envelope; otherwise, it for-
wards the message to the next relay. More formally, we state: for all M}_ source
programs e, the machine reaches the terminal configuration iff M., does so for
the source program |e|. The proof is straightforward bi-simulation.

We conclude that Mg, effectively provides the operation to locate a particu-
lar stack frame and split the stack at the frame, disregarding the prefix. That
particular stack frame, trpre’ is quite like the frame pushPpD that has to
be located in Myg.. Thus any real machine that supports exception handling
implements a part of scAPI.

To see how the stack-copying part of scAPI could be implemented, we turn
to stack overflow. Any language system that supports and encourages recursion
has to face stack overflow and should be able to recover from it [12]. Recovery
typically involves either copying the stack into a larger allocated area, or adjoin-
ing a new stack fragment. In the latter case, the implementation needs to handle
stack underflow, to switch to the previous stack fragment. In the extreme case,
each ‘stack’ fragment is one-frame long and so all frames are heap-allocated. In
every case, the language system has to copy, or adjoin and remove stack frag-
ments. These are exactly the operations of scAPI. The deep analogy between
handling stack overflow and underflow on one hand and capturing and reinstat-
ing continuations on the other hand has been noted in [12].

We now introduce an equivalent variant of My, ensuring that a captured
continuation is delimited by pushP frames on both ends. These frames are stable
points. Real machines use the control stack as a scratch allocation area and for
register spill-over. The state of real machines also contains more components
(such as CPU registers), used as a fast cache for various frame data [17]. When
capturing continuation, we have to make sure that all these caches are flushed so
that the captured activation frames contain the complete state for resuming the
computation. As we rely on exception handling for support of a part of scAPI,
we identify pushP frames with exception handling frames. To our knowledge, the
points of exception handling correspond to stable points of concrete machines.

We define the variant M. of Mgc by changing two transitions to:

(takeSCpv, D, q) — (vDy, Da,q)
Ds[pushP pDq] = D[pushPp’l]], p’ fresh, pushPpD’ ¢ D,
(pushSC D'e, D, q) — (e, D[pushPp”D’],q) p"” fresh
Strictly speaking, we ought to have introduced an auxiliary counter ¢’ in the
configuration to generate fresh auxiliary prompts p’ and p”’. We can prove the
equivalence of the modified My to the original one, using bi-simulation similar to



the one in appendix A. The key fact is that the auxiliary prompts are fresh, are
not passed as values and so there cannot be any takeSC operations referring to
these prompts. Any continuation captured by Méc is delimited by pushP p’ at one
end and pushPp at the other: the continuation is captured between two stable
points, as desired. The re-instated continuation is too sandwiched between two
pushP frames: pushP p’(] is part of the captured continuation, the other frame
is inserted by pushSC. The presence of pushP on both ends also helps in making
delimcc well-typed, as we see next.

4 Implementation in OCaml

In the previous section, we have introduced the deliberately general and min-
imalistic scAPI that is sufficient to implement delimited control, and shown
that a concrete language system supporting handling of exceptions and of stack
overflow is likely to implement scAPI. We now demonstrate both points on the
concrete example of OCaml: that is, we describe the implementation of delimcc.
In §4.2 we show how exactly OCaml, which supports exceptions and handles
stack overflow, implements scAPI. In fact, the OCaml byte-code interpreter is
an instance of M., extended with the operations for copying parts of stack. §4.3
then explains the implementation of delimcc in terms of scAPI, closely following
the ‘abstract implementation’ in §3. The OCaml byte-code interpreter is written
in C; our delimcc code is in OCaml (using thin C wrappers for scAPI), giving us
more confidence in the correctness due to the expressive language and the use
of types. OCaml is a typed language; the delimcc interface is also typed. Having
avoided types so far we confront them now.

4.1 Implementing Typed Prompts

We describe the challenges of implementing delimited control in a typed lan-
guage on a simpler example, of realizing the M. machine, with the restricted
form of takeSC, in terms of exception handling. Earlier, in §3, we explained the
implementation on abstract machines. The version of that code in OCaml:

let take_subcont p thunk = raise (PO (thunk,p))
let push_prompt p thunk = try thunk () with
(PO (v,p’)) as y -> if p = p’ then v () else raise y

is ill-typed for two reasons. First, the type of a prompt in delimcc, §2 (whose
interface is based on [9, 10]) is parametrized by the so-called answer-type, the
type of values yielded by the push_prompt that pushed it. The prompts p and p’
in the above code are generally pushed by different push_prompts and hence may
have different types. In OCaml, we can only compare values of the same type. To
solve the problem, we implement prompts as records with an int component,
called ‘mark’, making new_prompt produce a unique value for that field. We
can then compare prompts by comparing their marks. (The overhead of marks
proved negligible.) A deeper problem is that the typing of try el with ex ->



e2 in OCaml requires el and e2 be of the same type. Hence thunk and v in our
code must have the same type. However, thunk produces the value to return by
push_prompt p and v is ‘thrown to’ push_prompt p’. Generally, p and p’, and
so thunk and v, have different types. It is only when the marks of p and p’ have
the same value that v and thunk have the same type. Dependent types, or at
least recursive and existential types [18] seem necessary.

The post-office intuition helps us again: we usually do not communicate with
a mailman directly; rather, we use a shared mailbox. The correspondence be-
tween take_subcont and push_prompt is established through a common prompt,
a shared value. This prompt is well-suited for the role of the mailbox. A refer-
ence cell of the type ’a option ref may act as a mailbox to exchange values of
the type ’a; the empty mailbox contains None. Since in our code take_subcont
sends to push_subcont a thunk, it is fitting to rather use (unit -> ’a) ref as
the mailbox type.

type ’a prompt = {mbox: (unit -> ’a) ref; mark: unit ref}
let mbox_empty () = failwith "Empty mbox"

let mbox_receive p = (* val mbox_receive : ’a prompt -> ’a *)
let k = !(p.mbox) in p.mbox := mbox_empty; k ()
let new_prompt () = {mbox = ref mbox_empty; mark = ref ()};;

The mark field of the prompt should uniquely identify the prompt. Since we
already use reference cells, and since OCaml has the physical equality ==, it
behooves us to take a unit ref as prompt’s mark. We rely on the fact that each
evaluation of ref () gives a unique value, which is == only to itself. If physical
equality is not provided, we can always emulate it via equi-mutability.

To send a thunk to a push_prompt, the operation take_subcont deposits the
thunk into the shared mailbox and ‘alerts’ the receiver, by sending the exception
containing the mark of the mailbox. Since the type of the mark is always unit
ref regardless of the type of the thunk, we no longer have any typing problems.

exception PO of unit ref
let take_subcont p thunk = p.mbox := thunk; raise (PO p.mark)
let push_prompt p thunk = try thunk ()

with (PO mark’) as y ->

if p.mark == mark’ then mbox_receive p else raise y;;

Anticipating the continuation capture in §4.3, we make the code more uniform:

let push_prompt p thunk =

try let res = thunk () in p.mbox := (fun () -> res); raise (PO p.mark)
with (PO mark’) as y ->
if p.mark == mark’ then mbox_receive p else raise y;;

The inferred typeis ’a prompt -> (unit -> ’a) -> ’a, befitting delimcc. The
value produced by push_prompt is in every case the value received from the
mailbox. Our earlier typing problems are clearly eliminated.



4.2 scAPI in OCaml

We now precisely specify scAPI and describe how the OCaml byte-code imple-
ments it. We formulate scAPI as the interface

module EK : sig type ek type ekfragment
val get_ek : unit -> ek
val add_ek : ek -> ek -> ek
val sub_ek : ek -> ek -> ek

val pop_stack_fragment : ek -> ek -> ekfragment
val push_stack_fragment : ekfragment -> unit
end

with two abstract types, ek and ekfragment. The former identifies an excep-
tion frame; get_ek () returns the identity of the latest exception frame. There
are no operations to scan the stack looking for a particular frame. A stack
fragment between two exception frames is represented by ekfragment. Given
the stack of the form Da[try . [D1[tryom D']]], pop-stack fragment ekl ek2
transforms the stack to Da[try,,, D’] returning the removed part D;[try .o O]
as ekfragment. One of the exception frames is captured as part of ekfragment.
The operation push_stack_fragment ekfragment splices such an ekfragment
in at the point of the latest exception frame, turning the stack from Ds[try,, D’]
to Da[try.[Di[try,s D']]]. These stack operations clearly correspond to the
transitions of Mgc in §3. We never capture the top stack fragment D’ and never
copy onto the top of the stack D’ because D’ contains ephemeral local data [17].
When the captured ekfragment is pushed back onto the stack, the identities of
the exception frames captured in the fragment may change. If we obtained the
identities of the captured frames before, we should adjust our ek values; hence
the operations add_ek and sub_ek.

The OCaml byte-code interpreter [19], an elaboration of the abstract ma-
chine ZAM [17], supports exceptions, pairs, conditionals, comparison, state to
generate unique identifiers — and is thus an instance of M.,. Exception frames
are linked together; the dedicated register trapsp of the interpreter keeps the
pointer to the latest exception frame. Therefore, we can identify exception frames
by their pointers; ek is such a pointer, relative to the beginning of the stack
caml_stack_high, in units of value. Evaluating try e with ... creates a
new exception frame before evaluating e. Reading trapsp in e by executing
get_ek () gives us the identity of the created exception frame. Since the rel-
ative pointer is just an integer, add_ek and sub_ek are integer addition and
subtraction. OCaml handles stack overflow by copying the stack into a larger al-
located memory block. That implies that either there are no absolute pointers to
stack values stored in data structures, or there is a way to adjust them. In fact,
the only absolute pointers into stack are the link pointers in exception frames.
The OCaml byte-code has a procedure to adjust such pointers after copying the
stack. The operations pop_stack_fragment and push_stack_fragment are the
variants of interpreter’s stack-copying procedure. These operations along with
get_ek can be invoked from OCaml code via the foreign-function interface.



4.3 Implementing delimcc in Terms of scAPI

In this section we show how to use scAPI to implement the delimcc interface,
presented in §2. One may view this section as an example of transcribing the
abstract implementation, Mj_ in §3, into OCaml, keeping the code well-typed.
The transcription is mostly straightforward, after we remove the final obstacle
that we now explain.

Recall that ijc requires locating on the stack a pushPp frame with a par-
ticular prompt value p and copying parts of stack between two pushP frames.
OCaml, via scAPI, supports copying parts of stack between exception frames.
We can also obtain the identity of the latest exception frame. However, scAPI
gives us no way to scan the stack looking for a frame with a particular identity.
§4.1 showed how to relate a push_prompt frame to an exception frame and how
to locate on stack a push_prompt p frame with a particular prompt value p —
alas, flushing the stack up to that point. We have to find a way to identify a
pushP frame without disturbing the stack.

The solution is easy: push_prompt should maintain its own stack of its invo-
cations, called ‘parallel stack’ or pstack. The pstack is a mutable list of pframes,
which we can easily scan. A pframe on pstack corresponds to a push_prompt
on the real stack and contains the identity of push_prompt’s exception frame
and the mark of the prompt (see §4.1) ‘pushed’ at that point:

exception DelimCCE

type pframe = {pfr_mark : unit ref; pfr_ek : ek}
type pstack = pframe list ref

let ptop : pstack = ref []

DelimCCE is the dedicated exception type, called py in Me, and PO in §4.1. Un-
like the latter, the exception no longer carries the prompt’s identity since we
obtain this identity from pstack, accessed via the global variable ptop. Essen-
tially, pstack maintains the association between the ‘pushed’ prompts and the
corresponding push_prompt’s frames on the real stack — precisely what we need
for implementing M_.

From now on, the transcription from Mfk to OCaml is straightforward. First
we implement the pushP pe and pushP pv transitions of My (inherited by MY.):

let push_prompt_aux (p : ’a prompt) (body : unit -> ’a) : ’a =
let pframe = {pfr_mark = p.mark; pfr_ek = get_ek ()} in
let () = ptop := pframe :: (!ptop) in
let res = body () in p.mbox := fun () -> res; raise DelimCCE

let push_prompt (p : ’a prompt) (body : unit -> ’a) : ’a =
try push_prompt_aux p body with
| DelimCCE -> (match !ptop with h::t ->
assert (h.pfr_mark == p.mark); ptop := t; mbox_receive p)
| e -> match !ptop with
h::t -> assert(h.pfr_mark==p.mark); ptop:=t; raise e

The try-block establishes an exception frame, on the top of which we build the
call frame for the evaluation of the body — or, of the wrapper push_prompt_aux.



That call frame will be at the very bottom of ekfragment when the continuation
is captured. The wrapper pushes a new pframe onto pstack, which push_prompt
removes upon normal or exceptional exit. The assert expresses the invariant:
every exception frame created by push_prompt corresponds to a pframe. That
pframe is on the top of pstack iff push_prompt’s exception frame is the lat-
est exception frame. The body may finish normally, returning a value. It may
also invoke take_subcont capturing and removing the part of the stack up to
push_prompt, thus sending the value to push_prompt ‘directly’. We use a mail-
box for such communication, see §4.1. In fact, the above code is an elaboration
of the code in §4.1, using prompt, mbox_receive defined in that section.

The code for take_subcont is too an elaboration of the code in §4.1; now
it has to capture the continuation rather than simply disregarding it. In Mj_,
we capture the continuation between two pushP frames, that is, between two
exception frames. The captured continuation:

type (’a,’b) subcont =
{subcont_ek : ekfragment; subcont_ps : pframe list; subcont_bs : ek;
subcont_pa : ’a prompt; subcont_pb : ’b prompt}

includes two mailboxes (to receive a value when the continuation is reinstated
and to send the result), the copy of the OCaml stack ekfragment, and the
corresponding copy of the parallel stack. The latter is a list of pframes in reverse
order. We note in subcont_bs the base of the ekfragment, the identity of the
exception frame left on the stack after the ekfragment is removed. We need the
base to adjust pfr_ek fields of pframes when the continuation is reinstated.

The transition takeSC of M requires locating the latest frame pushP p with
the given prompt p and splitting the stack at that point. This job is now done
by unwind, which scans the pstack returning h, the pframe corresponding to a
given prompt (identified by its mark).

let rec unwind acc mark = function

| -> failwith "No prompt was set"
| h::t as s ->
if h.pfr_mark == mark then (h,s,acc) else unwind (h::acc) mark t

The function also splits pstack at h, returning the part up to but not including
h as acc, in reverse frame order.

The function take_subcont straightforwardly implements the takeSC transi-
tion of MY, removing the fragments from the real and parallel stack, packaging
them into a subcont structure. First, however, take_subcont must push the
frame pushP p’ with a fresh prompt p’. That prompt will never be referred to in
any take_subcont function, see §3; therefore, we should not register the pushP p’
frame in pstack. We use push_prompt_simple to push such an ‘ephemeral’
prompt, used only as a mailbox.

let push_prompt_simple (p: ’a prompt) (body: unit -> unit) : ’a =
try body (); raise DelimCCE with DelimCCE -> mbox_receive p

let take_subcont (p: ’b prompt) (f: (’a,’b) subcont -> unit->’b) : ’a =



let pa = new_prompt () in push_prompt_simple pa (fun () ->
let (h,s,subcontchain) = unwind [] p.mark !ptop in
let () = ptop := s in let ek = h.pfr_ek in let sk = get_ek () in
let ekfrag = pop_stack_fragment ek sk in
p-mbox := f {subcont_ek = ekfrag; subcont_pa = pa;
subcont_pb = p; subcont_ps = subcontchain;
subcont_bs ek})

The function push_subcont is the transcription of M_’s transition pushSC.

let push_subcont (sk : (’a,’b) subcont) (m : unit -> ’a) : ’b =
let pb = sk.subcont_pb in push_prompt_simple pb (fun () ->
let base = sk.subcont_bs in let ek = get_ek () in
List.iter (fun pf ->

ptop := {pf with pfr_ek = add_ek ek (sub_ek pf.pfr_ek base)} :: !ptop)
sk.subcont_ps;
sk.subcont_pa.mbox := m; push_stack_fragment sk.subcont_ek)

When we push the ekfragment onto the stack, the identities of the exception
frames therein may change. We have to ‘re-base’ pfk_ek fields of pframes in the
parallel stack fragment to restore the correspondence.

5 Related Work

The paper [9] that introduced multi-prompt delimited control presented its im-
plementation in SML/NJ, relying on local exceptions and call/cc. Later the same
authors offered an OCaml implementation [13], using “a very naive experimen-
tal brute-force version of callcc that copies the stack”, along with 0bj.magic,
or unsafe coerce. Not only copying of the entire control stack to and from the
heap on each use of control operators that is problematic. Since now delimited
continuations capture (much more) of the stack than needed, the values referred
from the unneeded part cannot be garbage-collected: The implementation has a
memory leak. Furthermore, the correctness of the OCaml call/cc implementa-
tion [20] is not obvious as it copies the stack regardless of whether the byte-code
interpreter is at a stable point or not. Perhaps for that reason the users of call/cc
are warned that its “Use in production code is not advised”[20].

Multi-prompt delimited control was further developed and formalized in [10],
who also presented indirect implementations in Scheme and Haskell. The Scheme
implementation used call/cc, and the Haskell used the continuation monad along
with unsafeCoerce.

A direct and efficient implementation of single-prompt delimited control
(shift/reset) was first described in [21], specifically for Scheme48. The imple-
mentation relied on the hybrid stack/heap strategy for activation frames, par-
ticular to Scheme48 and a few other Scheme systems. The implementation re-
quired several modifications of the Scheme48 run-time. On many benchmarks,
the paper [21] showed the impressive performance of the direct implementation
of shift/reset compared to the call/cc emulation. The implementation, alas, has



not been available as part of Scheme48. The paper specifically left to future work
relating the implementation to the specification of shift/reset.

Recently there has been interest in direct implementations (as compared
to the call/cc-based one [22] in SML/NJ) of the single prompt shift/reset in
the typed setting [23, 24]. Supporting delimited control required modifying the
compiler or the run-time, or both.

Many efficient implementations of undelimited continuations have been de-
scribed in Scheme literature, e.g. [12]. Clinger et al. [25] is a comprehensive
survey. Their lessons hold for delimited control as well.

Sekiguchi et al. [26] use exceptions to implement multi-prompt delimited
control in Java and C++4. Their method relies on source- or byte-code trans-
lation, changing method signatures and preventing mixing the translated code
with untranslated libraries. The run-time overhead is especially notable for the
control-operator—free portions of the code. A similar, more explicit transforma-
tion technique for source Scheme programs is described in [27], with proofs of
correctness. The approach, alas, targets undelimited continuations, which brings
unnecessary complications. The translation is untyped, deals only with a subset
of Scheme and too has difficulties interfacing third-party libraries.

6 Conclusions

We have presented abstract and concrete implementations of multi-prompt de-
limited control. The concrete implementation is the delimcc OCaml library, which
has been fruitfully used for over four years. The abstract implementation has re-
lated delimited control to exception handling and distilled scAPI, a minimalistic
API, sufficient for the implementation of delimited control. A language system
accommodating exception handling and stack-overflow recovery is likely to sup-
port scAPI. The OCaml byte-code does support scAPI, and thus permits, as it
18, the implementation of delimited control. We described the implementation of
delimcc as an example of using scAPI in a typed language.

OCaml exceptions and delimited control integrate and benefit each other.
OCaml exception frames naturally implement stable points of scAPI. Exception
handlers may be captured in delimited continuations, and re-instated along with
the captured continuation; exceptions remove the prompts. Conversely, delimcc
effectively provides local exception declarations, hitherto missing in OCaml.

In the future, we would like to incorporate the lessons learned in efficient
implementations of undelimited continuations, in particular, stack segmentation
of [12]. Determining if the native-code OCaml compiler can support scAPT effi-
ciently requires further investigation.” We also want to apply the scAPI-based
approach to implementing delimited control in other language systems. The for-
mal part of the paper can be extended further by adding state and stack-copying
primitives to M., and relating the result to M.

® The main difficulty is the natively compiled code’s using the C stack, which may
contain unboxed values. The naive copying of such stack fragments to and from the
heap requires many movements and GC root registrations.
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A Deriving My, from the Definitional Machine

In this section we recall the definitional machine for multi-prompt delimited con-
trol and prove its equivalence to the machine in Figure 1. The proof is standard
and patterned after [28].

Variables z,vy,... Prompts p,q € N
v | ee | newP | pushPee | takeSCee | pushSCee
z | Av.e|p| E
Contexts D == 0O | De | vD | pushP De | pushSC De | takeSC De | takeSCpD
Sequences E =[] | p:E | D:E
Transitions between configurations (e, D, E, q)
(ee’, D, E,q) — (e,D[0€'], E,q) e non-value
(ve,D,E,q) — (e, Dw0], E, q) e non-value
(pushPee’, D, E, q)
(takeSCee’, D, E,q) — (e, D[takeSCe'], F, q) e non-value
)
)

Expressions e ::

Values v o

— (e, D[pushP Ue€'], E,q) e non-value

(takeSCpe, D, E,q) +— (e, D[takeSCpU], E,q) e non-value
(pushsCee’, D, E,q) — (e, D[pushSCe'], E, q) e non-value

((Az.e)v,D, E,q) — (e[v/z],D, E,q)
(newP, D, E,q) — (q,D,E,q+ 1)
(pushPpe, D, E,q) — (e,0,p: D: E,q)
(takeSCpv, D, E,q) — (v(D: E1),0,F2,q) FEi1++(p:E))=FE, p¢ Er
(pushSCE’e, D, E,q) — (e,0,E' ++ (D : E),q)

(v,D,E,q) — (D[],00, E,q) D#0
(v,0,p: E,q) — (v,00,E,q)
(v,0,D: E,q) — (v,D,E,q)

Fig. 3. Definitional machine Mge for multi-prompt delimited control from [10, Figure
1] (adjusted for style). Prompts p and sequences E may not appear in source programs.

Compared to My in Figure 1, the definitional machine has an extra compo-
nent, the sequence F, whose elements are contexts and prompts. We write u : F
for a sequence whose first element is v and the rest is E; we write Fy ++ F»
for the concatenation of two sequences. The rest of the notation is explained in
§3. The machine starts in the configuration (e,, [], 0) and stops when it reaches
(0,0, 1, 0).

To prove the equivalence of the definitional machine with Mgy, we first relate
configurations of the two machines. To distinguish the definitional machine, we
place the diacritic mark ~ over all components of its configuration. We define the
family of relations ~ as the least relational family satisfying the following:



Relating configurations ~,

(@.D,E.,q) ~c (e, D,q) iff e~ce, (D,E)~aD, §=q
Relating expressions: € ~. e iff €=e¢ except for
E~.D iff (O,E)~gD

Relating contexts:

(O,1) ~ O

(D[O¢), E) ~q D[Oe] ift &~ e, (D,E) ~q D

(D[v0], E) ~q D[o0] iff ©~ v, (D,E) ~a D

(D [pushP Ole], E) ~q DipushPUe] iff €~ e, (D,E) ~q D

and similarly for pushSC, takeSC
(0,p: E) ~q DlpushPp0] iff (0, E) ~q D
(0,D:E)~y D iff (D,E)~yD

Lemma 1. If (D, E) ~4 D then there exist Dy and D2 such that D = DQ[D ]
and (D []) ~a Dy and (0, E) ~q Dy. Conversely, if (D,[]) ~q4 D1 and (O, E) ~
D2 then (D E) ~d DQ[Dl]

The proof is by induction on the structure of D.
Lemma 2. If (0, 1) ~q D1 and (O, E3) ~q Do then (O, By ++ Es) ~q Da[D1].

Lemma 3. If (ﬁ,E) ~q D and E = E, ++ Ey then there exist D1 and Do
such that D = Ds[D4] and (ﬁ,E’\l) ~q D1 and (ﬁ,E;) ~gq Ds. Conversely, if
(ﬁ, E) ~a D and D = Ds[D4] then there exist F1 and Es such that E = E14++FE»
and (ﬁ,E\l) ~q D1 and (E,E’;) ~aq Ds.

The proof is by induction on the length of E7, using Lemma 1.

~

Lemma 4. If (D,]]) ~q D and € ~. ¢ then Dle] ~. Dle].

The proof is by structural induction on D.
As usual, we write —T for the transitive closure of the transition relation,
and —* for the transitive reflexive closure.

Proposition 1 (Equivalence). For all € and e such that € ~. e, (€,0,[],0) —
(©,8,[],q) for some v iff (e,03,0) —* (v,0,q) for some v such that U ~. v.
The proof depends on the following lemma:

Lemma 5. Let C be the configuration of Mgem and let C' be the related config-
uration of Mge. Then:

1. If@ s O for some 6'\’, then C —* C' for some C' and c’ ~e O



2. If C + (" for some C' then there exists C" and C’ such that C' —* C",
Cw—TC, and C' ~,C" .

3. If C is_a terminal configuration, then there exists terminal C" such that
C—=*C"and C' ~, C

Only the cases where C includes p@e, ta@pv, pusll/éC\ FE’e, and v are
interesting. In the other configurations, the machines clearly ‘move in lockstep’.
The machines turn out to move in lockstep for C' including p@e, ta@pv
(seen from Lemma 3) and pusfSC\E’e (proved using Lemma 2). If C' is a termi-
nal configuration (v,, q), the related C may be a non-terminal configuration
(v, ﬁ, E, q) where E is the list made entirely of [J. In the number of steps equal
to the length of the list, the machine reaches the terminal configuration that is
related to C. A non-terminal configuration C' = (v, D, q) may be related to one
of (7, f), E, q) with D # 0, (0, ﬁ,ﬁ, q), or (U, 0, ﬁ, q). In the first case, we
use Lemmas 1,4. In the second case, C' = (pushPpv, D', q) and C" = (v, D', q)
where D = D’[pushP pJ]. In the third case, we apply the last rule in Figure 3,
may be more than once if Dis empty.

B Plugging a Memory Leak

Experience with delimcc called for the addition of push_delim_subcont to its
interface. The new function can in principle be written in terms of the existing
ones:

let push_delim_subcont (sk : (’a,’b) subcont) (m : unit -> ’a) : ’b =
push_prompt sk.subcont_pb (fun () -> push_subcont sk v)

However, that implementation has a memory leak, which we demonstrate. The
function push_delim_subcont expresses a common pattern, already seen in
shift0 of §2, of pushing a delimited continuation. The same pattern occurs
in implementations of user-level threads or co-routines, where the memory leak
becomes the problem, as was kindly pointed out by Christophe Deleuze; the
following is a simplified version of his code.

type state = Done | Pause of (unit, state) subcont
let p = new_prompt ()

let pause () = take_subcont p (fun sk () -> Pause sk)
let proc () = while true do pause () done; Done
let rec sched_loop = function | Done -> ()
| Pause sk ->
sched_loop (
push_prompt p (fun () -> push_subcont sk (fun (O -> ())))

Our example has only one, continually running thread proc, which pauses on
each iteration. The scheduler keeps resuming the thread. Since take_subcont
removes the scheduler’s prompt p, the scheduler has to push it again — hence the



pattern expressed in push_delim_subcont. Informally, the scheduler has to re-
establish the thread-kernel boundary. Evaluating sched_loop (push_prompt p
proc) several thousand times leads to abnormal termination after the program
exhausts all available memory.

To see the problem clearly we use the abstract machine I\/IQC, to which we add
a new expression loopejes, a new frame type loop e and the corresponding
transitions:

(loopeé’e, D, q) — (e, D[loope’]], q) e non-value

(loop e,v’ D? q) = (1oop 6/6/7 D? q)

Let e, be takeSCp (Az. ). Tracing transitions in Mj_ shows pushP p (1oop epep)
evaluating to loop e, (pushP p’'0d), to be called D;. The prompt p’ is fresh. The
value D; corresponds to the result of pause (). To resume the thread, we
evaluate pushP p (pushSC Dj ()), which reduces to pushP p (pushP p” (loop epep)).
Here, p” is the fresh prompt introduced by the pushSC transition of I\/Ifjc. The
result is the value pushP p”’ (Loop e, (pushP p'00)), called Dy, which is longer than
D; by an extra frame pushP p”. Resuming D, gives D3 that is longer still. The
memory leak becomes apparent.

The solution is to implement push_delim_subcont as a new library prim-
itive, taking the code at the beginning of the section as the specification. We
transform the code by inlining push_subcont and collapsing the two adjacent
pushP frames: when there is already pushP p at the top of the stack, the pushSC
transition of M}_ no longer needs to push the pushPp” frame.



