
Can Software Development be elevated 1

“An ugly plane won’t fly” - an
aviator’s saying

Can software development be elevated from the
Microsoft * style?

Oleg Kiselyov
CIS, Inc

3401, E.University Dr., Suite 104 Denton TX 76208
oleg@ponder.csci.unt.edu, oleg@unt.edu, http://mozart.compsci.com/~oleg/ftp/

Microsoft epitomizes bloated and unsafe programming combined with poor design and trading of
quality for speed and market leverage. This spoils even good ideas they occasionally have.
This paper is an eclectic study of (mostly C++) programming techniques, with lots of "good"
and "bad" code snippets, and pessimistic conclusions. The bad snippets are taken from OpenDoc,
MacTech magazine, and code found in trade rags and on the net. To contrast good and bad, the

snippets are rewritten in a better style. Moreover, the
paper shows off and expounds on a few immensely
powerful and safe programming techniques, like nested
functions, lazy objects, stealing of the body, iterators in a
local context. Deep obscurity of these techniques tells
however that resistance is futile and we all will be
assimilated.

* The use of Microsoft here is for hyperbole only and in no way
should be construed as an insult.

Pointers vs. References

This is a fairly well beaten track. Before I
swerve off it though, let me add a few more
lashes. Besides, there are still too many
dangerous and unnecessary pointers in C++
code out there. Indeed, in very many situations
where pointers are commonly used:

- passing big objects to a function: void
foo(BigStruct* p);
- emulating "output" function parameters
(by-reference):
void swap(int* a, int* b);

- referring to out-of-body object items
class DrawEditor {
 COrderedList*

fEmbeddedFrames; };

pointers can be replaced by references. And they
should be replaced by references wherever
possible, for a good reason that references are

harder to mess up. Indeed, you cannot forget to
initialize a reference (it simply can’t be created
uninitialized), you cannot inadvertently “drop a
star” like in

void foo(int *p)
{... *p +=1; p += 1; }

(where both operators are syntactically correct
and semantically valid; chances are only one is
meant (often the first)). Pointers have an edge in
that they can possess a special value 0 (NULL,
nil), which often means some special
circumstance (say, the function generated no
output, or an input parameter is omitted). Still,
this can be emulated with references: void
foo(int& a) {a = 1;} foo(int()); calls
foo() squarely for its side-effect, disregarding
the output variable.

Pointers to a function make up a slightly
special case. In C++, this case has to be even
more special:

Can Software Development be elevated 2

double minimizer(double x0,
 double (*fn_being_minimized)
 (const double x))
{
 double f0 =
 fn_being_minimized(x0);
 ...
}

class Minimizee
{
public:
 virtual double operator ()
 (const double x) = 0;
};
double minimizer(double x0,
 Minimizee& fn_being_minimized)
{
 // exactly the same usage
 double f0 =
 fn_being_minimized(x0);
 ...
}

Fig. 1a. A typical usage of a function pointer Fig. 1b. A better alternative: function class

‘Function’ classes provide a safer, and better
alternative. The abstract ‘function’ class defined
on Fig. 1b. can be fleshed out as follows:

void foo(void)
{
 class the_minimizee :
 public Minimizee
 {
 double a;
 public:
 double operator ()
 (const double x)
 {return sqr(x*x - a);}
 the_minimizee
 (const double _a) : a(_a) {}
 };
 cout << "min value " <<
 minimizer(the_minimizee(10))
 << endl;
}

From the operational point of view, function
class is almost identical to function pointer. In a
sense, a function class is a syntactic wrapper
around a function pointer, which is tucked away
into a vtable. Since the pointer itself is hidden,
however, there is no way one can mess it up,
leave uninitialized, or use inappropriately.
Moreover, a function class gives an
opportunity to pass some "environment" for the
callback function, which is much more elegant a
solution than ubiquitous RefCon.

Are pointers really necessary? When C is better
than Java

Daring and heretical as it sounds, sometimes
pointers are indispensable. For one thing, to
emulate a late (dynamic) binding. Let’s take
iostreams as an example. One can create a
dummy (empty) istream object, associate it
with a file buffer, re-attach it later to a string
buffer (and later make it share a buffer with
another stream). Thus, stream buffer actually
acts as a "virtual member" of the istream class.
Using pointers (to an abstract base class,
streambuf in our example) is the only way in
C++ to emulate virtual (or virtual+dynamic)
data items.

The most common situation where pointers
are really necessary, and where they shine is a
serial access to collections, mostly from within
loops . Serial (as opposed to random) access
means getting hold of elements of a collection in
some sequential order, one after another, rather
than hopping around. It is surprising to realize
that many algorithms do not actually require
random access. Sequential access is obviously
faster than a random one: this is why a C
program can perform better than an equivalent
Fortran (Java) code. As an example, let’s
consider a (overhyped as usual) claim "Java will
also make it easy for developers to distribute
new technologies, such as video compression
algorithms, without having to target a specific
computer architecture"
(http://www.sun.com/sunworldonline/swol-
03-1996/swol-03-multimedia.html), and contrast

Can Software Development be elevated 3

it with reality. As far as video/image processing
is concerned, one of the most common
operations is color conversion, say, from RGB to
YUV. In Fortran/Java, one can do that in the
following generic way:

Pixel pix_matrix[] =
 new Pixel[N*M];
for(i=0; i<N*M; i++)
 pix_matrix[i] =
 rgbtoyuv_pixel(pix_matrix[i]);

Let's take a careful look at how it works: each
evaluation of pix_matrix[i] involves:

assert(0 <= i < N*M);
return &pix_matrix[0] +
 i*sizeof(Pixel);

Depending on the sizeof(Pixel), the
multiplication may be non-trivial. This overhead
– two comparisons (beside a comparison in the
loop termination condition) plus one
multiplication – is repeated for every image
pixel!

However, a pixel-by-pixel operation like the
color-space conversion requires merely a serial
access to the array of pixels: once you are done
with one pixel, you go on to the next one. Thus a
random access to pixels is totally unnecessary.
With pointers, the conversion above would look
like

const Pixel * const pp_end =
 &pix_matrix[0] + M*N;
for(register Pixel * p =
&pix_matrix[0]; p < pp_end; p++)
 rgbtoyuv_pixel(*p);
 // passing Pixel&

The overhead here is merely a single addition
and a comparison. As to the claim of using Java
for writing video codecs (which should be able
to compress/decompress at least 24 frames per
second), it is a clinical case of caffeine-induced
hysteria.

Many linear algebra operations on vector
and matrices do not actually require random
access either. Even a matrix inverse can be done

with a serial access only (e.g., LinAlg.shar
package, /info-mac/dev/lib/lin-alg-cpp.hqx,
ftp://replicant.csci.unt.edu/pub/oleg/LinAlg.c
pt.hqx)

Efficient as pointers are, they are not safe. A
pointer does not care if it points somewhere
within array’s boundaries or beyond them, or if
it points to any sane place at all. STL has
attempted to tame pointers by "casting" them
into iterators. Of course, an iterator is as safe as
it is implemented within a particular class. Still,
there is an opportunity now to make a safe
pointer , which looks and feels just like the
regular one, but always points to a valid
location. With iterators, one can also limit a set
of commands a pointer obeys (for example,
forbid steps backward). Another approach to
safe pointers is streams :

void write_pixmatrix(const IMAGE&
image, EndianOut& file)
{

// Write the entire pixmatrix in one chunk
Image_istream im_stream(image);
while(!im_stream.eof())
 file.write_byte(
 im_stream.get());
}

Note that the entire iteration in the example
above is inlined; it also requires less sanity
checking overhead than a typical STL iterator. It
has to be stressed that im_streams (like regular
streams) are safe: even if you "forgot" to check
for eof(), the program will not enter into an
infinite loop or garble memory. One can well
enlist regular iostreams for the same purpose
(with a slightly higher overhead). Again, in the
code above, there is only one check per iteration
and all operations on the im_istream are done
inline. Thus the snippet runs just as fast as a
"traditional" code, only safely.

Finally, here is one more example where the
wild beast of char * would have helped:

Can Software Development be elevated 4

void
SCScriptsMenuHandler::MakeBallonData
(Str255 inHelp, char * ioBuffer)
{
 Int16 mark, data;
 Int32 zeros = 0;
 mark=2;
 if(*inHelp == 0)
 { // no data, skip the item
 data = 0x0100;
 ::BlockMoveData(&data,
&ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);
 }
 else {
 data = 0x0001; // direct string type
 ::BlockMoveData(&data,
&ioBuffer[mark], sizeof(Int16));
 mark += sizeof(Int16);

// write out the string
 ::BlockMoveData(inHelp,
 &ioBuffer[mark],1+*inHelp);
 mark += 1+*inHelp;

// write out three zeros for
// the other strings

 ::BlockMoveData(&zeros,
 &ioBuffer[mark], 3);
 mark += 3;
 }
 // align buffer to an even word boundary
 if(mark & 0x0001) ++mark;
 ::BlockMoveData(&mark,ioBuffer,
 sizeof(mark));
}

void
SCScriptsMenuHandler::MakeBallonData
(Str255 inHelp, char * ioBuffer)
{

// skip the first word for now
 char * cp = ioBuffer +
 sizeof(Int16);
 if(*inHelp == 0) // no data, skip
 ((Int16)cp)++ = 0x0100;
 else {

// direct string type
 ((Int16)cp)++ = 0x0001;

// write out the string
//memcpy(cp,inHelp,1+inHelp[0]);
//would've been better: inlined in CW

 ::BlockMoveData(inHelp,cp,
 1+*inHelp);
 cp += 1+inHelp[0];

// write out three zeros for the other
//strings

 *cp++ =0; *cp++ =0; *cp++ =0;
 }
 // align buffer to an even word boundary
 if((int)cp & 1)
 *cp++ = 0;
 ((Int16)ioBuffer) =
 cp - ioBuffer;
}

Fig. 2a. Original code from "Attaching a Scripts
Menu," MacTech magazine, v.12, No.2, Feb. 1996,
p. 65

Fig. 2b. Optimized code using pointers: 72
bytes smaller with all operands in registers

In the original code, Fig. 2a, a system trap
(BlockMoveData) is used to put mere two
bytes into memory! One cannot leave it like that.
Note, that ioBuffer seems to be word-aligned.
Indeed, if one takes a special step to align the
end of buffer, its beginning should be aligned,
too. So, one can use Int16 * ptr to write the
flags. The optimized code, Fig. 2b, does
BlockMoveData only once, to move a string
body. Moreover, if one uses memcpy(), which is
inlined by CodeWarrior, then the entire function
on Fig. 2b is a leaf: calls no functions, makes no
traps.

In-line vs. out-of-line construction of objects

When an object is constructed and destroyed
within the same function, it can be allocated on
stack: ‘new ’ is really unnecessary then. Here is a
somewhat extreme case of a "transient" object:

case item_Go:
 if(is_flying)
 is_flying = FALSE,
 ModelessDialog::
 ControlItem(*this,item_Go).
 set_title("\pGo");
 else
 is_flying = TRUE,
 ModelessDialog::
 ControlItem(*this,item_Go).

Can Software Development be elevated 5

 set_title("\pStop");
 image_3d_view.force_redraw();

ControlItem object is created and destroyed
within the same statement, we don't even care to
give it a name. The object is needed solely to put
a new "face" on a dialog, and make a small
request in this face. Thus ControlItem is a
reference or interface object, providing a new view,
facet to the existing data. Note, ControlItem is
a simple structure, which does not have any
dynamic data to allocate/free.

When an object is constructed and destroyed
within the same object, it can be incorporated .
And it is better be: C++ FAQ
(http://osiris.sund.ac.uk/online/C++/cplus.ht
ml) has a special paragraph on this:

“Q101: Should class subobjects be ptrs to
freestore allocated objs, or contained?

“A: Usually your subobjects should actually be
contained in the aggregate class (but not always;
wrapper objects are a good example of where you
want a ptr/ref; also the N-to-1-uses-a
relationship needs something like a ptr/ref).”

The FAQ then goes on to explain, why fully
contained subobjects have better performance
than ptrs to freestore allocated subobjects:

"- extra layer to indirection every time you
need to access subobject
"- extra freestore allocations (new in ctor,
delete in dtor)
"- extra dynamic binding

"Thus fully-contained subobjects allow
significant optimizations that wouldn't be
possible under the subobjects-by-ptr approach
(this is the main reason that languages which
enforce reference-semantics have inherent
performance problems)."

It seems that OpenDoc designers should
have listened to that advice. Excessive wrapping
of pointers is one of the reasons OpenDoc is
rather sluggish, and a big memory hog. For
example (a DrawEditor sample part)

class DrawEditor {
 COrderedList*

fEmbeddedFrames;
};

where COrderedList is declared in
samplecollections.h as

class COrderedList {
public:
 COrderedList();
 COrderedList(COrderedList
*list);
 ODBoolean IsEmpty() const;
 void AddBefore(const
void* existing, void* value);
 void* First() const;

// snipped
private:

// which is probably just head ptr,
// tail ptr, and the number of elems

 LinkedList fList;
};

DrawEditor code then has to zero out the
fEmbeddedFrames pointer in the constructor,
dispose of the object if necessary in the
destructor, and assign the pointer a new
COrderedList object in an init() method,
thus allocating only a few bytes
(sizeof(LinkedList)) on heap! All of this
would not have been necessary had the list been
just a part of the DrawEditor object. It goes
without saying how unsafe COrderedList is
(forcing one to cast list elements’ contents to
void*)....

Sub-object incorporation can be done even
in rather unfavorable circumstances, for
example, when a late binding is unavoidable
(see Appendix 1).

If an object is transient in nature, it is usually
better to allocate it locally, on stack, and let it die
when the current scope is over. One can also
define an object class locally, within the current
function’s scope, which gives rise to nested
functions and clauses. They are indeed possible
in C++, complete with name scoping, access
control, etc. The local classes are very useful as
iteratees to be passed to an iterator, see below for
more detail. Since local classes are declared (and
belong to) the scope of their "outer"
function/method, even the class’ name (type) is
not visible outside of that function, which
prevents name conflicts. Note that nested
methods (which are actually nested functions)
are compiled inline, unless they are virtual. For
a real (though somewhat absurd) example of
double-nested classes, see
http://mozart.compsci.com/~oleg/ftp/c++-
digest/more_nested_func.txt

Can Software Development be elevated 6

Copy semantics – a bane of C++

Too often too many intermediary
(temporary) objects are constructed, only so that
they can be assigned to other objects. Many
copy-assignments can easily be avoided, without
resorting to a full-blown reference counting
and/or garbage collection.

The problem is manifest when a function
has to build and return a complex object.
Constructing of an object is a ctor’s job, and
better left to him. However, consider a situation
when one comes across a brand new way to
build an object, but the interface to a class library
is already frozen, so there is no way to add a
new constructor to the class. This situation is
quite common: for example, loading an image
from some (new) file or building a test matrix of
some new particular kind. In any case, it is a bad
idea to return thus constructed complex object
as the function result, as in:

Matrix foo(const int n)
{ Matrix foom(n,n);
 fill_in(foom); return foom; }
Matrix m = foo(5);

When foo(5) is called, it creates a Matrix
foo::foom, fills it in, copies it onto stack as the
return value, and destroys foo::foom. The
return value from foo(5), a matrix, is then
copied over to m (via a copy constructor). After
that, the return value on stack is destroyed. Thus
matrix constructors are called 3 times, and the
destructor 2 times. For big matrices, it may be
very expensive to construct/copy/destroy
objects, especially over again. Some optimized
compilers can cut down on one
copying/destroying; still it leaves at least two
calls to a constructor. LazyMatrices (aka
promises) (see below) can construct Matrix m
in place, with only a single call to a constructor.

Thus the first principle of returning complex
objects from functions is: don’t do it, let a
constructor construct. This of course assumes
that one has control over the interfaces/library,
and can see far enough. To help differentiate
among various constructors that take the same
number of arguments, it is a good idea to use an
"action code", for example,

IMAGE blown_out(IMAGE::Expand,

 Test_image);
or

Matrix haar = haar_matrix(5);
Matrix unit(Matrix::Unit,haar);
Matrix haar_t(Matrix::Transposed,
 haar);
Matrix hth(haar,
 Matrix::TransposeMult,haar);
Matrix hht(haar,
 Matrix::Mult,haar_t);

The true solution to a problem of returning
an object however is a lazy object (a promise).
That is, rather than return an object, you pass
out a mere recipe how to make it. The full object
would be rolled out only when and where it is
needed. For example,

IMAGE map = FractalMap(order);

FractalMap is a class, not a simple function.
No temporary image is ever constructed: the
object map is filled out right in place, without
moving a single pixel. A FractalMap
constructor is actually quite trivial: all it does is
filling in slots of a small LazyImage object,
which specifies the image dimensions. The real
job is done by a recipe, a virtual FractalMap's
function. The recipe is clearly easy to amend if
one so wishes, by subclassing from
FractalMap and overriding that virtual recipe,
or other virtual functions (say, a random
number generator) it is using. Since the recipe is
called after the object is constructed (and passed,
actually), overriding of virtual functions works .

The problem of returning of an object has
seemingly one more solution: if it is so expensive
to return an object itself, why not to return a
pointer to it? As widely spread as it is, this is
hardly cool. Obviously the object itself must be
allocated on heap. That means the object has to
be explicitly deleted later. Figuring out when it is
safe to delete an object, and making sure the
pointer is not used after the object is disposed of
is often a tough job. Note that unlike "local"
objects created through recipes, etc., heap objects
are not automatically deleted if an exception is
thrown.

Still, there are situations when one is
compelled to return a pointer to a globally
allocated object. For example, the object (the
pointer, actually) is supposed to be put into a
list. One can play it safe even then: for example,

Can Software Development be elevated 7

by making it impossible to use the pointer for
anything else but putting it into a specific list.
Also, if the object must be allocated on heap,
make it illegal to create it on stack. Thus any
object pointer one can possibly get hold of is
guaranteed to be a heap pointer, and is good
only for adding to the list (and/or performing a
very limited set of operations, cast being not
among them). Surprisingly, all this can be
accomplished with no overhead, as a code in
Appendix 2 shows. It is a snippet from a real
TIFF image writer.

Body and faces: polymorphism with a compile
time type checking

A weak form of polymorphism – an objects
with several faces to reply to the same message
differently – is easily implemented through
subclassing and virtual functions. But how
about a collection of data changing its interfaces
during its lifetime so that not only they reply to
the same message differently, but can even take
different messages? In short, can C++ support
both a larva and a butterfly it turns to? And the
worm will not be forced to fly before its time?
As it turns out, it is possible, with a technique
one could call "stealing of the body" (aka passing
the buck). Here is a characteristic example: sound
processing. Sound can be represented in a
variety of ways, for example, as sampled voltage
from a microphone (so-called PCM, pulse-code
modulation), differences between two adjacent
sample voltages, (DCM or ADCM, delta-code
modulation), and the FFT of the samples. All

these representations have the same number of
data items, but their meaning is different. They
also need different procedures, to, say, play a
sound back. Certainly there are several ways to
model "same data, different meaning" in C++
and to easily convert among them. The most
obvious technique is

class Sound
{
 enum { PCM_type, ADCM_type,
 FFT_Type} type;
 const int no_samples;
 float * samples;
public:
 Sound() { record it somehow;
 type=PCM_type; }
 void do_adcm(void) {
 if(type == PCM_type)
 do_pcm_to_adcm();
 else if(type == FFT_Type)
 do_fft_to_adcm();
 type = ADCM_type; }
 void do_pcm(void) {
 if(type ==)
 blah blah blah; }
};

This is a straightforward emulation of really
polymorphic, dynamic objects, as found in such
languages as Prolog, Lisp, PostScript, etc. These
objects must have a special tag telling which
incarnation they are presently in; all their
methods have to check the tag and act
accordingly. While this run-time type checking
is fully intended in these languages, it is not
very cool as far as C++ is concerned. Besides,
there is a better way:

Can Software Development be elevated 8

class Samples // This is a "data" class: declares
{ // data without any "functionality"
 const int no_samples;
 float * const samples;
public:
 Samples(const int _no_samples)
 : no_samples(_no_samples), samples(new float[_no_samples]) {}
};

class Sound
{
 Samples * sample_data;
protected:
 Samples& q_samples(void) const { assert(sample_data != 0);
 return *sample_data; }
public:

// Here's where the real fun begins: A copy constructor rips off another
// object and makes it a zombie!

 Sound(Sound& another_sound)
 { sample_data = another_sound.sample_data;
 another_sound.sample_data = 0; }
};

// These are "functionality" classes which dress the data in different ways
class ADCMSound;
class PCMSound : public Sound
{ // the class has no private data!
public:
 PCMSound(Recorder& recorder) : Sound(...) { record(); }
 PCMSound(ADCMSound& adcm_samples) : Sound(adcm_samples)
 { do_adcm_to_pcm(q_samples()); }
 void play_back(void);
 void write(const char * file_name);
};

class ADCMSound : public Sound
{
public:
 ADCMSound(PCMSound& pcm_samples) : Sound(pcm_samples)
 { do_pcm_to_adcm(q_samples()); }

 void write(const char * file_name);
};

Converting among different representations is
trivial:

PCMSound
pcm_sound(some_recorder);
ADCMSound adcm_sound(pcm_sound);

etc. You can write() into a file from either
representation (of course, ADCM is more
efficient). But if you want to play the sound
back, you have to convert ADCMSound to
PCMSound first (because speakers usually prefer
dealing with PCM).

The "sound type" checking is mostly done at
compile time. That is, the compiler itself can
figure out which write() method to call. Error
checking is also static: In the first, "dynamical",
approach, it is the Sound::play_back()
method itself who has to check object’s tag and
holler unless type == PCM_type. In the
second approach, only PCMSound has a
play_back() method. Therefore it is simply
impossible to play_back() on a ADCMSound
object. Since C++ is not a dynamic language

Can Software Development be elevated 9

(well, it was not designed to be) there is some
price to pay: after

ADCMSound adcm_sound(pcm_sound);

the pcm_sound object becomes a zombie, while
the object's name sticks around (but must not be
used!). In a true dynamic language (e.g.,
PostScript), one can dispose of both an object
and its name.

Natural and unnatural iterators

The word ‘iterator’ has become rather
strongly associated with STL. Although STL’s
iterators do not actually iterate: they are iterated
upon. A better name would be an accessor, or
iteratee. The most common, alas, use of STL’s
and similar iterators is in an unnatural iteration
like the following:

for(x.first(); x.good();
 x.next())
 { process(x.current()) }

Note that x (an "iterator") has to maintain some
status information: which element of a collection
it points to, and when it is "good". Each iteration
thus involves at least three checks to see if the
iterator x is still good:

- before entering the body of the loop
- in accessing the current element
- before attempting to advance the iterator

With a help of pointers, one can cut down on a
few checks:

for(Elem * i = x.first(); i != 0;
 i = x.next())
 { process(*i); }

Sample code in OpenDoc release 1.0 provides
numerous examples of iterations like that. As
efficient as it looks, the solution with pointers
opens a pandora box: one can now change the
pointer i inadvertently in the body of the loop,
and nothing could prevent it. Also, there still
remain a few extra checks: x.next() should
always test if x is within the collection (and
return 0 if not); the loop then has to check again
if i is not a zero pointer. This overhead and
security holes can be entirely avoided by using
natural iterators. A natural iterator acts the other
way around. That is, rather than repeatedly call

an iterator (its next() method) to get hold of
the next element of a collection, you merely need
to specify what action is to be performed on the
current element. You do not need to write any
loop or check termination conditions: it is
iterator's job. You can even maintain your own
(lexical) local context during the iteration.

This technique - call an iterator and pass an
iteratee - is widely used in "other" languages:
Lisp, Scheme, ML, Prolog and Dylan. You do not
even need to assign a name to an iteratee-
function. It is somewhat surprising that the same
thing is possible in C++, complete with
anonymous functions and clauses, well, kind of.

Appendix 3 shows off a natural iteration in a
snippet from my part editor. Here is another
self-explanatory example:

void foo(IMAGE& Test_image) {
 struct SqrImage : public
PixelPrimAction {
 void operation(GRAY& pixel) {
 pixel = sqr((GRAY_SIGNED)pixel);
}
 };
 Test_image.apply(SqrImage());
}

If a C++ compiler handles templates well, then
the entire iteration can be done inline:

ScanLines_Connector
scanlines_connectee(*this);
TwoScanLinesIterator
 <ScanLines_Connector>
 scanlines_connector(
 prev_scanline->get_scanline(),
 curr_scanline->get_scanline());
scanlines_connector.for_each(
 scanlines_connectee);

The for_each iteration above is actually
inlined by the compiler, so it works just like a
for()-loop, only safer and with less overhead:
Since control never leaves the iterator until it
finishes, the iterator does not have to check
termination conditions several times.

One can point out two major kinds of
iterators: for-each and any? (aka first-found).
Each has a distinct programming pattern, which
sometimes is not recognized. For example:

Can Software Development be elevated 10

static void DrawNewSprite(void)
{
 register short slot;
 SpriteInfoPtr spriteInfoP;

 slot=gFirstSpriteSlot;
 while(slot >= 0)
 {
 register short numRows;
 register short numCols;
 register short h;
 register short v;
 spriteInfoP =
 &gSpriteInfo[slot];
 if(spriteInfoP->status < 0)
 goto nextSlot;
 numRows = spriteInfoP->height;
 numCols = spriteInfoP->width;
 h = spriteInfoP->position.h;
 v = spriteInfoP->position.v;
 if(h+ numCols <= 0 ||
 h >= gWindowWidth ||

 v+ numRows <= 0 ||
 v > gWindowHeight)
 goto nextSlot; /* totally
Offscreen */
 DrawSprite(slot);
 nextSlot:
 slot= spriteInfoP->nextSlot;
 }
}

static void DrawNewSprite(const
int start_slot, const SpriteInfo
sprite_info [])
{
 register int slot;

 for(slot=start_slot; slot >= 0;
 slot=sprite_info[slot].nextSlot)
 {
 const SpriteInfoPtr
spriteInfoP = &sprite_info[slot];
 register int h,v;
 if(spriteInfoP->status < 0)
 continue;
 h = spriteInfoP->position.h;
 v = spriteInfoP->position.v;
 if(h+ spriteInfoP->width > 0
 && h < gWindowWidth &&

 v+ spriteInfoP->height > 0
 && v < gWindowHeight)
 DrawSprite(slot);
 }
}

Fig. 3a. Original snippet from “Programmer's
Challenge,” MacTech Magazine, September
1995, p.58

Fig. 3b. Fixed snippet explicitly recognizing
for-each iteration

I can’t help saying that goto in the original
snippet, Fig. 3a, is disgustingly gross. Obviously
a goal of DrawNewSprite was to walk through
a list and perform a certain regular action on
each non-empty slot. This is a standard for-each-
type iteration. Why would one program it with
goto's just beats me. Global variables are
another bad thing in this code. It really takes
longer to access global variables, especially on a
PowerMac, where regular function arguments
come already loaded into registers. Also, global
variables lead to trouble with A5/A4 (if one isn't
careful), they make it difficult to put the code in
a code resource or some sort of shared library
(Component, plug-in, OpenDoc part). In this
example, Fig. 3a, gFirstSpriteSlot and

gSpriteInfo could have been function
parameters. Fig. 3b shows a better, clearer and
faster implementation of DrawNewSprite
(keep in mind it is merely a C code, not C++).

Iterators go well along with object promises:
here is an example of how to write "Vector a
= b+c;" and not to worry about stack
overflows, temporary objects and assignments.

class square_add : public
LazyMatrix, public ElementAction
{
 const Vector &v1;
 const Vector &v2;
 void operation(REAL& element)
 { assert(j==1); element =
 v1(i)*v1(i) + v2(i)*v2(i); }

Can Software Development be elevated 11

 void fill_in(Matrix& m) const
 { m.apply(*this); }
 public: square_add(const
 Vector& _v1, const Vector& _v2)
 : LazyMatrix(_v1.q_row_lwb(),
 _v1.q_row_upb(),1,1),
 v1(_v1), v2(_v2) {}
};
Vector vres = square_add(v2,v3);
Vector vres1 = v2;
vres1 = square_add(v2,v3);

Here square_add promises to deliver a vector
with elements being sums of squares of elements
of two other vectors. The promise is forced
either by a Vector constructor, or by
assignment to another vector (in the latter case, a
check is made that the dimensions of the
promise are compatible with those of the target).
In either case, computation of new vector
elements is done "in place", no temporary
storage is ever allocated/used. Iteration is also
done "behind the scenes", relieving the user of
worries about index range checking, etc.

What were they thinking?

Safe programming can be fun, too! Safe code
can be cute, and fast. Let's consider a very telling
example, from a public domain code to crack
encoded resources in Win95:

unsigned char Data[100001];
main(...){
 int size;
... opening a file
 size=0;
 while(!feof(fd)) {
 Data[size++]=fgetc(fd);
 }
 size--;

Q: what happens if the file turns out longer than
100001?

The entire snippet above is functionally
equivalent to

size = fread(Data,1,
 sizeof(Data)-1,fd);

It is much faster, it is absolutely safe (there is not
even a possibility of getting over Data's
boundary), and it is only one line for God's sake.
The guy who wrote the code seems to be smart
and knowledgeable. He should have written

that one line on "autopilot". Come to think of it,
there is little wonder then why M$ and other
software companies goof it up all the time...

Of course it is hard to program safely when
so many of the standard C functions are
treacherous. A few have surpassed the others in
notoriety: gets(), strcpy() and strcat().
gets() is directly responsible for all grand
wormholes: the internet worm (fingerd),
sendmail and httpd root holes. Even gets()
manual page recommends against it:

char *gets(char *s);
When using gets(), if the length
of an input line exceeds the size
of s, indeterminate behavior may
result. For this reason, it is
strongly recommended that gets()
be avoided in favor of fgets().

Indeed, when allocating a buffer for gets() to
read into, there is really no way of knowing how
long the input line happens to be. What is worse,
there is no way to prevent the overrun. This sets
gets() aside as particularly insidious: at least
in case of strcpy(), we can find out the size of
the source string before copying. Still, gets()
proliferates. Is it really so hard to replace it with
fgets(), like in a snippet below:

char Work_file_name[50];
fprintf(stderr,
 "\nWork file name >");
fgets(Work_file_name,
 sizeof(Work_file_name),stdin);
Work_file_name[
 sizeof(Work_file_name)-1] =
 '\n';
*strchr(Work_file_name,'\n') =
 '\0';

This works just as the original gets(), but
never writes beyond buffer’s boundaries.
Unexpectedly long input is simply truncated.
An enhanced snippet in Appendix 4 can also
detect EOF, system and user input errors.

Here is another telling example, from an
article "Learning C++" in January 1996 issue of
"Software Development"

 //static character buffer
template <class Len> class
CHARBUF
{
public:
 CHARBUF(const char * str = 0)

Can Software Development be elevated 12

 { strlen(str) > strlen(buf) ?
 abort() : strcpy(buf,str); }
 operator char*()
 { return buf; }
 char buf[LEN];
};

Disregard for a moment a flawed design: it will
be interesting to see the result of
CHARBUF<complex> buf; Definitely the
author meant <int LEN> rather than <class
LEN> in the template, as only integers are
allowed to index an array of characters. But
there are more serious faults: for one thing, array

buf is not initialized. Therefore, strlen(buf)
in the constructor can return anything, including
0 (in which case the constructor aborts). The
main gripe though is that str defaults to 0 in
the constructor, which is never checked. That is,
strlen() and then strcpy() in the
constructor could receive a zero pointer.
Ironically, a subtitle of that article reads: "A
simple, object-oriented technique called 'brief
classes' can make C++ a much safer (sic!)
language in which to work." They call it safer
nowadays...

’

Appendix 1. Example of late binding of incorporated objects

class VenusDialog : public ModelessDialog
{
 enum { item_Go = 1, item_Cancel = 2, item_2dview = 3,

item_3dview = 4, item_ze=5, item_ze_val=6,
item_ze_text=7 };

 enum { dlog_id = 128 };

 ProjectionParameters projection_parms;
 Boolean handle_item_hit(const int item_no);
 ValueControl eyepoint_elevation;
 // snipped
 ImageView image_2d_view;
 ThreeDView image_3d_view;
 void draw_user_item(const int item_no);

 Boolean is_flying; // Is our plane moving?
public:
 VenusDialog(const IMAGE& image);
};

All dialog items need a pointer to a completely initialized dialog; unfortunately, the constructor for the
items is called before the ctor for the whole object. Still, there is a hope, and there is a way:

VenusDialog::VenusDialog(const IMAGE& image)
: ModelessDialog(dlog_id), image_2d_view(image),
 image_3d_view(image,image_2d_view.where_is_viewer(),

 projection_parms),
 is_flying(FALSE)

Can Software Development be elevated 13

{
// Late construction of items, after the dialog itself has been initialized

 image_2d_view.bind(*this,item_2dview);
 eyepoint_elevation.bind(ControlItem(*this,item_ze),

TextItem(*this,item_ze_val));
 projection_parms.ze = eyepoint_elevation;

 image_3d_view.bind(*this,item_3dview);
 show();
}

Appendix 2. Precision targeted heap pointers

// Generic dir item being added to the directory
// Note the item (and specialized items derived from it) do not have
// a public constructor; calling function New() is the only way to
// build an item. The "pointer" the function returns is supposed to
// be += to the directory: that's the only thing the "pointer" is good for

class TIFFNewDirItem : public TIFFDirEntry
{
 friend class TIFFBeingMadeDirectory;

 TIFFNewDirItem * next;

protected:

 class ItemRef // This is a wrapper for TIFFNewDirItem*
 { // It guarantees that the pointer
 friend class TIFFBeingMadeDirectory; // to the object is really
 TIFFNewDirItem * const ref; // inaccessible to everyone
 TIFFNewDirItem& surrender(void) // but the directory
 { return * ref; }
 // { const TIFFNewDirItem& item = ref; ref = 0; return item; }
 public:
 ItemRef(TIFFNewDirItem * item) : ref(item) {}
 //~ItemRef(void) { if(ref) delete ref; }
 };
 virtual void write(EndianOut& file) = 0; // Write this field into a file
 virtual void write_value(EndianOut& file) = 0;// Write additional data
 TIFFNewDirItem(const short _tag, const DataType _type,

 const long _count, const long _value)
 : TIFFDirEntry(_tag,_type,_count,_value), next(0) {}
 };

// Dictionary under construction. Inserted items automatically arranged
// in the ascending order of their tags

class TIFFBeingMadeDirectory
{
 TIFFHeader header;
 card no_entries;
 TIFFNewDirItem * first_entry; // Other items are chained to that

public:
 TIFFBeingMadeDirectory(void);
 void operator += (const TIFFNewDirItem::ItemRef& ref);

Can Software Development be elevated 14

 ~TIFFBeingMadeDirectory(void);
 void write(EndianOut& file); // Write the entire TIFF directory
};

// That is how this all is used
void IMAGE::write_tiff(const char * file_name,const char * title,
 const TIFFUserAction& user_adding_tags) const
{
 is_valid();

 message("\nPreparing a TIFF file with name '%s'\n",file_name);

 EndianOut file(file_name);
 TIFFBeingMadeDirectory directory;

 directory += ScalarTIFFDE::New(TIFFTAG_IMAGEWIDTH,(unsigned)q_ncols());
 directory += ScalarTIFFDE::New(TIFFTAG_IMAGELENGTH,(unsigned)q_nrows());
 directory += ScalarTIFFDE::New(TIFFTAG_COMPRESSION,

(unsigned short)COMPRESSION_NONE);
 directory += RationalTIFFDE::New(TIFFTAG_XRESOLUTION,72,1);
 if(name != 0 && name[0] != '\0')
 directory += StringTIFFDE::New(TIFFTAG_IMAGEDESCRIPTION, name);
 user_adding_tags(directory); // Give the user a chance to add

// his own tags
 directory.write(file);
 file.close();
}

Appendix 3. Natural iteration in an OpenDoc part

class selection_checker : public ShapeIteratee
{
 CSelection * selection;
 ODBoolean was_selected_flag;
 ODBoolean operation(CShape * shape)
 { return !(was_selected_flag = selection->IsIn(shape)); }
public:
 selection_checker(CSelection * _selection)
 : selection(_selection), was_selected_flag(kODFalse) {}
 operator ODBoolean (void) const
 { return was_selected_flag; }
};
selection_checker was_selected(fSelection);
for_each_our_shape(was_selected);

class selection_adder : public ShapeIteratee
{
 Environment * ev;
 CSelection * selection;
 ODBoolean operation(CShape * shape)
 { if(!(selection->IsIn(shape)))
 selection->AddToSelection(ev, shape, kODFalse);
 return kODTrue; }
public:
 selection_adder(Environment * _ev, CSelection * _selection)

Can Software Development be elevated 15

 : ev(_ev), selection(_selection) {}
};
if(was_selected)
 for_each_our_shape(selection_adder(ev,fSelection));

Appendix 4. Safe reading of a string from a file

// Read a string from a file: a very safe function
// Returns a ptr to the STATIC array; Returns NULL on eof

const char * get_string(FILE * fp)
{
 static char buffer[120];

// if fgets() returns 0 => it failed
 if(fgets(buffer,sizeof(buffer)-2,fp) == (char *)0)
 if(feof(fp))
 return (char *)0;
 else
 perror("Reading error"), exit(4);

// If we read an entire string, the buffer should contain \n\0 at
// the very end. If there is no '\n', it means either we got EOF
// or the string was too big to fit into the buffer

 if(buffer[strlen(buffer)-1] != '\n')
 if(feof(fp))
 return buffer;
 else
 _error("The string <%s> is way too big. Too bad!",buffer);

 buffer[strlen(buffer)-1] = '\0'; // Replace '\n' with '\0'

 return buffer;
}

