
Mechanizing multilevel metatheory
with control effects

Yukiyoshi Kameyama Oleg Kiselyov Chung-chieh Shan
University of Tsukuba Rutgers University

WMM5 – Workshop on Mechanizing Metatheory
September 25, 2010

1

Outline

I Calculus: λ© with control effects

Application

Problems

Solution and Mechanization

Conclusions

We begin with the introduction of the programming language/calculus
whose meta-theory we wish to mechanize. The calculus is the familiar
call-by-value lambda-calculus with a non-trivial combination of two
features, which we illustrate with sample reductions.

2

Staging

(λx. 〈30 + ∼x〉) 〈12〉
 〈30 + ∼〈12〉〉
 〈30 + 12〉 value

〈30 + 12〉 ‘Compiled program’

〈〈30 + 12〉〉 Compiled compiler

The first feature is staging. One may think of brackets 〈·〉 as Lisp’s
quasi-quote and escape ∼· as an unquote. Code expressions without
escapes are values. The first reduction is just a beta substitution of a
value. We then do splicing, obtaining the code value 〈30 + 12〉. It is
the value. One may think of it as a compiled program. In the future
life, when the compiled code is run, we get a well-known value. We
can have more than one future life: we can program not only code
generators but generators of generators, etc.

3

Delimited Control

{42}
 42

{1 + 出(λk.14 ∗ k2)}
≡ {1 + (λk.14 ∗ k2)�}
 {(λk.14 ∗ k2)(1 + �)}
 (λk.14 ∗ k2)(λy.1 + y)

 14 ∗ (λy. (1 + y))2
 42

{·} marks the “outside”

The next feature of our language is delimited control, expressed by a
special form {·} and a higher-order constant出. One may think of
reset as OCaml’s try block,出 sort of as a raising of an exception. If
an expression raises no exception (for example, it is a value), then
enclosing it into reset has no effect.
If the evaluation of an expression comes across a shift application, it
creates a bubble, consisting of shift’s argument and a context, initially
empty. On the figure the bubble is notated with the underline. The
bubble propagates up devouring its context. Eventually the bubble
comes across reset, which pricks the bubble. It takes the accumulated
context from bubble’s stomach, converts it to a function and feeds to
the argument of shift, which has been carried along. It is a run-time
error if the bubble does not find a reset.

3

Delimited Control
{42}

 42

{1 + 出(λk.14 ∗ k2)}
≡ {1 + (λk.14 ∗ k2)�}
 {(λk.14 ∗ k2)(1 + �)}
 (λk.14 ∗ k2)(λy.1 + y)

 14 ∗ (λy. (1 + y))2
 42

= 14 ∗ {1 + 2}

{·} marks the “outside”

The end result looks like the whole body of the shift application gets
replaced by 2, with the multiplication by 14 got “outside”. Reset
marks the “outside”.

4

Staging and Delimited Control

Inserting let, assert, if, import,. . . outside

{〈 expensive x + ∼(出λk〈assert x 6= 0; ∼(k〈1/x〉) 〉) 〉}
 + 〈assert x 6= 0; expensive x + 1/x〉

Hopefully the example gave a hint why combining delimited control
with staging is useful. We can write code generators, which, deep in
the midst of generating a sub-expression, could insert let, import, if
and other statements somewhere “outside”.
Suppose we are generating this code fragment, adding two
expressions. We have already generated the first expression and are
about to generate the second one. The second expression turns out to
be the reciprocal of x, which fails if x is zero. But it fails after we
spend a lot of time on the expensive computation. We can write the
generator for the second summand using shift. We obtain the desired
result: we check for non-zero x before embarking on the expensive
computation.

4

Staging and Delimited Control

Inserting let, assert, if, import,. . . outside

{〈 expensive x + ∼(出λk〈assert x 6= 0; ∼(k〈1/x〉) 〉) 〉}
 + 〈assert x 6= 0; expensive x + 1/x〉

〈λx ∼(Binding context

{〈 expensive x+ Open code

∼(出λk〈assert x 6= 0; ∼(k〈1/x〉) 〉) 〉}
)〉

 + 〈λx assert x 6= 0; expensive x + 1/x〉

You may be wondering about x. Is it a free variable? Actually, it is.
Here is our code in context. The evaluation context is binding, and the
the evaluated code is open. That is the major challenge posed by
staging.

5

Outline

Calculus: λ© with control effects

I Application

Problems

Solution and Mechanization

Conclusions

6

Code Generation in HPC

ATLAS
used in MAPLE, MATLAB, Mathematica, Octave, Absoft Pro
Fortran, GSL, LAPACK, Scilab, . . .

SPIRAL

Why do we care about code generation? One application is
high-performance computing. On modern superscalar architectures
with multiple levels of caches, nobody except some Intel employees
can predict the performance. If we aim at the highest performance,
the only choice is to generate several candidates, evaluate then on
sample data and pick the fastest. These famous generators of
highest-performance numerical code (used by everybody) do exactly
that.
We certainly want some of that fame. Mainly, we want to claim that
we generate correct code. These famous code generators want to
claim that to. It is very difficult to see that they do indeed generate
the correct code – even to the authors of these packages.

7

Writing Code Generators is Hard

“As you have seen, this note and the protocols it describes have
plenty of room for improvement. Now, as the end-user of this
function, you may have a naturally strong and negative reaction
to these crude mechanisms, tempting you to send messages
decrying my lack of humanity, decency, and legal parentage to
the atlas or developer mailing lists. . . . So, the proper bitch
format involves

I First thanking me for spending time in hell getting things to
their present crude state

I Then, supplying your constructive ideas”

math-atlas.sourceforge.net/devel/atlas_contrib/
R. Clint Whaley: User contribution to ATLAS.

math-atlas.sourceforge.net/devel/atlas_contrib/

Here is a good quote, from the concluding section of this document,
written by the ATLAS developer Clint Whaley. As you can see, he is
well aware that ATLAS leaves much room for improvement. He also
says that even getting this far has been very difficult.
So, our goal is to generate correct code without going to hell.

8

Outline

Calculus: λ© with control effects

Application

I Problems

Solution and Mechanization

Conclusions

9

Scope Extrusion and its Prevention

{〈 (λx.∼(出λk. 〈x〉)) 1 〉}
 + 〈x3〉

Combining staging and delimited control is non-trivial

Let’s start with confessions. ATLAS generated C code using printf; it
couldn’t even statically assure that the parentheses match. By using a
staged language, we are certain that the generated code is
well-formed. Delimited control lets us conveniently and modularly
write generators that seemingly require several generation passes.
But adding delimited control to a staged language is non-trivial,
because it is possible to screw up. On the slide you see generating
body of a future-stage lambda. The generator aborts with 〈x〉.
The result is nonsense: a code value with an unbound variable. One
can indeed obtain such a value in MetaOCaml, for example, exactly as
shown on the slide. This is bad.

9

Scope Extrusion and its Prevention

{〈 (λx.∼({〈∼(出λk. 〈x〉)〉}) 1 〉}
 + 〈(λx3. x3) 1〉

Combining staging and delimited control is non-trivial

The work with Kameyama-san and Chung-chieh Shan suggested a
restriction: let us assume that each future-stage lambda contains an
implicit reset. The slide shows the second-level lambda; the third-level
lambda will have two implicit resets, etc. Effects are allowed when
building code, but they are restricted in scope. We have verified that
the restriction is not severe and we can build a lot of practically
interested generators. But is it always sound? That’s where the
formalization and mechanization comes in. BTW, the answer is yes.

10

Type and effect system

Types τ ::= int | τ → τ ′/τ0 | 〈τ/τ0〉 | (τ, τ ′)
Answer-type sequences Ti ::= τ0, . . . , τi

Judgments Γ ` e : τ ; Ti

Environments Γ ::= [] | Γ, 〈x : τ 〉i

Γ, 〈x : τ 〉i ` e : τ ′ ; 〈τ ′/τ ′i 〉
[i], τ ′i

Γ ` (λx. e) : τ → τ ′/τ ′i ; Ti

Type functions
τ [i] = τ 〈i〉, τ 〈i−1〉, . . . , τ 〈1〉

τ 〈1〉 = τ

τ 〈i+1〉 = 〈τ 〈i〉/τ 〈i〉〉

We have already illustrated the interesting parts of the dynamic
semantics. We now show interesting bits of the type-and-effect
system, ensuring that well-typed expressions do not get stuck. The
effect annotation takes the form of an answer-type, the type of the
exception thrown by shift, if you will. We effect-annotate arrows and
code types; actually, each level of the code. That’s why we have a
stack on answer-types, for each level. Judgments too bear
annotations, the stack of answer-types. Remember that implicit reset
we put under lambdas? That is the reason the answer-type of a
future-stage lambda is so involved, with several type-functions (Ti in
the conclusion, is a type function too, which is a function producing a
fresh sequence). And we have to encode all this in mechanization!

11

Outline

Calculus: λ© with control effects

Application

Problems

I Solution and Mechanization

Conclusions

12

Challenges of mechanization

1. Typing rules with complex (inductive) type functions

2. Open code and binding context

3. Small-step semantics

13

Intrinsic Encoding

exp: tp -> atp -> type.

+ : exp int A -> exp int A -> exp int A.

^ : exp T1 (at Ta A) -> exp (& T1 Ta) A.
∼ : exp (& T1 Ta) A -> exp T1 (at Ta A).

l+ : l+-cnt N (& T2 T2a) A -> polyA N AR
-> (arg T1 N -> exp T2 (at T2a A))
-> exp (arr T1 T2 T2a) AR.

Expressions are well-typed by construction
Twelf checks and infers object types for us.

We use the intrinsic encoding. Expressions are represented by the LF
family exp; as we see, the representation of object expressions
includes the object type and the stack of answer-types. It is not
possible to represent an ill-typed expression. Expression constructors
show not only the syntax of our language, but also encode the type
system. The first rule says that the plus operator takes two integer
expressions at the same level and produces an integer expression at
the same level. The level is arbitrary.
I did not show the typing rules for brackets and escapes, but we can
read them directly off the Twelf code. We see the bracket takes an
expression at a higher level and produces an expression at the lower
level, tucking the answer-type in. The escape does the reverse.
And here is the scaring-looking rule from the slide, for a future stage
lambda. The last two lines show the standard higher-order abstract
syntax representation of object-level lambdas. The first line contains
the type functions I’ve been talking about, which compute the
resulting answer-type sequence AR and the answer-type sequence for
lambda’s body, A.

14

Theorems proved

1. Values are answer-type polymorphic at level 0

2. Expression decomposition lemma

3. Subject reduction

4. Progress

We proved that present-stage values are answer-type polymorphic,
that each expression is either a value, a continuation bubble, or
decomposable into an evaluation context and a pre-redex. Mainly, we
proved that reductions preserve types (subject reduction) and that a
well-typed non-value can be reduced (progress).

15

Progress Theorem

eval : {E: exp T A} non-value E -> exp T A -> type.
%mode eval +E1 +NV -E2.

We see from the type of eval that it is a witness of progress: given an
expression that is not a value, it returns another, reduced, expression –
of the same type.
The same eval is also the interpreter for our calculus, which we used
to run test examples.

15

Progress Theorem

eval : {E: exp T A} non-value E -> exp T A -> type.
%mode eval +E1 +NV -E2.

ev-+: eval ((n N1) + (n N2)) (nv-+) (n N3)
<- plus N1 N2 N3.

ev-+C1: eval (E1 + E2) (nv-+C1 NV1) (E1’ + E2)
<- eval E1 NV1 E1’.

ev-+R1: eval ((deru TS C E) + E2) nv-+R1
(deru TS ([x] Down (Up (C x) + E2)) E)

<- ts-coercions TS Down Up.

The implementation of eval is the encoding of dynamic semantics.
Here, for example, are the reduction rules for addition. Now Twelf
makes sure that each and every reduction rule satisfies the type for
eval, that is, reductions preserve types. We can’t even write a
reduction rule that does not preserve a type!

15

Progress Theorem

eval : {E: exp T A} non-value E -> exp T A -> type.
%mode eval +E1 +NV -E2.

ev-l+C: eval (l+ LC P E) (nv-l+C NV) (l+ LC P E’)
<- {x:arg T (1)} eval (E x) (NV x) (E’ x).

%block bl-ev : some {T:tp}{N:nat} block {e:arg T (1 N)}.

%worlds (bl-ev) (eval).

After a few more lines, we get to the end of the proof. Recall our first
challenge: evaluating open code and representing binding contexts.
LF worlds and hypothetical reasoning made the challenge easy to
meet. But I have to show the reduction rule for the future lambda. As
you can see, we use hypothetical reasoning to “assume” the expression
bound to a variable and evaluate the body of lambda based on that
assumption.
These two lines, the block and the world declarations, confirm that do
evaluate open code, which may contain many future-level bindings.

15

Progress Theorem

eval : {E: exp T A} non-value E -> exp T A -> type.
%mode eval +E1 +NV -E2.

ev-l+C: eval (l+ LC P E) (nv-l+C NV) (l+ LC P E’)
<- {x:arg T (1)} eval (E x) (NV x) (E’ x).

%block bl-ev : some {T:tp}{N:nat} block {e:arg T (1 N)}.

%worlds (bl-ev) (eval).

%total {E} (eval E).

The final line asserts the eval type family is total: all expressions that
are non-values can be reduced, in final time, to some expression. So,
we have type soundness.

16

Outline

Calculus: λ© with control effects

Application

Problems

Solution and Mechanization

I Conclusions

17

Conclusions

staging ∨ shift = trouble ∨ fun

Mechanization of the type soundness proof for the first sound
multilevel calculus with control effects

I Mechanization was (relatively) easy and even fun
I Intrinsic encoding works despite complex typing rules
I LF worlds and hypothetical reasoning help with open code

and binding contexts
(cf. type checking)

I Multi-level calculi with effects make a good benchmark

http://okmij.org/ftp/formalizations/

http://okmij.org/ftp/formalizations/

Combining staging and delimited control is interesting and non-trivial.
We have mechanized the type soundness proof for the first sound
multilevel calculus with control effects.
It was enjoyable as far mechanization could go. Intrinsic encoding
works out even in the case like ours with complex typing rules
involving type functions.
In fact, type checking, which is a form of evaluation, routinely deals
with open code and binding contexts. We do type-check under
lambda. It is that evaluation normally doesn’t occur under lambda.
So, staged evaluation does look like type checking in this respect.
The complete Twelf development along with several examples is
available at the shown URL.

18

Open questions

I Capturing a genuine binding context?
I Representing a binding context inside-out?
I Status of Twelf development?

	Calculus: with control effects
	Application
	Problems
	Solution and Mechanization
	Conclusions

