
Dynamic Logic in ACG:
discourse anaphora and scoping islands

Logical Methods for Discourse
Nancy, December 15, 2009

To analyze scoping islands within the Abstract Categorial Grammar
(ACG) formalism we propose an enhancement to ACG along the lines
of dynamic logic. The enhanced ACG explains not only the distinct
scopes of universals and indefinites and clause-boundness of
universals. We can also apply our ACG to anaphoric indefinite
descriptions in discourse. We explain how an indefinite can scope
inside negation, yet cannot scope outside negation and create
definitedness presuppositions.
Our enhancement to ACG affects only the mapping from abstract
language to semantics. We retain all ACG’s benefits of parsing from
the surface form. Crucially, by avoiding type lifting we keep the order
of the abstract signature low, so that parsing remains tractable.
We regard the mapping from abstract language to semantics partial:
some sentences, albeit well-formed, just don’t make sense. We model
this partial mapping as a potentially failing computation in a
call-by-value language with multi-prompt delimited control. The
evaluation and type inference rules of the language are simple and
deterministic. Control prompts may be regarded as loci of binding or
quantification, used by quantified phrases and pronouns and set by
context. We arrive at the mechanism of interaction of a phrase with its
context that determines the scope.

Puzzles
(1) A donkey enters. It brays.

(2) Every donkey enters. ?It brays.

(3) It-is-not-the-case-that a donkey enters. ?It brays.

(4) A donkey and a mule enter. ?It brays.

(5) A donkey and a mule enter. The donkey brays.

(6) A donkey enters. It-is-not-the-case-that it brays.

(7) Every donkey denies it brays.

I quantification and binding
I different scope of different quantifiers
I islands: coordinated structures
I binding into but not out of negation

Thanks to Carl Pollard

Thanks to Carl Pollard for these examples.

Puzzles
(1) A donkey enters. It brays.

(2) Every donkey enters. ?It brays.

(3) It-is-not-the-case-that a donkey enters. ?It brays.

(4) A donkey and a mule enter. ?It brays.

(5) A donkey and a mule enter. The donkey brays.

(6) A donkey enters. It-is-not-the-case-that it brays.

(7) Every donkey denies it brays.

I quantification and binding

I different scope of different quantifiers
I islands: coordinated structures
I binding into but not out of negation

Thanks to Carl Pollard

A quantifier can bind a variable within its scope, (7), (1).

Puzzles
(1) A donkey enters. It brays.

(2) Every donkey enters. ?It brays.

(3) It-is-not-the-case-that a donkey enters. ?It brays.

(4) A donkey and a mule enter. ?It brays.

(5) A donkey and a mule enter. The donkey brays.

(6) A donkey enters. It-is-not-the-case-that it brays.

(7) Every donkey denies it brays.

I quantification and binding
I different scope of different quantifiers

I islands: coordinated structures
I binding into but not out of negation

Thanks to Carl Pollard

Different quantifiers have different scope abilities. Universals are
clause- or sentence-bound, (2), but indefinites can scope out of a
clause or a sentence (1).

Puzzles
(1) A donkey enters. It brays.

(2) Every donkey enters. ?It brays.

(3) It-is-not-the-case-that a donkey enters. ?It brays.

(4) A donkey and a mule enter. ?It brays.

(5) A donkey and a mule enter. The donkey brays.

(6) A donkey enters. It-is-not-the-case-that it brays.

(7) Every donkey denies it brays.

I quantification and binding
I different scope of different quantifiers
I islands: coordinated structures

I binding into but not out of negation

Thanks to Carl Pollard

But indefinites can’t scope out of a coordinated structure, (4).

Puzzles
(1) A donkey enters. It brays.

(2) Every donkey enters. ?It brays.

(3) It-is-not-the-case-that a donkey enters. ?It brays.

(4) A donkey and a mule enter. ?It brays.

(5) A donkey and a mule enter. The donkey brays.

(6) A donkey enters. It-is-not-the-case-that it brays.

(7) Every donkey denies it brays.

I quantification and binding
I different scope of different quantifiers
I islands: coordinated structures
I binding into but not out of negation

Thanks to Carl Pollard

An indefinite can bind into negation (6), yet cannot bind out of
negation and create definitedness presuppositions, (3).

Results
I Combination of ACG with dynamic semantics
I No type lifting: low complexity of parsing
I Explaining the puzzles
I Uniform mechanism for binding and quantification and

their scope

Even with type-lifting, ACG currently has trouble explaining scoping
islands, e.g., why universals are clause-bounded.

Outline

IWhat are Abstract Categorial Grammars (ACG)?

Why ACGs

Direct dynamic logic meta-calculus

What about the original puzzles?

Live demo

Running example

Pedro beats a donkey.

First we need to explain why we use ACG, and how to combine with
dynamic logic. For this explanation, which would probably take most
of the time, we use a simpler example: a politically incorrect sentence,
also suggested by Carl Pollard.I don’t need to explain ACG to this
audience at all. I only give a brief introduction for the sake of
terminology and to clarify the points where we will extend ACG.

Abstract signature

A higher-order signature
A collection of atomic types, constants, and type assignments to
constants

Signature Σabs

Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

Abstract signature

A higher-order signature
A collection of atomic types, constants, and type assignments to
constants

Signature Σabs

Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

The only uncommon parts here are the type D, for the complete
discourse, and ’fullstop’, the end of the discourse (or sentence, in this
case).

Abstract terms

Terms over Σabs

e ::= x | c | ee | λx. e, c ∈ Σabs

A sample term
tdonkey

def= fullstop (beat (a donkey) Pedro)

One can verify that the term tdonkey is well-typed and so it is in the set
of typed lambda-terms over the abstract signature.

String signature

Signature Σstr

Atomic type string
"Pedro" : string
"donkey" : string
"a" : string
"beat" : string
"." : string
♦ : string→ string→ string

The operation ♦ denotes string concatenation.

Lexicon
Lstr: mapping of constants of Σabs to terms over Σstr

N, NP, S, and D 7→ string
Pedro 7→ "Pedro"
donkey 7→ "donkey"
a 7→ λx. "a"♦ x
beat 7→ λo. λs. s♦ "beat"♦ o
fullstop 7→ λx. x ♦ "."

Lexicon interprets constants of the abstract signature in, here, the
surface language. The interpretation of constants homomorphically
extends to the interpretation of the whole abstract language in terms
of the surface language.

Lexicon
Lstr: mapping of constants of Σabs to terms over Σstr

N, NP, S, and D 7→ string
Pedro 7→ "Pedro"
donkey 7→ "donkey"
a 7→ λx. "a"♦ x
beat 7→ λo. λs. s♦ "beat"♦ o
fullstop 7→ λx. x ♦ "."

the surface form
Lstr(tdonkey)
= (λx. x ♦ ".")((λo. λs. s♦ "beat"♦ o)

((λx. "a"♦ x)"donkey") "Pedro")
↪→ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

I must emphasize a point that becomes very important later. If we just
substitute for the constants in the sample donkey term their
lexicon-mapped terms, we get this long phrase on the second line in
the table.

Lexicon
Lstr: mapping of constants of Σabs to terms over Σstr

N, NP, S, and D 7→ string
Pedro 7→ "Pedro"
donkey 7→ "donkey"
a 7→ λx. "a"♦ x
beat 7→ λo. λs. s♦ "beat"♦ o
fullstop 7→ λx. x ♦ "."

Computing the surface form
Lstr(tdonkey)
= (λx. x ♦ ".")((λo. λs. s♦ "beat"♦ o)

((λx. "a"♦ x)"donkey") "Pedro")
↪→ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

When we normalize that term we get what looks like a string, the
surface form of our sentence. In ACG tutorials that I read, the fact that
we have to normalize, or reduce, the result of the lexicon substitution
is hardly ever mentioned. There is a good reason: there is little to say:
The calculus here is simply-typed lambda calculus and is strongly
normalizing. Every term has the normal form; the normalization is as
uneventful as it could ever get. But that would change, in our
extension to ACG.

Outline

What are Abstract Categorial Grammars (ACG)?

IWhy ACGs

Direct dynamic logic meta-calculus

What about the original puzzles?

Live demo

Why ACG?

Abstract signature
Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

Abstract and surface forms
fullstop (beat (a donkey) Pedro)

↪→ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

So, what attracts me to ACG: the notion of mapping of languages, of
interpretations, of a hidden, abstract (I almost said, logical) form. We
have seen how the abstract phrase maps to the surface form.

Why ACG?

Abstract signature
Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

Abstract and surface forms
fullstop (beat (a donkey) Pedro)

↪→ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

The mapping took care of the word order. English is SVO language;
the surface lexicon switched the words around. A Japanese lexicon
would have moved the verb at the end.

Why ACG?

Abstract signature
Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

Abstract and surface forms
fullstop (beat (a donkey) Pedro)

↪→ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

It is quite easy to extend the surface lexicon to handle subject-verb
agreement, so that the result reads “beats” rather than “beat”. We
could’ve taken care of cases, declination, verb conjugations, etc.

Why ACG?

Abstract signature
Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

Abstract and surface forms
fullstop (beat (a donkey) Pedro)

↪→ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

Abstract and semantic forms
fullstop (beat (a donkey) Pedro)

↪→ ∃j (donkey j) ∧ (beat jPedro)

If we are interested in semantics, we would map the abstract form
(rather than the surface form) to a logical formula. The abstract form
is simpler than the surface form. Since the word order is taken care of,
there is no need to distinguish left application from the right
application.

Why ACG?

Abstract signature
Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

Abstract and surface forms
fullstop (beat (a donkey) Pedro)

parse
←↩ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

Abstract and semantic forms
fullstop (beat (a donkey) Pedro)

↪→ ∃j (donkey j) ∧ (beat jPedro)

As to the surface form, we certainly are more interested in parsing to
to the abstract form, rather than the mapping from the abstract form.
ACG parsing has been the subject of intense research, great strides
have been made and good techniques developed. All these advances
fully benefit us: on the syntactic side, our approach is identical to
ACG.

Why ACG?

Abstract signature
Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N→ NP
beat : NP→ NP→ S
fullstop : S→ D

Abstract and surface forms
fullstop (beat (a donkey) Pedro)

parse
←↩ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

Abstract and semantic forms
fullstop (beat (a donkey) Pedro)

↪→ ∃j (donkey j) ∧ (beat jPedro)

The complexity of parsing depends on the order of the abstract
signature, which is the maximal nesting depth of arrows. In our case,
the order is 1: the parsing is therefore tractable and relatively easy.

Why ACG?

Abstract signature
Atomic types N,NP, S,D
Pedro : NP
donkey : N
a : N(NP
beat : NP(NP(S
fullstop : S(D

Abstract and surface forms
fullstop (beat (a donkey) Pedro)

parse
←↩ "Pedro"♦ "beat"♦ "a"♦ "donkey"♦ "."

Abstract and semantic forms
fullstop (beat (a donkey) Pedro)

↪→ ∃j (donkey j) ∧ (beat jPedro)

We’ve been sloppy, overlooking the fact that the arrow types in the
signature should have been linear arrow types (lollipops). Linear
types are crucial for parsing. In semantics, non-linear terms are
common (e.g., in our logical formula, j appears twice). Besides, we
don’t usually need to parse a logical formula into the abstract form.

Why ACG?

Abstract and semantic forms
fullstop (beat (a donkey) Pedro)

↪→ ∃j (donkey j) ∧ (beat jPedro)

In the rest of the talk we’ll be dealing only with the semantic mapping,
from an abstract form to a logical formula. In particular, we will
explain how to map the sample donkey term in the first line of the
table to its corresponding logical formula. As in case of the surface
form, the mapping is the lexicon substitution plus normalization. I
emphasize normalization, which will become prominent.

Outline

What are Abstract Categorial Grammars (ACG)?

Why ACGs

I Direct dynamic logic meta-calculus

What about the original puzzles?

Live demo

Semantic signature

Signature Σsem

Atomic types e, t
Pedro : e
donkey : e→ t
beat : e→ e→ t
∧ : t→ t→ t
∃i : t→ t
i : e

We start as before, with a signature. It has the expected atomic types e
and t, domain constants such as Pedro, and logical connectives. There
are also logical variables i with an unlimited supply. A quantifier such
as ∃i is indexed by the logical variable that it binds. There are deep
reasons for such an unusual setup; I’ll be happy to discuss them
afterwards. (First of all, if we use a higher-order abstract syntax, we
would not be able to compute the body of a quantifier since we can’t
evaluate under lambda. Mainly, we would like to keep the the
meta-language distinct from the target language. Both languages are
higher-order and involve binding. We would like to keep the bindings,
and variables, separate.)

Turning point

Emulate or build in?

We now want to establish a mapping from an abstract phrase to a
formula built with the constants of the semantic signature.
Our sample sentence is a simple example of a scopal expression
(quantification), which “contributes meaning where it is not seen or
heard.” (Carl’s phrase). We would like to take advantage of dynamic
logic to analyze this and more complex sentences. One may interpret
“dynamic” as an information update, a particular accessibility relation
among possible worlds, or just as a desk drawer, into which we can
put things and look them up later.

Turning point

Emulate or build in?

I Church numerals vs. native numbers
I CPS (type lifting) vs. direct calculus of effects

We have a choice to make. We can use the ordinary lambda-calculus
to express this dynamic aspect. After all, the normalization relation
can encode arbitrary computations (given the right type system). We
can encode our desk drawer. CPS, or type lifting, is such an encoding,
which to me appears less than satisfactory. Type lifting raises the order
of the types in the abstract signature: parsing becomes more complex
or even undecidable. Aesthetically, this encoding appears like doing
arithmetic using Church numerals. It is doable, but we won’t like
doing our taxes this way.

Turning point

Emulate or build in?

I Church numerals vs. native numbers
I CPS (type lifting) vs. direct calculus of effects

Our choice: dynamic effects directly in the calculus

We would like to talk about laws of numbers no matter how numbers
are actually represented. Likewise, we want to talk about effects
directly. In our calculus, we want effects built-in as primitives.

The� calculus over Σsem

Expressions
e, k ::= x | w | () | λx. e | ee | resetp e | êpe
Logical Formulae
w ::= c | ww c ∈ Σsem

Values
v ::= x | w | () | λx. e

Reduction rules
(βv) (λx. e)v ; e{x := v}
(Er) resetp v ; v
(Es) resetp êpk ; resetp e (λx. resetp kx)
(∼=) (̂epk)e2 ; êp(λx.(kx)e2)

v1(̂epk) ; êp(λx. v1(kx))
resetq êpk ; êp(λx. resetq kx) p 6= q

This is our calculus over the semantic signature. It includes logical
formulas built from the semantic signature, a special value unit,
regular abstractions and applications, and reset and shift (or, a
continuation bubble). Resets and bubbles are indexed by prompts, of
which there is an unlimited supply. We define a subset of expression to
call values.

The� calculus over Σsem

Expressions
e, k ::= x | w | () | λx. e | ee | resetp e | êpe
Logical Formulae
w ::= c | ww c ∈ Σsem

Values
v ::= x | w | () | λx. e

Reduction rules
(βv) (λx. e)v ; e{x := v}
(Er) resetp v ; v
(Es) resetp êpk ; resetp e (λx. resetp kx)
(∼=) (̂epk)e2 ; êp(λx.(kx)e2)

v1(̂epk) ; êp(λx. v1(kx))
resetq êpk ; êp(λx. resetq kx) p 6= q

We restrict the ordinary β-rule: only values can be substituted: see βv.

The� calculus over Σsem

Expressions
e, k ::= x | w | () | λx. e | ee | resetp e | êpe
Logical Formulae
w ::= c | ww c ∈ Σsem

Values
v ::= x | w | () | λx. e

Reduction rules
(βv) (λx. e)v ; e{x := v}
(Er) resetp v ; v
(Es) resetp êpk ; resetp e (λx. resetp kx)
(∼=) (̂epk)e2 ; êp(λx.(kx)e2)

v1(̂epk) ; êp(λx. v1(kx))
resetq êpk ; êp(λx. resetq kx) p 6= q

The continuation bubble expands, devouring terms in its context . . .

The� calculus over Σsem

Expressions
e, k ::= x | w | () | λx. e | ee | resetp e | êpe
Logical Formulae
w ::= c | ww c ∈ Σsem

Values
v ::= x | w | () | λx. e

Reduction rules
(βv) (λx. e)v ; e{x := v}
(Er) resetp v ; v
(Es) resetp êpk ; resetp e (λx. resetp kx)
(∼=) (̂epk)e2 ; êp(λx.(kx)e2)

v1(̂epk) ; êp(λx. v1(kx))
resetq êpk ; êp(λx. resetq kx) p 6= q

. . . unless stopped, or pricked, by resetp indexed by the same prompt.

The� calculus over Σsem

Expressions
e, k ::= x | w | () | λx. e | ee | resetp e | êpe
Logical Formulae
w ::= c | ww c ∈ Σsem

Values
v ::= x | w | () | λx. e

Reduction rules
(βv) (λx. e)v ; e{x := v}
(Er) resetp v ; v
(Es) resetp êpk ; resetp e (λx. resetp kx)
(∼=) (̂epk)e2 ; êp(λx.(kx)e2)

v1(̂epk) ; êp(λx. v1(kx))
resetq êpk ; êp(λx. resetq kx) p 6= q

shiftp e def= êp(λx. x)

We introduce shift as an abbreviation for the initial bubble.

Features of�

I Evaluation order is built-in
I Can evaluate top-to-bottom or bottom-up

(top-to-bottom evaluation is deterministic)
I Not even weakly normalizing

Imperfect analogy: LetTac, the language of Coq tactics

The slide notes several features of the calculus. When talking about
dynamics, the order of effects become important: think of the order of
deposits and withdrawals and the consequences of withdrawals before
deposits. In CPS, the order is encoded in data dependencies of
continuations. In our calculus, the evaluation order is declared more
directly.

Intuition of shift and prompt

Prompt marks the spot

. . . resetp . . . resetq . . . shiftp(λz.∃i (zi)) . . .
;∗ . . . resetp ∃i resetp . . . resetq . . . i . . .

Let’s consider the term on the slides, where insignificant parts are
elided, with We assume that none of the elided parts contain
resetp with exactly the prompt p.
On the second line is the result of evaluating (normalizing) the term.

Intuition of shift and prompt

Prompt marks the spot

. . . resetp . . . resetq . . . shiftp(λz.∃i (zi)) . . .
;∗ . . . resetp ∃i resetp . . . resetq . . . i . . .

In effect, ∃i moved to the place marked by resetp. So, prompt marks
the locus of movement.

Intuition of shift and prompt

Prompt marks the spot

. . . resetp . . . resetq . . . shiftp(λz.∃i (zi)) . . .
;∗ . . . resetp ∃i resetp . . . resetq . . . i . . .

And the whole shift expression is replaced by the quantified variable i.

Intuition of shift and prompt

Prompt marks the spot

. . . resetp . . . resetq . . . shiftp(λz.∃i (zi)) . . .
;∗ . . . resetp ∃i resetp . . . resetq . . . i . . .

Resets with the prompts other than p may appear in-between (see
resetq). They are “passed through.”

Semantic lexicon
Lsem: mapping of constants of Σabs to� over Σsem

NP 7→ unit→e
N 7→ (unit→e)→ (unit→t)
S 7→ unit→t
D 7→ t
Pedro 7→ λu. P edro
donkey 7→ λx. λu. donkey(xu)
beat 7→ λo. λs. λu.(λx. λy. beat yx) (su) (ou)
a 7→ λx. λu. shiftq(λz. ∃j (x(λu. j)u) ∧ zj)
fullstop 7→ λx. resetq x()

Semantic lexicon
Lsem: mapping of constants of Σabs to� over Σsem

NP 7→ unit→e
N 7→ (unit→e)→ (unit→t)
S 7→ unit→t
D 7→ t
Pedro 7→ λu. P edro
donkey 7→ λx. λu. donkey(xu)
beat 7→ λo. λs. λu.(λx. λy. beat yx) (su) (ou)
a 7→ λx. λu. shiftq(λz. ∃j (x(λu. j)u) ∧ zj)
fullstop 7→ λx. resetq x()

Abstract and semantic forms
Lsem(fullstop (beat (a donkey) Pedro))

;∗ ∃j (donkey j) ∧ (beat jPedro)

Lsem(tdonkey) is a term in�, which includes shift and reset. If we
normalize the term by applying the reduction rules described above,
we end up with the logical formula at the bottom. This is a value, and
it is taken to be the semantic denotation of our sentence.

What about types?

I Our calculus is typed
I Types are very useful
I All types are inferred
I Types are only an approximation of dynamic behavior

(the typed calculus is still not normalizing)

Alas, this slide is all I have time now to say about types.

Outline

What are Abstract Categorial Grammars (ACG)?

Why ACGs

Direct dynamic logic meta-calculus

IWhat about the original puzzles?

Live demo

Hypotheses

Prompts
p∀, p∃, pit, ps

Ordering of prompts

I Universals cannot scope wider than a sentence:
p∀ is set at the sentence boundary.

I Indefinites, pronouns may scope discourse-wide:
p∃, pit are not set at the sentence boundary.

I Coordinator limits the scope of quantification and binding:
and sets p∀, p∃, pit

I Negation sets p∃.

I To prevent “scope extrusion,” quantifiers must set pit.

Let us come back to the happy donkeys, our original puzzles. To
analyze them, we will pose four prompts. The prompt ps, the sentence
prompt, is the target for the coordination movement, among other
things. It is set at each sentence’s boundary. The other prompts are
self-explanatory.
We make several assumptions, listed on the slide, about the setting of
the prompts.

Hypotheses

Prompts
p∀, p∃, pit, ps

Ordering of prompts

I Universals cannot scope wider than a sentence:
p∀ is set at the sentence boundary.

I Indefinites, pronouns may scope discourse-wide:
p∃, pit are not set at the sentence boundary.

I Coordinator limits the scope of quantification and binding:
and sets p∀, p∃, pit

I Negation sets p∃.
I To prevent “scope extrusion,” quantifiers must set pit.

The last assumption is forced upon us by general considerations, to
prevent quantified variables from “leaking out.” It is this assumption
that is responsible indefinites’ binding into negation but not out of
negation. Negation restricts the scope of indefinites, and indefinites
limit the scope of binding.

Outline

What are Abstract Categorial Grammars (ACG)?

Why ACGs

Direct dynamic logic meta-calculus

What about the original puzzles?

I Live demo

Live demo
(2) Every donkey enters. ?It brays.

(3) It-is-not-the-case-that a donkey enters. ?It brays.

(6) A donkey enters. It-is-not-the-case-that it brays.

Conclusions

Combination of dynamic logic with ACG

I Denotations are computed
I Computation is expressed in a meta-language with built-in

effects
(no type lifting, no CPS)

I Delimited control gives us both semantic power and easy
parsing

I Delimited dynamic binding (and quantifier scope)

The scope of quantification/binding is the interplay

I A quantifier phrase’s targeting a particular prompt
I The context’s setting the prompts

http://okmij.org/ftp/Computation/gengo/symantics2.ml

We have described a computational ACG, emphasizing evaluation as a
process to produce a (semantic) logical formula. Computational ACG
gives us a principled way to assign different quantifiers different
scope-taking abilities, maintaining consistency with Minimalism and
avoiding free-wheeling Quantifier Raising.
Computational ACG let us relate quantification and binding: the same
mechanism controls the scope of both.
We have implemented Computational ACG by embedding them in
OCaml. Using the (unmodified) OCaml system, we can compute ACG
yields and, more importantly, denotations. We can do that
interactively, using OCaml top-level (interpreter). There is no longer
any need to computing denotations by hand. We (computer, actually)
can thus handle more complex examples.

