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Overall goal
Montagovian semantics for Computer Scientists, or
Derivation calculators for Semanticists

Derivations and normalizations are boring, let the computer
do it

Gains
I for NL researchers: a helpful tool

not just for counting words, but
complement to pen-and-paper theory building

I for PL researchers: an interesting application to build tools
for

Beginning of a beautiful friendship
(or, collaboration, or at least mutual comprehension)

http://okmij.org/ftp/gengo/NASSLLI10/

http://okmij.org/ftp/gengo/NASSLLI10/
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Grand goal

NL researchers will
I gain rational reconstruction of Montagovian tricks
I import developed CS ideas:

side effects, continuations, regions, staging, dependent
types

PL researchers will
I export developed CS ideas:

side effects, continuations, regions, staging, dependent
types

I build theories of programming language competence

All would benefit from connections with logic and probability
theory
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Plan
I Making (intuitive) sense of our metalanguage (Haskell)
I CFG: writing and (re-)interpreting derivations

overall: how to embed (object) languages and represent
(grammar/type) derivations

I Propositional and predicate logic as an object language
I Language transformations and simplifications: teaching the

computer equational reasoning
I Data types and capturing the structure of a domain
I Approaches to quantification

I Expressives
I Theories of intensionality

I Embedding Combinatorial Categorial Grammars
I Dynamic logic and donkey anaphora
I Scope and inverse linking in continuation semantics
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Main ideas

I Calculemus: yields, denotations
I Many fragments, languages, interpretations
I Growing fragments and languages
I Interactivity
I Montagovian tradition
I Representing published analyses and theories (de Groote,

Potts, Pollard’s APWS, Zimmermann, boot camp, . . . )

http://homepages.cwi.nl/~jve/HR/

http://lambda.jimpryor.net/

http://homepages.cwi.nl/~jve/HR/
http://lambda.jimpryor.net/
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The look of Haskell

I GHCi prompt
I Arithmetic, Logic, Strings
I Abstractions and applications
I Types, type annotations, type errors
I Definitions, parametrized definitions

http://tryhaskell.org

http://www.haskell.org/platform/

http://tryhaskell.org
http://www.haskell.org/platform/
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Exercises 0

Fill in the blanks

Prelude> True && False

Prelude> :t (| | )

Prelude> :t
:: [Char] → [Char]
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Exercises 1

twice = \f → \x → f (f x)

I How else we can write this definition?
I Does this term reminds us something from

lambda-calculus?
I How to quickly verify that?
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Exercises 2

1. Write Church numeral for 0

2. Write increment incr. How to test it?

3. Write addition, multiplication, exponentiation, decrement
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Further look at Haskell

Pairs (products)
introduction, elimination, pattern-matching in definitions

Sums (co-products)
introduction, elimination, defining by clauses

Why pairs are called products and why Either is called a sum or
a co-product?

Polymorphic types
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Exercises 3

Write functions of these types:

((), a) → a
a → ((), a)
Either a b → (a → c) → (b → c) → c
((a, b) → c) → (a→ b→ c)
(a→ b→ c) → ((a,b) → c)
a → ((a → f ) → f )
((( a → f ) → f ) → f ) → (a → f )
(Either a b → f ) → (a → f , b → f )
((a, b) → f ) → ((( Either (a→ f) (b→ f)) → f ) → f )

I what do these functions do?
I What do these types remind you of?
I What do the terms your wrote signify?
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Exercises 4

1. How polymorphic types relate to universals?

2. Why existentials in Haskell look the way they do?



12

Exercises 5

1. Add ditransitive verbs

2. Add some sort of agreement
The yield of a derivation (the phonetics generated from the
derivation) should show the agreement between a verb and
its arguments (in number, case, gender, etc.) Extend the
fragment appropriately. You can use any language for
phonetics.
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Exercises 6

1. Define the data type of Pizzas
The datatype describes which baked thing can be
considered a pizza and which cannot.

2. Define a data type for burrito
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Exercises 7

Think about representing the derivation of, and computing yield
and truth values of two sample sentences from the Semantics
boot camp:

I Düsseldorf is hot
I Düsseldorf is in Germany

Elizabeth Coppock. Semantics bootcamp handouts (Part III, §1.1
and §1.2) NASSLLI 2012, June 16, 2012
http://nasslli2012.com/bootcamp

http://nasslli2012.com/bootcamp
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Grammatical Framework

“GF, Grammatical Framework, is a programming language for
multilingual grammar applications.”
http://www.grammaticalframework.org/

I EDSL vs. stand-alone language
I implementation effort
I flexibility
I polish and convenience
I error messages
I parsers, syntactic sugar

I Implementing an ACG/CCG interpreter in Haskell vs. using
Haskell as a metalanguage to express ACG/CCG:
understanding a foreign language by translation vs.
thinking in a foreign language

http://www.grammaticalframework.org/
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Lecture 3

1. Truth values vs. truth conditions,
why we want to see logical formulas

2. Logic as a language
2.1 Embedding the propositional logic:

syntax, semantics (models), simplification (consequence)
I Data types in Haskell: a more general view

2.2 Embedding higher-order languages
2.3 Predicate logic and logical quantification

3. Putting it all together: seeing logical formulas for a
sentence and its constituents
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Natural and Formal languages

“I reject the contention that an important theoretical difference
exists between formal and natural languages. ... In the present
paper I shall accordingly present a precise treatment,
culminating in a theory of truth, of a formal language that I
believe may reasonably be regarded as a fragment of ordinary
English. ... The treatment given here will be found to resemble
the usual syntax and model theory (or semantics) [due to
Tarski] of the predicate calculus, but leans rather heavily on the
intuitive aspects of certain recent developments in intensional
logic [due to Montague himself]. (Montague 1970b, p.188 in
Montague 1974)”

[Quoted from Semantics bootcamp handouts (Part I) by
Elizabeth Coppock. NASSLLI 2012, June 16, 2012]



18

Understanding type classes

Logic Language Information

class Σ
(embedded)
Language

Interface

instance
Model
< D, I >

Interpretation Implementation
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Compositionality

Compositionality Principle
The meaning of an expression is uniquely determined by the
meaning of its parts and the manner in which they are
combined.

⇒

The substitution principle
If two expressions have the same meanings, they may replace
each other in all contexts (in all positions within any bigger
expression) without affecting the truth conditions.
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Intensionality

Hesperus is Venus.
Venus is a planet. ⇒
Hesperus is a planet.

Hesperus is Venus.
John wants to find Venus. 6⇒
John wants to find Hesperus.
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Map
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