
1

Overall goal
Montagovian semantics for Computer Scientists, or
Derivation calculators for Semanticists

Derivations and normalizations are boring, let the computer
do it

Gains
I for NL researchers: a helpful tool

not just for counting words, but
complement to pen-and-paper theory building

I for PL researchers: an interesting application to build tools
for

Beginning of a beautiful friendship
(or, collaboration, or at least mutual comprehension)

http://okmij.org/ftp/gengo/NASSLLI10/

http://okmij.org/ftp/gengo/NASSLLI10/

2

Grand goal

NL researchers will
I gain rational reconstruction of Montagovian tricks
I import developed CS ideas:

side effects, continuations, regions, staging, dependent
types

PL researchers will
I export developed CS ideas:

side effects, continuations, regions, staging, dependent
types

I build theories of programming language competence

All would benefit from connections with logic and probability
theory

3

Plan
I Making (intuitive) sense of our metalanguage (Haskell)
I CFG: writing and (re-)interpreting derivations

overall: how to embed (object) languages and represent
(grammar/type) derivations

I Propositional and predicate logic as an object language
I Language transformations and simplifications: teaching the

computer equational reasoning
I Data types and capturing the structure of a domain
I Approaches to quantification

I Expressives
I Theories of intensionality

I Embedding Combinatorial Categorial Grammars
I Dynamic logic and donkey anaphora
I Scope and inverse linking in continuation semantics

4

Main ideas

I Calculemus: yields, denotations
I Many fragments, languages, interpretations
I Growing fragments and languages
I Interactivity
I Montagovian tradition
I Representing published analyses and theories (de Groote,

Potts, Pollard’s APWS, Zimmermann, boot camp, . . .)

http://homepages.cwi.nl/~jve/HR/

http://lambda.jimpryor.net/

http://homepages.cwi.nl/~jve/HR/
http://lambda.jimpryor.net/

5

The look of Haskell

I GHCi prompt
I Arithmetic, Logic, Strings
I Abstractions and applications
I Types, type annotations, type errors
I Definitions, parametrized definitions

http://tryhaskell.org

http://www.haskell.org/platform/

http://tryhaskell.org
http://www.haskell.org/platform/

6

Exercises 0

Fill in the blanks

Prelude> True && False

Prelude> :t (| |)

Prelude> :t
:: [Char] → [Char]

7

Exercises 1

twice = \f → \x → f (f x)

I How else we can write this definition?
I Does this term reminds us something from

lambda-calculus?
I How to quickly verify that?

8

Exercises 2

1. Write Church numeral for 0

2. Write increment incr. How to test it?

3. Write addition, multiplication, exponentiation, decrement

9

Further look at Haskell

Pairs (products)
introduction, elimination, pattern-matching in definitions

Sums (co-products)
introduction, elimination, defining by clauses

Why pairs are called products and why Either is called a sum or
a co-product?

Polymorphic types

10

Exercises 3

Write functions of these types:

((), a) → a
a → ((), a)
Either a b → (a → c) → (b → c) → c
((a, b) → c) → (a→ b→ c)
(a→ b→ c) → ((a,b) → c)
a → ((a → f) → f)
(((a → f) → f) → f) → (a → f)
(Either a b → f) → (a → f , b → f)
((a, b) → f) → (((Either (a→ f) (b→ f)) → f) → f)

I what do these functions do?
I What do these types remind you of?
I What do the terms your wrote signify?

11

Exercises 4

1. How polymorphic types relate to universals?

2. Why existentials in Haskell look the way they do?

12

Exercises 5

1. Add ditransitive verbs

2. Add some sort of agreement
The yield of a derivation (the phonetics generated from the
derivation) should show the agreement between a verb and
its arguments (in number, case, gender, etc.) Extend the
fragment appropriately. You can use any language for
phonetics.

13

Exercises 6

1. Define the data type of Pizzas
The datatype describes which baked thing can be
considered a pizza and which cannot.

2. Define a data type for burrito

14

Exercises 7

Think about representing the derivation of, and computing yield
and truth values of two sample sentences from the Semantics
boot camp:

I Düsseldorf is hot
I Düsseldorf is in Germany

Elizabeth Coppock. Semantics bootcamp handouts (Part III, §1.1
and §1.2) NASSLLI 2012, June 16, 2012
http://nasslli2012.com/bootcamp

http://nasslli2012.com/bootcamp

15

Grammatical Framework

“GF, Grammatical Framework, is a programming language for
multilingual grammar applications.”
http://www.grammaticalframework.org/

I EDSL vs. stand-alone language
I implementation effort
I flexibility
I polish and convenience
I error messages
I parsers, syntactic sugar

I Implementing an ACG/CCG interpreter in Haskell vs. using
Haskell as a metalanguage to express ACG/CCG:
understanding a foreign language by translation vs.
thinking in a foreign language

http://www.grammaticalframework.org/

16

Lecture 3

1. Truth values vs. truth conditions,
why we want to see logical formulas

2. Logic as a language
2.1 Embedding the propositional logic:

syntax, semantics (models), simplification (consequence)
I Data types in Haskell: a more general view

2.2 Embedding higher-order languages
2.3 Predicate logic and logical quantification

3. Putting it all together: seeing logical formulas for a
sentence and its constituents

17

Natural and Formal languages

“I reject the contention that an important theoretical difference
exists between formal and natural languages. ... In the present
paper I shall accordingly present a precise treatment,
culminating in a theory of truth, of a formal language that I
believe may reasonably be regarded as a fragment of ordinary
English. ... The treatment given here will be found to resemble
the usual syntax and model theory (or semantics) [due to
Tarski] of the predicate calculus, but leans rather heavily on the
intuitive aspects of certain recent developments in intensional
logic [due to Montague himself]. (Montague 1970b, p.188 in
Montague 1974)”

[Quoted from Semantics bootcamp handouts (Part I) by
Elizabeth Coppock. NASSLLI 2012, June 16, 2012]

18

Understanding type classes

Logic Language Information

class Σ
(embedded)
Language

Interface

instance
Model
< D, I >

Interpretation Implementation

19

Compositionality

Compositionality Principle
The meaning of an expression is uniquely determined by the
meaning of its parts and the manner in which they are
combined.

⇒

The substitution principle
If two expressions have the same meanings, they may replace
each other in all contexts (in all positions within any bigger
expression) without affecting the truth conditions.

20

Intensionality

Hesperus is Venus.
Venus is a planet. ⇒
Hesperus is a planet.

Hesperus is Venus.
John wants to find Venus. 6⇒
John wants to find Hesperus.

21

Map

Symantics
Lambda

Quantifier

Pronoun
Dynamics

States

EN

EN

EN

JA

JA

Sem

Sem

Sem

D

D

R

R

P

C

P

C

P

C

