
Continuation Hierarchy and Quantifier Scope

Oleg Kiselyov and Chung-chieh Shan

1 oleg@okmij.org
2 ccshan@indiana.edu

Abstract. We present a directly compositional and type-directed anal-
ysis of quantifier ambiguity, scope islands, wide-scope indefinites and
inverse linking. It is based on Danvy and Filinski’s continuation hier-
archy, with deterministic semantic composition rules that are uniquely
determined by the formation rules of the overt syntax. We thus obtain
a compositional, uniform and parsimonious treatment of quantifiers in
subject, object, embedded-NP and embedded-clause positions without
resorting to Logical Forms, Cooper storage, type-shifting and other ad
hoc mechanisms.
To safely combine the continuation hierarchy with quantification, we give
a precise logical meaning to often used informal devices such as picking
a variable and binding it off. Type inference determines variable names,
banishing “unbound traces”.
Quantifier ambiguity arises in our analysis solely because quantifier words
are polysemous, or come in several strengths. The continuation hierarchy
lets us assign strengths to quantifiers, which determines their scope. In-
definites and universals differ in their scoping behavior because their lex-
ical entries are assigned different strengths. PPs and embedded clauses,
like the main clause, delimit the scope of embedded quantifiers. Unlike
the main clause, their limit extends only up to a certain hierarchy level,
letting higher-level quantifiers escape and take wider scope. This inter-
play of strength and islands accounts for the complex quantifier scope
phenomena.
We present an economical “direct style”, or continuation hierarchy on-
demand, in which quantifier-free lexical entries and phrases keep their
simple, unlifted types.

1 Introduction

The proper treatment of quantification has become a large research area ever
since Montague called attention to “the puzzling cases of quantification and
reference” back in 1974 [1]. The impressive breadth of the area is evident from
two recent surveys [2, 3], which concentrate only on interactions of quantifier
phrases among themselves (leaving out, for example, binding of pronouns by
quantifiers). The two surveys collect a great amount of empirical data – more and
more puzzles. There is also a great number of proposals for a theory to explain
the puzzles. And yet even the basic features of the theory remain undecided. In
the conclusion of her survey [2] Szabolcsi poses the following three challenges
that call for significant new research:

2

1. “develop the tools, logical as well as syntactic, that are necessary to account
for the whole range of existing readings;”

2. “draw the proper empirical distinction between readings that are actually
available and those that are not;”

3. determine “whether ‘spell-out syntax’ is sufficient for the above two pur-
poses” [in other words, if quantifier scope can be determined without resort-
ing to Logical Form]

This paper takes on the challenges and develops a logical tool that is ex-
pressive to capture empirical data – available and unavailable readings – for a
range of quantifier phenomena, from quantifier ambiguity to scope islands, wide-
scope indefinites and inverse linking. The “spell-out syntax” proved sufficient:
we directly compose meanings that are model-theoretic, not trees. There is quite
more work yet to do. Future work dealing with numeric and downward-entailing
quantifiers, plural indefinites, and quantificational binding will hopefully clarify
presently ad hoc parameters such as the number of hierarchy levels.

1.1 What is quantifier scope

“The scope of an operator is the domain within which it has the ability to affect
the interpretation of other expressions” [2, §1.1]. In this paper, we concentrate
on how a quantifier affects the interpretation of another quantified phrase. For
example,

(1) I showed every boy a planet.

has the reading that I showed each boy a possibly different planet. The quantifier
‘every’ affected the interpretation of ‘a planet’, which refers to a possibly different
planet for a different boy. That reading is called linear scope. The sentence has
another – inverse – reading, whereupon each boy was shown the same planet. The
example thus exhibits quantifier ambiguity. Although the inverse-scope reading
of (1) entails the linear reading (which lead to doubts if inverse readings have to
be accounted for at all [4]), this is not always the case. For example, the linear
and inverse readings of

(2) Two of the students attended three of the seminars.

(3) Neither student attended a seminar on rectangular circles.

do not entail each other. Szabolcsi [2] demonstrates solid inverse-scope readings
on many more examples. A theory of scope must also explain why no quantifier
ambiguity arises in examples like

(4) That every boy left upset a teacher.

(5) Someone reported that John saw everyone.

(6) Some professor admires every student and hates the Dean.

and yet other examples with a quantifier within an embedded clause, such as

(7) Everyone reported that [Max and some lady] disappeared.

3

are ambiguous. Szabolcsi argues [2, §3.2] that “different quantifier types have
different scope-taking abilities”. The theory should therefore support lexical en-
tries for quantifiers that take scope differently and compositionally in relation
to each other. The present paper describes such a theory.

1.2 Why continuations

Our theory of quantifier scope is based on continuation semantics, which emerged
[5, 6] as a compelling alternative to traditional approaches to quantification –
Montague’s proper treatment, Quantifier Raising (QR), type-shifting (surveyed
by Barker [5]) – as well as to the Minimalism views (surveyed by Szabolcsi [2];
she also extensively discusses QR and its empirical inadequacy). Continuation
semantics is compelling because it can interpret quantificational NPs (QNPs)
compositionally in situ, without type-shifting, Cooper storage, or building any
structures like Logical Forms beyond overt syntax. Accordingly, QNPs in sub-
ject and other positions are treated the same, QNPs and NPs are treated the
same, and scope taking is semantic. Central to the approach is the hypothesis
that “some linguistic expressions (in particular, QNPs) have denotations that
manipulate their own continuations” [5, §1]. Although continuation semantics is
only a decade old, its origin can be traced to Montague’s proper treatment: “say-
ing that NPs denote generalized quantifiers amounts to saying that NPs denote
functions on their own continuations” [5, §2.2] (see also [6]). Several continu-
ation approaches have been developed since Barker’s [5], using so-called control
operators [6–8] or Lambek-Grishin calculus [9].

1.3 Contributions

Like all continuation approaches, our theory features a compositional, uniform
and in-situ analysis of QNPs in object, subject and other positions. Moreover,
we address the following open issues.

inverse scope, scope islands and wide-scope indefinites One way to ac-
count for these phenomena is to combine control operators with metalinguis-
tic quotation [10]. More common – see for example [11] – is using a conti-
nuation hierarchy, such as Danvy and Filinski’s (D&F) hierarchy [12], which
has been thoroughly investigated in the Computer Science theory. The com-
mon problem, which has not been addressed in the metalinguistic quotation
and the previous D&F hierarchy approaches, is avoiding “unbound traces” –
preventing denotations with unbound variables. Barker and Shan’s essen-
tially ‘variable-free’ semantics [13] side-steps the unbound traces problem
altogether. However it relies on a different and little investigated hierarchy.
The corresponding direct-style (see the next point) is unknown.
Our approach is the first to give a rigorous account of inverse scope, scope
islands and wide-scope indefinites using the D&F hierarchy. We rely on types
to prevent unbound traces. We formalize the pervasive intuition that a QNP
is represented by a trace (QR), pronoun (Montague) or variable (Cooper

4

storage) that gets bound somehow. We make this intuition precise and give
it logical meaning, banishing unbound traces once and for all.

direct style In Barker’s continuation approach [5], every constituent’s denota-
tion explicitly receives its continuation, even though few constituents need to
manipulate these continuations. Combining such continuation-passing-style
(CPS) denotations is quite cumbersome, as we see in §2.2. Thus, we would
like to avoid CPS denotations for quantifier-free constituents, in particular,
for lexical entries other than quantifiers. Direct-style continuation semantics
lets us combine continuation-manipulating denotations directly with ordi-
nary denotations, simplifying analyses and keeping most lexical entries ‘un-
complicated’, which we illustrate in §2.3.
We present a version of direct-style for the D&F hierarchy. Unlike other
direct-style approaches [7, 10], ours uses the ordinary λ-calculus and deno-
tational semantics rather than operational semantics and a calculus with
control operators. Our treatment of inverse scope relies on the properties of
the D&F hierarchy extensively, as detailed in §4.

source of quantifier ambiguity It is common to explain quantifier ambiguity
by the nondeterminism of semantic composition rules [5, 6]. One syntactic
formation operation may correspond to several semantic composition func-
tions, or the analysis may include operators like ‘lift’ or ‘wrap’ that may be
freely applied to any denotation.
In contrast, our semantic composition rules are all deterministic. Although
we extensively rely on schematic rules to ease notation and emphasize com-
monality, how these schemas are instantiated is determined unambiguously
by types. Furthermore, our analysis has no optional or freely applicable
rules or semantic combinators. Each syntactic formation operation maps
to a unique semantic composition operation, and vice versa: each operation
on denotations has a syntactic counterpart. This one-to-one correspondence
between surface syntax and semantic composition underlies our entire ap-
proach – which is thus directly compositional. (See [5, §6] for the discussion
of compositionality and how nondeterminism in semantic composition rules
constitutes a threat.)
The source of quantifier ambiguity in our approach is solely in the lexical
entries for the quantifier words rather than in the rules of syntactic forma-
tion or semantic composition. Different lexical entries for the same quantifier
word have denotations corresponding to different levels of the continuation
hierarchy, thus having different strength, or ability to scope over wider con-
texts.3

One advantage of our approach is better control over overgeneration: when
only lexical entries are ambiguous, it is easier to see all available denotations
and hence assure against overgeneration.

3 The different lexical entries for the same quantifier have a regular structure. In fact,
all higher-strength quantifier entries are mechanically derived from the entry for the
lowest-strength quantifier, as shown in Figures 12 and 13. The number of lexical
entries, that is, the assignment of the levels of strength to a quantifier is determined
from empirical data.

5

To summarize: our contribution is a directly compositional analysis of quan-
tifier ambiguity, scope islands, inverse linking and wide-scope indefinites in the
D&F continuation hierarchy, in direct style, without risking unbound traces,
and using deterministic semantic composition rules. We analyze QNP in situ
and compositionally, relying on no structure beyond the overt syntax. All non-
determinism is in the choice of lexical entries for quantifier words. The presen-
tation uses the familiar denotational semantics.

1.4 The structure of the paper

The warm-up §2 gradually introduces continuation semantics on a small frag-
ment and explains our notation and terminology. §2.3 presents the direct-style
continuation semantics as an economical CPS-on-demand. We treat bound vari-
ables rigorously in §3, with type annotations to infer variable names and to pre-
vent unbound variables in final denotations. §4 presents the continuation hierar-
chy and uses it to analyze quantifier ambiguity. The corresponding direct-style,
or CPS hierarchy on-demand, is described in §4.2. Scope islands, wide-scope
indefinites and briefly inverse linking are the subject of §5.

For illustrations we use a small fragment of English with context-free syn-
tax and extensional semantics, extending and refining the fragment throughout
the paper. Figure 1 shows the relationship between the fragments, illustrating
parallel development in CPS and direct style.

The continuation hierarchy of quantifier scope described in the paper has
been implemented. The complete Haskell code is available online at http://

okmij.org/ftp/gengo/QuanCPS.hs. The file implements the fragment of the
paper in the spirit of the Penn Lambda Calculator [14], letting the user write
parse trees and determine their denotations. We have used our semantic calcu-
lator for all the examples in the paper.

2 Warm-up: the proper continuation treatment of
quantifiers

In this warm-up section, we recall Barker’s continuation semantics [5] and sum-
marize it in our notation. Alongside, we also introduce Barker and Shan’s con-
tinuation semantics [7, 15] in direct style, which avoids pervasive type lifting of
lexical entries. We use the simplicity of the examples to introduce notation and
calculi to be used in further sections.

2.1 Direct semantics

Like Barker [5], we start with a simple, quantifier-free fragment, with context-free
syntax and extensional semantics. The language of denotations is a plain higher-
order language, Figure 2 with the obvious model-theoretical interpretation. The
language has base types e and t and function types, for example (e(et)). We will

6

Quantifier-free fragment: Fig. 3, §2.1

Continuation semantics: Fig. 5, §2.2

Annotated types: Fig. 9, §3

CPS2 semantics: Fig. 10, §4

CPS, quantifiers

Direct style: Fig. 6, §2.3

Annotated types: Fig. 9, §3

Multi-level direct-style: Fig. 11, §4.2

Fragment with embedded clauses: Fig. 12, §5.1

Wide-scope indefinites: Fig. 13, §5.2

Inverse linking: Fig. 14, §5.3

Quantifier level annotations Quantifier level annotations

CPS n-times CPS

Lexical entries, embedded clauses

Semantically distinguishing main-clause
from embedded-clause boundary

Prepositional phrases

Fig. 1. Relationship between the fragments used in the paper

Base types υ ::= e | t
Types σ ::= υ | (σσ)

Constants c ::= ∧ | ∨ | ⇒ | ¬ | john | mary | see | . . .
Expressions d ::= c | d � d

Fig. 2. The language D of denotations

7

Syntax Semantic type Denotation [[·]]
M → S . t (|[[S]]|)
S → NP VP t [[NP]] < [[VP]]
VP → Vt NP et [[Vt]] > [[NP]]
NP → John e john
NP → Mary e mary
VP → left et leave
Vt → saw e(et) see

Fig. 3. Syntax and direct semantics for a small quantifier-free fragment

often omit outer parentheses. Expressions (denoted by ‘non-terminal’ d) com-
prise constants (denoted by c) and applications d1 �d2, which are left associative:
d1 � d2 � d3 stands for (d1 � d2) � d3. Constants are logical constants (negation, etc)
and domain constants (such as john). Logical connectives ∧ (conjunction), ∨
(disjunction),⇒ (implication) are constants of the type t(tt), whose applications
are written in infix, for example, d1 ∧ d2.

The syntax and semantics for our fragment is given in Figure 3. The syntax
formation operation Merge corresponds to what we call forward application >

or backward application < in semantics, which are defined in (8) below. 4 The
notation d1

>d2 says nothing at all whether d1 takes scope over d2. The category
M stands for the complete (matrix) sentence, terminated by the period. The
corresponding semantic operation is (|·|). For now, these semantic composition
operations are defined as follows:

(8)

d1
>d2

def
= d1 � d2

d1
<d2

def
= d2 � d1

(|e|) def
= e

We extend these definitions in §2.2 when we add quantifiers, and we extend
the definition of (|·|) a few more times. It will become clear then that the latter
semantic operation is not vacuous at all. Finally, §5.1 will make it clear that (|·|)
plays the role of the delimiter of the quantifier scope.

Figure 3 and the similar figures in the following sections demonstrate that
each syntactic formation operation maps to a semantic composition operation
and vice versa: each operation on denotations is reflected in syntax. This one-to-
one syntax-semantic composition correspondence underlies our entire approach.
We easily determine the denotation of a sample sentence

(9) [M [S [NP John] [VP [Vt saw] [NP Mary]]].]

4 In our simple context-free syntax, the choice of forward or backward application
is determined by the semantic types. If we used combinatorial categorial grammar
(CCG), the choice of the application is evident from the categories of the nodes
being combined.

8

Types τ ::= σ | τ → τ

Variables x, y, z, v, f, k

Expressions m ::= d | x | λx.m | m m

Reductions m m′ (λx.m)m′ m {x 7→ m′} (β)

Fig. 4. Simply-typed λ-calculus, the language L. (Base types σ and constants d are
introduced in Figure 2.)

to be see �mary � john.

2.2 CPS semantics

We now review continuation semantics, which lets us add quantifiers to our
fragment. Barker [5] has argued that the denotations of quantified phrases need
access to their context. Here is a simple illustration. Suppose we had a magic
domain constant everyone as the denotation of everyone. We could write the
meaning of [M [S John [VP saw [NP everyone]]].] as (|see �everyone � john|), whose
model-theoretical interpretation must be the same as that of the logical formula
∀x. see � x � john. Removing everyone from (|see � everyone � john|) leaves the
“term with a hole” (|see � [] � john|) – the context of everyone in the original
term. We intuit that everyone manages to grab its context, up to the enclosing
(|·|), and quantify over it.

To give each term the ability to grab its context, we write the terms in
a continuation-passing style (CPS), whereupon each expression receives as an
argument its context represented as a function, or continuation. Before we can
write any CPS term, we have to resolve a small problem. To represent contexts
we have to be able to build functions – an operation our language of denotations
D (Figure 2) does not support. Therefore, we “inject” D into the full λ-calculus,
with λ-abstractions. This calculus, or language L, is presented in Figure 4.

The expressions of the language D (Figure 2) are all constants of the λ-
calculus L; the types of D are all base types of L. In this sense, D is embedded
in L. The language L has its own function types, written with an arrow →.
Distinguishing two kinds of function types makes the continuation argument
stand out in CPS terms as well as types. We exploit this distinction in §2.3.

We take → to be right associative and hence we write t → (t → t) as
t→ t→ t. Besides the constants, L has variables, abstractions and applications.
The application is again left associative, with m1m2m3 standing for (m1m2)m3.
L is the full λ-calculus and has reductions, m m′. An expression is in

normal form if no reduction applies to it or any of its sub-expressions. The
notation m {x 7→ m′} in the β-reduction rule stands for the capture-avoiding
substitution of m′ for x in m. A unique normal form always exists and can be
reached by any sequence of reductions; in other words, L is strongly normalizing.

9

Syntax Semantic type Denotation [[·]]
M → S . t (|[[S]]|)
S → NP VP (t→ t)→ t [[NP]] < [[VP]]
VP → Vt NP ((et)→ t)→ t [[Vt]] > [[NP]]
NP → John (e→ t)→ t λk. k john
NP → Mary (e→ t)→ t λk. k mary
VP → left ((et)→ t)→ t λk. k leave
Vt → saw ((e(et))→ t)→ t λk. k see

NP → everyone (e→ t)→ t λk.∀x. k x
NP → someone (e→ t)→ t λk.∃x. k x

Fig. 5. Syntax and continuation semantics for the small fragment

We are set to write CPS denotations for our fragment. Constants like john
have little to do but to “plug themselves” into their context: λk. k john.5 Here k
represents the context of john within the whole sentence denotation. The whole
denotation must be of the type t; hence k has the type e → t and the type of
the CPS form of john is (e→ t)→ t. With the CPS denotations, our fragment
now reads as in Figure 5. The semantic composition operators are now defined
as follows.

(10)

m1
>m2

def
= λk.m1(λf.m2(λx. k(f � x)))

m1
<m2

def
= λk.m1(λx.m2(λf. k(f � x)))

(|m|) def
= m(λv. v)

The CPS form of m1
>m2 is λk.m1(λf.m2(λx. k (f � x))): it fills its context k

with f � x, where f is what m1 fills its context with, and x is what m2 fills its
context with.

Using Figure 5 to compute the denotation of the sample sentence (9) gives
us:

[[[M [S [NP John] [VP [Vt saw] [NP Mary]]].]]](11)

= (λk0. (λk. k john)(λx.
(λk1. (λk. k see)(λf ′. (λk. k mary)(λx′. k1 (f ′ � x′))))
(λf. k0 (f � x))))

(λv. v)

 (λk0. (λk. k john)(λx.
(λk1. (λk. k mary)(λx′. k1 (see � x′)))
(λf. k0 (f � x))))

(λv. v)

5 When a context is represented by a continuation function k, filling the hole in the
context with a term e – or, plugging e into the context – is represented by the
application k e.

10

 (λk0. (λk. k john)(λx.
(λk1. k1 (see �mary))
(λf. k0 (f � x))))

(λv. v)

 (λk0. (λk. k john)(λx. (k0 ((see �mary) � x))))
(λv. v)

 (λk0. (k0 ((see �mary) � john)))
(λv. v)

 ((see �mary) � john)

The β-reductions lead to the same expression ((see �mary) � john) as in §2.1.
The argument k1 was the continuation of [[saw Mary]]. The term (λk0. . . .) was
the denotation of the main clause [S John [VP saw Mary]], whose context is empty,
represented by λv. v. (If the clause were an embedded one, its context would not
have been empty. We discuss embedded clauses in §5.1.)

Figure 5 contains two extra rows, not present in Figure 3: The CPS semantics
lets us express QNPs. The denotation of everyone, λk.∀x. k x, is what we have
informally argued at the beginning of §2.2 the denotation of everyone should be:
the quantifier grabs its continuation k and quantifies over it. The denotation is a
bit sloppy since we have not yet introduced quantifiers in any of our languages,
D or L. Such an informal style, appealing to predicate logic, is very common.
For now, we go along; we come back to this point in §3, arguing that it pays to
be formal. Let us see how quantification works:

[[[M [S [NP John] [VP [Vt saw] [NP everyone]]].]]](12)

= (λk0. (λk. k john)(λx.
(λk1. (λk. k see)(λf ′. (λk.∀x′′. k x′′)(λx′. k1 (f ′ � x′))))
(λf. k0 (f � x))))

(λv. v)

 (λk0. (λk1. (λk.∀x′′. k x′′)(λx′. k1 (see � x′))))
(λf. k0 (f � john)))

(λv. v)

 (λk0. (λk1.∀x′′. k1 (see � x′′))
(λf. k0 (f � john)))

(λv. v)

 (λk0.∀x′′. k0 (see � x′′) � john)
(λv. v)

 ∀x′′. (see � x′′) � john

The sample sentence “John saw everyone” had the quantifier in the object po-
sition, and yet we, unlike Montague, did not have to do anything special to
accommodate it. In fact, comparing (11) against (12) shows that everyone is
treated just like Mary. The β-reductions accumulate the context captured by the
quantifier until it eventually becomes the full sentence context.

11

A quantifier in the subject position, unlike with QR, is treated just like a
quantifier in the object position:

[[[M [S [NP Someone] [VP [Vt saw] [NP everyone]]].]]](13)

= (λk0. (λk.∃y. k y)(λx.
(λk1. (λk. k see)(λf ′. (λk.∀x′′. k x′′)(λx′. k1 (f ′ � x′))))
(λf. k0 (f � x))))

(λv. v)

 (λk0. (λk.∃y. k y)(λx.
(λk1.∀x′′. k1 (see � x′′))
(λf. k0 (f � x))))

(λv. v)

 (λk0.∃y. (λk1.∀x′′. k1 (see � x′′))(λf. k0 (f � y)))
(λv. v)

 (λk0.∃y.∀x′′. k0((see � x′′) � y))
(λv. v)

 ∃y.∀x′′. (see � x′′) � y

Thus, continuation semantics can treat QNPs in any syntactic position with
no type-shifting and no surgery on the syntactic derivation. The resulting de-
notation for “Someone saw everyone” is the linear-scope reading. Deriving the
inverse-scope reading is the subject of §4.

2.3 Direct-style continuation semantics

This section describes a “direct style” advocated by Barker and Shan [7, 11, 15].
Its great appeal is in simple, non-CPS denotations for quantifier-free phrases. In
particular, lexical entries other than quantifiers keep their straightforward map-
ping to domain constants, like the mapping in Figure 3. Our presentation of di-
rect style is different from that of Shan [7]: we use the ordinary λ-calculus and the
denotational semantics, without introducing operational semantics and so-called
control operators (although the informed reader will readily recognize these op-
erators in our presentation). We introduce direct style as ‘CPS on-demand’.

We start with an observation about CPS denotations:

[[John]] = λk. k john

[[saw Mary]] = λk. k (see �mary)

In general, the CPS denotation of a quantifier-free term can be built by first
determining the denotation according to the non-CPS rules (8), then wrapping
λk. k (·) around the result.

This observation gives us the idea to merge quantifier-free and CPS seman-
tics; see Figure 6. If denotations are quantifier-free – that is, if their types have
no arrows – we use the non-CPS composition rules (8), which constitute the first
case in (14) and (15) below. For CPS denotations, we use the CPS composition

12

Syntax Semantic type Denotation [[·]]
M → S . t (|[[S]]|)
S → NP VP t or (t→ t)→ t [[NP]] < [[VP]]
VP → Vt NP et or ((et)→ t)→ t [[Vt]] > [[NP]]
NP → John e john
NP → Mary e mary
VP → left et leave
Vt → saw e(et) see

NP → everyone (e→ t)→ t λk. ∀x.k x
NP → someone (e→ t)→ t λk. ∃x.k x

Fig. 6. Syntax and direct-style continuation semantics for the small fragment: the
merger of Figures 3 and 5. Lexical entries other than the quantifiers keep the simple
denotations from Figure 3.

rules (10), written as the last case in (14) and (15). When composing CPS and
non-CPS denotations, we implicitly promote the latter into CPS by wrapping
them in λk. k (·). The two middle cases of (14) and (15) show the result of that
promotion after simplification (β-reductions). Thus the composition rules > and
< become schematic with four cases. Likewise, (|·|) becomes schematic with two
cases, shown in (16). We stress the absence of any nondeterminism: which of
the four composition rules to apply is uniquely determined by the types of the
denotations being combined.

m1
>m2

def
=



m1 �m2 if m1 : (σσ′), m2 :σ

λk.m2(λx. k(m1 � x)) if m1 : (σσ′), m2 : (σ→ t)→ t

λk.m1(λf. k(f �m2)) if m1 : ((σσ′)→ t)→ t, m2 :σ

λk.m1(λf.m2(λx. k(f � x))) if m1 : ((σσ′)→ t)→ t,

m2 : (σ→ t)→ t

(14)

m1
<m2

def
=



m2 �m1 if m1 :σ, m2 : (σσ′)

λk.m2(λf. k(f �m1)) if m1 :σ, m2 : ((σσ′)→ t)→ t

λk.m1(λx. k(m2 � x)) if m1 : (σ→ t)→ t, m2 : (σσ′)

λk.m1(λx.m2(λf. k(f � x))) if m1 : (σ→ t)→ t,

m2 : ((σσ′)→ t)→ t

(15)

(|m|) def
=

{
m if m : t

m(λv. v) if m : (t→ t)→ t
(16)

Since the sentence [M John [VP saw Mary].] is quantifier-free, its denotation is
trivially determined as in §2.1, with no β-reductions – in marked contrast with
§2.2. For [M Someone [VP saw Mary].], we compute [[[VP saw Mary]]] as see �mary

13

Levels n, l ∈ N
Base types υ ::= e | t
Types σ ::= υ | (σσ)

Annotated types ρ ::= σn

Constants c ::= ∧ | ∨ | ⇒ | ¬ | john | mary | see | . . .
Variables n, l

Expressions d ::= c | d � d | n | ∀nd | ∃nd

Type system for judgments d : ρ

n : en+1

d1 : (σ2σ1)n1 d2 : σn2
2

d1 � d2 : σ
max(n1,n2)
1

d : tn+1

∀nd : tn
d : tn+1

∃nd : tn

Fig. 7. The language DQ of denotations

of the type (et) by the simple rules of (8). The denotation of someone has the
type (e → t) → t, which is a CPS type: it has arrows. The types tell us to use
the third case of (15) to combine [[someone]] with [[[VP saw Mary]]]. We obtain
the final result ∃y. see �mary � y after applying the second case of (16).

Direct style thus keeps quantifier-free lexical entries ‘unlifted’ and removes
the tedium of the CPS semantics. Such CPS-on-demand, or selective CPS, has
been used to implement delimited control in Scala [16].

3 The nature of quantification

Before we advance to the main topic, scope and ambiguity, we take a hard look
at logical quantification. So far, we have used quantified logical formulas like
∀x. see �x � john without formally introducing quantifiers. The informality, how-
ever attractive, makes it hard to specify how to correctly use a logical quantifier
to obtain a well-formed closed formula. For example, QR approaches may pro-
duce a denotation with an unbound trace, which must then be somehow fixed
or avoided. A proper theory should not let sentence denotations with unbound
variables arise in the first place.

We go back to the language D, Figure 2, and extend it with standard first-
order quantifiers. The result is the language DQ in Figure 7.

We added variables, which are natural numbers, and two expression forms
∀nd and ∃nd to quantify over the variable n. Their model-theoretical semantics is
standard, relying on the variable assignment φ, which maps variables to entities.
Then ∀nd is true for the assignment φ iff d is true for every assignment that
differs from φ only in the mapping of the variable n.

Figure 7 also extends the type system, with annotated types ρ and judgments
d : ρ of d having the annotated type ρ. Expression types σ are annotated with
the upper bound on the variable names that may occur in the expression. For

14

m1 : (σ2σ1)n1 m2 : σn2
2

m1
>m2 : σ

max(n1,n2)
1

m1 : (σ2σ1)n1 m2 : (σn2
2 → tl1)→ tl2

m1
>m2 : (σ

max(n1,n2)
1 → tl1)→ tl2

m1 : ((σ2σ1)n1 → tl1)→ tl2 m2 : σn2
2

m1
>m2 : (σ

max(n1,n2)
1 → tl1)→ tl2

m1 : ((σ2σ1)n1 → tl1)→ tl2 m2 : (σn2
2 → tl3)→ tl1

m1
>m2 : (σ

max(n1,n2)
1 → tl3)→ tl2

m : t0

(|m|) : t0
m : (tn → tn)→ t0

(|m|) : t0

Fig. 8. Typing rules for > in (14) (< is analogous) and for (|·|) in (16).

Syntax Semantic type Denotation [[·]]
. . .

NP → everyone (en+1 → tn+1)→ tn λk. ∀n(k n)
NP → someone (en+1 → tn+1)→ tn λk. ∃n(k n)

Fig. 9. Precise denotations of quantifiers and their annotated types. The rest of the
fragment remains the same; see Figure 5 or 6.

example, d : σ1 means that d may have (several) occurrences of the variable 0;
d : σ2 means d may contain the variables 0 and 1. Our variables are de Bruijn
levels. An expression d of the type σ0 is a closed expression. We will often omit
the type annotation (superscript) 0 – hence D can be regarded as the variable-
free fragment of DQ.

The language L will now use the expressions of DQ as constants, and an-
notated types ρ as base types. Although the semantic composition functions in
(14), (15) and (16) remain the same, their typing becomes more precise, as shown
in Figure 8. (Recall (|·|) is the semantic composition function that corresponds
to the clause boundary, which we will discuss in detail in §5.1.) As usual, the
typing rules are schematic: m1 and m2 stand for arbitrary expressions of L, σ1
and σ2 stand for arbitrary DQ types, and n1, n2, l1, l2, etc. are arbitrary levels.
The choice n or l for the name of level metavariables has no significance beyond
notational convenience. The English fragments in Figures 5 and 6 remain prac-
tically the same; the quantifier words now receive precisely defined rather than
informal denotations, and precise semantic types; see Figure 9.

Figure 9 assigns denotations and types to everyone and someone that are
schematic in n. That is, there is an instance of the denotation for each natural
number n. One may worry about choosing the right n and possible ambiguities.
The worries are unfounded. As we demonstrate below, the requirement that
the whole sentence denotation be closed (that is, have the type t0) uniquely
determines the choice of n in the denotation schemas for the quantifier words.
The choice of variable names n is hence type-directed and deterministic. As an
example, we show the typing derivation for “Someone saw everyone”, which we

15

explain below.

[[someone]] : (e1 → t1)→ t0
[[see]] : e(et)0 [[everyone]] : (e2 → t2)→ t1

see>(λk.∀1(k1)) : ((et)2 → t2)→ t1

(λk. ∃0(k0))<(see>λk.∀1(k1)) : (t2 → t2)→ t0

(|(λk.∃0(k0))<(see>λk.∀1(k1))|) : t0

The resulting denotation β-reduces to ∃0∀1see �1 �0, as in §2.2. The other deriva-
tions in §2.2 and §2.3 are made rigorous similarly.

In the derivation above, the schematic denotation [[someone]] was instantiated
with n = 0, and the schema [[everyone]] was instantiated with n = 1. It may be
unclear how we have made this choice. It is a simple exercise to see that no
other choice fits. Relying on the simplicity of the example, we now demonstrate
the general method of choosing the variable names n appearing in schematic
denotations. We repeat the derivation, this time assuming that [[someone]] is
instantiated with some variable name n and [[everyone]] is instantiated with some
name l. These so-called schematic or logical meta-variables n and l stand for
some natural numbers that we do not know yet. As we build the derivation and
fit the denotations, we discover constraints on n and l, which in the end let us
determine these numbers.

[[someone]] : (en+1→ tn+1)→ tn
[[see]] :e(et)0 [[everyone]] : (el+1→ tl+1)→ tl

see>(λk.∀l(k l)) : ((et)l+1→ tl+1)→ tl

(λk. ∃n(k n))<(see>λk.∀l(k l)) : (tmax (n+1,l+1)→ tl+1)→ tn where n+1 = l

(|(λk. ∃n(k n))<(see>λk.∀l(k l))|) : t0 where n= 0, max (n+1, l+1) = l+1

In the last-but-one step of the derivation, we attempt to type (λk.∃n(k n))<

(see>λk.∀l(k l)) using the rule

m1 : (σn1
2 → tl1)→ tl2 m2 : ((σ2σ1)n2 → tl3)→ tl1

m1
<m2 : (σ

max(n1,n2)
1 → tl3)→ tl2

.

This attempt only works if n + 1 = l, because according to the rule, the types
of m1 and m2 must share the same name l1. In the last step of the derivation,
applying the typing rule for (|·|) from Figure 8 gives two other constraints: n = 0
and max (n+ 1, l + 1) = l + 1. The three constraints have a unique solution:
n = 0, l = 1.

More complex sentences with more quantifiers require us to deal with more
variable names n1, n2, n3, etc., and more constraints on them. The overall prin-
ciple remains straightforward: since typing is syntax-directed there is never a
puzzle as to which typing rule to use at any stage of the derivation. At most
one typing rule applies. An application of a typing rule generally imposes con-
straints on the levels. We collect all constraints and solve them at the end (some
constraints can be solved as we go).

Accumulating and solving such constraints is a logic programming problem.
Luckily, in modern functional and logic programming languages like Haskell,

16

Twelf or Agda, type checking propagates and solves constraints in a very sim-
ilar way. If we write our denotations in, say, Haskell, the Haskell type checker
automatically determines the names of schematic meta-variables and resolves
schematic denotations and rules. We have indeed used the Haskell interpreter
GHCi as such a ‘semantic calculator’, which infers types, builds derivations and
instantiates schemas. Like the Penn Lambda Calculator [14], the Haskell inter-
preter also reduces terms. We can enter any syntactic derivation at the inter-
preter prompt and see its inferred type and its normal-form denotation.

The choice of variable names, dictated by the requirement that sentence
denotations be closed, in turn describes quantifier scopes, as we shall see next.

4 The inverse-scope problem

If we compute the denotation of [M Someone VP.] by the rules of §2.2, we obtain

[[Someone VP.]] = (λk0. (λk. ∃y.ky)(λx. [[VP]] (λf. k0(f � x))))
(λv. v)

(17)

 ∃y. [[VP]] (λf. (f � y))

No matter what VP is, the existential always scopes over it. Thus, we invariably
get the linear-scope reading for the sentence. Obtaining the inverse-scope reading
is the problem. One suggested solution [5, 6] is to introduce nondeterminism into
semantic composition rules. We do not find that approach attractive because
of over-generation: we may end up with a great number of denotations, not
all of which correspond to available readings. Explaining different scope-taking
abilities of existentials and universals (see §5) also becomes very difficult.

Our solution to inverse scope is the continuation hierarchy [12]. Like Russian
dolls, contexts nest. Plugging a term into a context gives a bigger term, which
can be plugged into another, wider context, and so on. This hierarchy of contexts
is reflected in the continuation hierarchy. Quantifiers gain access not only to their
immediate context but also to a higher-up context, and may hence quantify over
outer contexts. We build the hierarchy from the CPS denotations of §2.2, to
be called CPS1 denotations (with the annotated types of §3). We introduce the
corresponding direct style of the hierarchy in §4.2.

Before we begin, let us quickly skip ahead and peek at the final result, to
see the diffference that the continuation hierarchy makes. Eq. (17) will look
somewhat like

[[Someone VP.]] = (λk0. (λk1. λk2. k1 y (λv. k2(∃y.v)))
(λx. [[VP]] (λf. k0 (f � x))))

(λv. λk2. k2 v)(λv. v)

(17’)

 [[VP]] (λf. λk2. k2(f � y))(λv. (∃y.v))

(see Eq. (25) for the complete example). VP will now have a chance to introduce
a quantifier to scope over ∃y.·.

17

We build the hierarchy by iterating the CPS transformation. An expression
may be re-written in CPS multiple times. Each re-writing adds another continu-
ation representing a higher (outer) context [12]. Let us take an example. A term
john written in CPS takes the continuation argument representing the term’s
context, and plugs itself into that context: λk. k john. Mechanically applying to
it the rules of transforming terms into CPS [12] gives λk1. λk2. (k1 john) k2. This
CPS2 term receives two continuations and plugs john into the inner one, obtain-
ing the CPS1 term k1 john that computes the result to be plugged into the outer
context k2. We may diagram the CPS1 term λk1. k1 john as [k1 . . . [john] . . .],
that is, john filling in the hole in a context represented by k1. Likewise we dia-
gram the CPS2 term λk1. λk2. (k1 john) k2 as [k2

. . . [k1
. . . [john] . . .] . . .]. In the

CPS2 case, if k2 represents the outer context, the application k2 e represents
plugging e into that context. If k1 is an inner context, k1 e k2 corresponds to
plugging e into it and the result into an outer context k2. We shall see soon that
types make it clear which context, outer or inner, a continuation represents and
what needs to be plugged into what.

The CPS2 term λk1. λk2. k1 john k2 is however extensionally equivalent to
the CPS1 term λk. k john we started with. In general, if a term uses its continu-
ation ‘trivially’,6 further CPS transformations leave the term intact. Thus, after
quantifier-free lexical entries are converted once into CPS, they can be used as
they are at any level of the CPS hierarchy.

Although the CPS2 term of john is same as the CPS1 term, the types differ.
The CPS1 type is (e → tn) → tn, telling us that john receives a context to be
plugged with a term of the type e giving a term of the type tn. The CPS2-term
receives another continuation k2, representing the outer context tn → tl1 . Thus
the type of λk1. λk2. k1 john k2 is (e → ((tn → tl1) → tl2)) → ((tn → tl1) →
tl2). This type is schematic, written with schematic meta-variables n, l1 and l2
standing for some variable names to be determined when building a derivation,
as described in §3.

In general, types in the CPS hierarchy have a regular structure and can be de-
scribed uniformly. The key observation is recurrence of the pattern (tn → tl1)→
tl2 that can be represented by its sequence of annotations n, l1, l2. Therefore, we
introduce the notation

{n} = tn

{nl1l2} = (tn → {l1})→ {l2}
{nl1l2l3l4l5l6} = (tn → {l1l2l3})→ {l4l5l6}

...

(18)

where all ns and ls are schematic meta-variables. Since these sequences can
become very long, we use Greek letters α, β, γ to each stand for a schematic
sequence of variable names. All occurrences of the same Greek letter bearing
the same superscripts and subscripts refer to the same sequence. We will state

6 We say that a term uses its continuation argument k trivially if k is used exactly once
in the term, and each application in the term is the entire body of a λ-abstraction.

18

Syntax Semantic type Denotation [[·]]
M → S . t0 (|[[S]]|)
S → NP VP (tn → {α})→ {β} [[NP]] < [[VP]]
VP → Vt NP ((et)n → {α})→ {β} [[Vt]] > [[NP]]
NP → John (e→ {α})→ {α} λk. k john
NP → Mary (e→ {α})→ {α} λk. k mary
VP → left ((et)→ {α})→ {α} λk. k leave
Vt → saw ((e(et))→ {α})→ {α} λk. k see

NP → everyone1 (en+1 → {(n+ 1)γ})→ {nγ} λk1. λk2. k1 n (λv. k2(∀nv))
NP → someone1 (en+1 → {(n+ 1)γ})→ {nγ} λk1. λk2. k1 n (λv. k2(∃nv))
NP → everyone2 (en+1 → {γ(n+ 1)})→ {γn} λk1. λk2.∀n(k1 n k2)
NP → someone2 (en+1 → {γ(n+ 1)})→ {γn} λk1. λk2.∃n(k1 n k2)

Fig. 10. Syntax and the CPS2 semantics for the small fragment. α and β are sequences
of schematic meta-variables of length 3, and γ is a sequence of length 2. See the text
for expressions and types of the semantic composition operators >, < and (|·|)

the length of the sequence separately or leave it implicit in the CPS level un-
der discussion. Thus the type of λk. k john for any CPS level has the form
(e → {α}) → {α}. Juxtaposed Greek letters and schematic variables signify
concatenated sequences. For example, (18) is compactly written as follows.

{n} = tn

{nαβ} = (tn → {α})→ {β}
(19)

4.1 CPS-hierarchy semantics

The CPS2 semantics for our language fragment is shown in Figure 10. Except for
the quantifiers, the figure looks like the ordinary CPS semantics, Figure 5, with
the wholesale replacement of the type t by {α}. The interesting part is quantifier
words. There are now two sets of them, indexed with 1 and 2: the quantifier words
become polysemous, with two possible denotations. Postulating the polysemy of
quantifiers is similar to generalizing the conjunction schema [17], or assuming
the free indexing in LF.

The quantifiers everyone1 and someone1 are the quantifiers from §2.2, whose
denotations are re-written in CPS. For example, the denotation of everyone from
Figure 9 (which is the precise version of that from Figure 5) is λk.∀n(k n); re-
writing it in CPS gives λk1. λk2. k1 n (λv. k2(∀nv)). It plugs the variable n into
the (inner) context k1, then plugs the result into ∀n[] and finally into the outer
context k2. Thus, everyone1 quantifies over the immediate, inner context k1, as
in §2.2 above. The continuation arguments to everyone1 are used trivially, so the
denotation can be used as it is not only for CPS2 but also for CPS3 and at higher
levels.

The second set of quantifiers quantify over the outer context, as their de-
notation says. For example, λk1. λk2.∀n(k1 n k2) plugs the variable n into the

19

inner context k1, plugs the result into k2 and quantifies over the final result. The
inner and the outer contexts are uniquely determined, as shall see shortly.

The semantic combinators > and < in (10) use their continuation argument
trivially; therefore, they also work for CPS2 and for all other levels of the hier-
archy. We need to give them more general schematic types, extending Figure 8
so it works at any level of the hierarchy:

m1 : (σn1
2 → {α})→ {β} m2 : ((σ2σ1)n2 → {γ})→ {α}

m1
<m2 : (σ

max(n1,n2)
1 → {γ})→ {β}

(20)

m1 : ((σ2σ1)n1 → {α})→ {β} m2 : (σn2
2 → {γ})→ {α}

m1
>m2 : (σ

max(n1,n2)
1 → {γ})→ {β}

(21)

We only need to change (|·|) to account for the two continuation arguments,
and hence, two initial continuations:

(22) (|m|) def
= m(λv. λk2. k2 v)(λv. v)

The initial CPS1 continuation (λv. λk2. k2 v) plugs its argument into the outer
context; the initial outer context is the empty context. Schematically, (|m|) may
be diagrammed as [k2

[k1
m]].

The two sets of quantifiers, level-1 and level-2, treat the inner and outer con-
texts differently. The remainder of this subsection presents several examples of
computing denotations of sample sentences by using the lexical entries and the
composition rules of Figure 10 and performing simplifications by β-reductions.
As we shall see, the sequence of reductions for, say, Someone1 VP can be dia-
grammed at a high level as follows:

[[Someone1 VP.]](23)

= (|[[Someone1 VP]]|)
= [k2

[k1
[[Someone1 VP]]]]

 [k2
∃n[k1

n< [[VP]]]]

We hence see that it is the level-1 quantifiers that wedge themselves between the
inner context k1 and the outer context k2. We also see that, if the VP contains
only level-1 QNPs, they would quantify over [k1

n< . . .] giving the linear-scope
reading. On the other hand, if the VP has a level-2 QNP, it will quantify over
the outer context [k2

∃n[k1
n< . . .]] yielding the inverse-scope reading. After this

preview, we describe the computation of denotations in detail.
It is a simple exercise to show that [M Someone1 [VP saw everyone1].] has

the same linear-scope reading ∃0∀1see � 1 � 0 as computed with the ordinary
CPS, §2.2 – with essentially the same β-reductions shown in that section. It
is also easy to see that [M Someone2 [VP saw everyone2].] also has exactly the
same denotation. The interesting cases are the sentences with different levels of

20

quantifiers. For example,

[[[M [S [NP Someone2] [VP [Vt saw] [NP everyone1]]].]]]
(24)

= (λk0. (λk1. λk2.∃0(k1 0 k2))(λx.
(λk3. (λk. k see)(λf ′. (λk1. λk2. k1 1 (λv. k2(∀1v)))(λx′. k3 (f ′ � x′))))
(λf. k0 (f � x))))

(λv. λk2. k2 v)(λv. v)

 (λk1. λk2.∃0(k1 0 k2))(λx.
(λk2. (λv. k2(∀1v))(see � 1 � x)))

(λv. v)

 (λk1. λk2.∃0(k1 0 k2))(λx.
(λk2. k2(∀1(see � 1 � x))))

(λv. v)

 (λk2.∃0(∀1(see � 1 � 0)))(λv. v)

 ∃0(∀1(see � 1 � 0))

The result still shows the linear-scope reading, because someone2 quantifies over
the wide context and so wins over the narrow-context quantifier everyone1. One
may wonder how we chose the names of the quantified variables: 0 for someone2
and 1 for everyone1. The choice is clear from the final denotation: since it should
have the type t0 (that is, be closed), the schema for the corresponding someone2
must have been instantiated with n = 0. Therefore, ∀1(see � 1 � 0) must have
the type t1, which determines the schema instantiation for everyone1. One may
say that ‘names follow scope’. The variable names can also be chosen before
β-reducing, while building the typing derivation, as demonstrated in §3.

We now make a different choice of lexical entries for the same quantifier words
in the running example:

[[[M [S [NP Someone1] [VP [Vt saw] [NP everyone2]]].]]](25)

= (λk0. (λk1. λk2. k1 1 (λv. k2(∃1v)))(λx.
(λk3. (λk. k see)(λf ′. (λk1. λk2.∀0(k1 0 k2))(λx′. k3 (f ′ � x′))))
(λf. k0 (f � x))))

(λv. λk2. k2 v)(λv. v)

 (λk1. λk2. k1 1 (λv. k2(∃1v)))(λx.
(λk2.∀0(k2 (see � 0 � x))))

(λv. v)

 (λk2. (λk2.∀0(k2 (see � 0 � 1)))(λv. k2(∃1v)))
(λv. v)

 (λk2.∀0((λv. k2(∃1v))(see � 0 � 1)))
(λv. v)

 ∀0(∃1(see � 0 � 1))

We obtain the inverse-scope reading: everyone2 quantified over the higher, or
wider, context and hence outscoped someone1. This outscoping is noticeable

21

already in the result of the first set of β-reductions, which may be diagrammed
as ∀0[k2

∃1[k1
see � 0 � [1]]]. Since the universal quantifier eventually got the widest

scope, the schema for everyone2 must have been instantiated with n = 0. Again,
the choice of quantifier variable names is determined by quantifiers’ scope.

Thus the continuation hierarchy lets us derive both linear- and inverse-
scope readings of ambiguous sentences. The source of the quantifier ambiguity
is squarely in the lexical entries for the quantifier words rather than in the rules
of syntactic formation or semantic composition.

4.2 Continuation hierarchy in direct style

Like the ordinary CPS, the CPS hierarchy can also be built on demand. There-
fore, we do not have to decide in advance the highest CPS level for our denota-
tions, and be forced to rebuild our fragment’s denotations should a new example
call for yet a higher level. Rather, we build sentence denotations by combining
parts with different CPS levels, or even not in CPS. The primitive parts, lexical
entry denotations, may remain not in CPS (which is the case for all quantifier-
free entries) or at the minimum needed CPS level, regardless of the level of other
entries. The incremental construction of hierarchical CPS denotations – building
up levels only as required – makes our fragment modular and easy to extend.
It also relieves us from the tedium of dealing with unnecessarily high-level CPS
terms.

Luckily, the semantic combinators < and > capable of combining the denota-
tions of different CPS levels have already been defined. They are (14) and (15)
in §2.3. The luck comes from the fact that the composition of CPS1 denotations
uses its continuation argument trivially, and therefore, works at any level of the
CPS hierarchy. We only need to extend the schema for (|·|), in a regular way:

(26) (|m|) def
=



m if m :{0}

m(λv. v) if m :{nn0}

m(λv. λk. kv)(λv. v) if m :{nnl1l1l2l20}

. . .

Applying the schematic definition (26) requires a bit of explanation. If the term
m has the type with no arrows, we should compute (|m|) according to the first
case, which requires m be of the type t0. If m has the type that matches {nn0},
that is, (tn → tn)→ t0 for some n, we should use the second case, and so on. A
term like λk. k (leave � john) of the schematic type {0αα} may seem confusing:
its type matches {nn0} (with α instantiated to {0} and n to 0) as well as the
type {nnl1l1l2l20} (with α = {000} and n = l1 = l2 = 0) and all further CPS
types. We can compute (|λk. k (leave � john)|) according to the second or any
following case. The ambiguity is spurious however: whichever of the applicable
equations we use, the result is the same – which follows from the fact that a

CPSi term which uses its continuation argument trivially is a CPSi′ term for

22

Syntax Semantic type Denotation [[·]]
M → S . t0 (|[[S]]|)
S → NP VP tn or (tn → {α})→ {β} [[NP]] < [[VP]]
VP → Vt NP etn or ((et)n → {α})→ {β} [[Vt]] > [[NP]]
NP → John e john
NP → Mary e mary
VP → left et leave
Vt → saw e(et) see

NP → everyone1 (en+1 → {(n+ 1)α})→ {nα} λk1. λk2. k1 n (λv. k2(∀nv))
NP → someone1 (en+1 → {(n+ 1)α})→ {nα} λk1. λk2. k1 n (λv. k2(∃nv))
NP → everyone2 (en+1 → {β(n+ 1)γ})→ {βnγ} ↑ [[everyone1]]
NP → someone2 (en+1 → {β(n+ 1)γ})→ {βnγ} ↑ [[someone1]]

Fig. 11. Syntax and the multi-level direct-style continuation semantics for the small
fragment: the merger of Figures 3 and 10. Lexical entries other than the quantifiers
keep the simple denotations from Figure 3. Here α, β and γ are sequences of schematic
meta-variables whose length is determined by the CPS level; β is two longer than γ.

all i′ ≥ i [12]. As a practical matter, choosing the lowest-level instance of the
schema (26) produces the cleanest derivation.

Figure 11 shows our new fragment.
The quantifier-free lexical entries have the simplest denotations and can be

combined with CPSn terms, n ≥ 0. The quantifiers everyone1 and someone1 have
the schematic denotations that can be used at the CPSn level n ≥ 1. The higher-
level quantifiers are systematically produced by applying the ↑ combinator of the
type ((en+1 → {α}) → {β}) → ((en+1 → {γα}) → {γβ}) (where α and β have
the same length and γ is one longer).

↑ m def
= λk. λk′.m(λv. k v k′)(27)

With the entries in Figure (11), all sample derivations from §4 can be repeated
in direct style with hardly any changes.

Our direct-style multi-level continuation semantics is essentially the same as
that presented in [11]. We do not account for directionality in semantic types
(since we use CFG or potentially CCG, rather than type-logical grammars) but
we do account for the levels of quantified variables in types (whereas in [11],
quantification was handled informally).

We have thus shown that the CPS hierarchy just as the ordinary CPS can be
built on demand, without committing ourselves to any particular hierarchy level
but raising the level if needed as a denotation is being composed. The result is
the modular semantics, and much simpler and more lucid semantic derivations.
From now on, we will use this multi-level direct style.

23

5 Scope islands and quantifier strength

We have used the continuation hierarchy to explain quantifier ambiguity between
linear- and inverse-scope readings. We contend that the ambiguity arises because
quantifier words are polysemous: they have multiple denotations corresponding
to different levels of the CPS hierarchy. The higher the CPS level, the wider the
quantifier scope.

We turn to two further problems. First, just quantifiers’ competing with each
other on their strength (CPS level) does not explain all empirical data. Some
syntactic constructions such as embedded clauses come into play and restrict
the scope of embedded quantifiers. That restriction however does not seem to
spread to indefinites: “the varying scope of indefinites is neither an illusion nor
a semantic epiphenomenon: it needs to be ‘assigned’ in some way” [2]. We shall
use the CPS hierarchy to account for scope islands and to assign the varying
scope to indefinites.

5.1 Scope islands

Like our running example “Someone saw everyone”, two characteristic examples
(4) and (5), repeated below, also have two quantifier words.

(28) That every boy left upset a teacher.

(29) Someone reported that John saw everyone.

These examples are not ambiguous however: (28) (the same as (4)) has only
the inverse-scope reading, whereas (29) (the same as (5)) has only the linear-
scope reading. The common explanation (see survey [2]) is that embedded tensed
clauses are scope islands, preventing embedded quantifiers from taking scope
wider than the island.

To analyze these examples, we at least have to extend our fragment with
more lexical entries and with syntactic forms for clausal NPs, with the corre-
sponding semantic combinators.7 Figure 12 shows the additions. Most of them
are straightforward. In particular, we generalize quantifying NPs like everyone
to quantifying determiners like every. The determiner receives an extra (et) ar-
gument for its restrictor property, of the type of the denotation of a common
noun.8 Unlike Barker [5], we do not use choice functions in the denotations for
the quantifier determiners. Instead, the denotation of the NP is obtained from
the denotations of the Det and N by ordinary function application.

Just as quantifying NPs are polysemous, so are quantifying Dets on our anal-
ysis: there are weak (or level-1) forms every1 and a1 and strong (or level-2)

7 If the domain of the semantic type t only contains the two truth values, we clearly
cannot give an adequate denotation to embedded clauses: the domain is too small.
Therefore, we now take the domain of t to be a suitable complete Boolean algebra.

8 This is a simplification: generally speaking, the argument of a Det is not a bare
common noun but a noun modified by PP and other adjuncts. Until we add PP to
our fragment in §5.3, the simplification is adequate.

24

Syntax Semantic type Denotation [[·]]
VP → Vs that S etn or ((et)n → {α})→ {β} [[Vs]] >(|[[S]]|)
NP → that S e That � (|[[S]]|)
NP → Det N en or (en → {α})→ {β} [[Det]] [[N]]

N → teacher et teacher
N → boy et boy
VP → disappeared et disappear
Vt → upset e(et) upset
Vs → report t(et) report

Det → every1 (et)→ (en+1→{(n+1)α})→{nα} λz. λk1. λk2. k1 n (λv.
k2 (∀n(z � n⇒ v)))

Det → some1, a1 (et)→ (en+1→{(n+1)α})→{nα} λz. λk1. λk2. k1 n (λv.
k2 (∃n(z � n ∧ v)))

Det → every2 (et)→ (en+1→{β(n+1)γ})→{βnγ} λz. ↑ ([[every1]] z)
Det → some2, a2 (et)→ (en+1→{β(n+1)γ})→{βnγ} λz. ↑ ([[some1]] z)

Fig. 12. Syntax and the multi-level direct-style continuation semantics for the addi-
tional fragment.

forms every2 and a2. Stronger quantifiers outscope weaker ones. For example,
[M [S [a1 boy] [upset [every2 teacher]]].] determines the inverse-scope reading
∀0(teacher � 0⇒ ∃1(boy � 1 ∧ upset � 0 � 1)).

Recall from Figure 11 how the matrix denotation M→ S. is obtained from the
denotation of the main clause: [[M]] = (|[[S]]|). We see exactly the same pattern for
the clausal NPs in the semantic operations corresponding to Vs that S and that S:
in all the cases, the denotation of a clause is enclosed within (|·|), which is the
semantic counterpart of the syntactic clause boundary. The typing rules for (|·|)
in Figure 8 specify its result have the type t0, as befits the denotation of a clause.
The type t0 is not a CPS type and hence (|[[S]]|) cannot get hold of its context to
quantify over. Therefore, if S had any embedded quantifiers, they can quantify
only as far as the clause. The operation (|·|) thus acts as the scope delimiter,
delimiting the context over which quantification is possible. (Incidentally, the
same typing rules of (|·|) severely restrict how this scope-delimiting operation
may be used within lexical entries. For example, (|[[VP]]|) is ill-typed since VP
does not have the type tn or (tn → {α})→ {β}.)

In case of (28), we obtain the same denotation (30) no matter which lexical
entry we choose for the embedded determiner, every1 (31) or every2 (32). The
quantifier remains trapped in the clause and the sentence is not ambiguous.
Incidentally, since all quantifier variables used within a clause will be quantified
within the clause, their names can be chosen regardless of the names of other
variables within the sentence. That’s why the name 0 is reused in (30). Again,
names follow scope. A similar analysis applies to (29).

(30) ∃0(teacher � 0 ∧ upset � 0 � (That � ∀0(boy � 0⇒ leave � 0)))

(31) [[[M [NP That [S every1 boy left]] [VP upset [NP a1 teacher]].]]]

25

(32) [[[M [NP That [S every2 boy left]] [VP upset [NP a1 teacher]].]]]

We have demonstrated that a scope island is an effect of the operation (|·|),
which is the semantic counterpart of the syntactic clause boundary. In our anal-
ysis, each surface syntactic constituent still corresponds to a well-formed deno-
tation, and each surface syntactic formation rule still corresponds to a semantic
combinator. Our approach hence is directly compositional.

5.2 Wide-scope indefinites

Given that enclosing all clause denotations in (|·|) traps all quantifiers inside, how
do indefinites manage to get out? And they do get out: “Indefinites acquire their
existential scope in a manner that does not involve movement and is essentially
syntactically unconstrained” [2, §3.2.1]. For example:

(33) Everyone reported that [Max and some lady] disappeared.

(34) Most guests will be offended [if we don’t invite some philosopher].

(35) All students believe anything [that many teachers say].

Szabolcsi argued [2] that all these examples are ambiguous. In particular, in (33)
(the same as (7)), either different people meant a different lady disappearing
along with Max, or there is one lady that everyone reported as disappearing
along with Max. Interestingly, the example

(36) Someone reported that [Max and every lady] disappeared.

is not ambiguous: there is a single reporter of the disappearance for Max and all
ladies. The unambiguity of (36) is explained by the embedded clause’s being a
scope island, which prevents the universal from taking wide scope. The ambiguity
of (33) leads us to conclude that indefinites, in contrast to universals, can scope
out of clauses, complements and coordination structures. Szabolcsi [2] gives a
large amount of evidence for this conclusion. Accordingly, our theory must first
explain how anything can get out of a scope island, then postulate that only
indefinites have this escaping ability.

The operation (|·|) that effects the scope island has the schematic type that
can be informally depicted as CPSi[t]→ CPS0[t] where

CPSi[t] = {α} where the length of α is 2i+1 − 1

Since the result of (|m|) has a CPS0 type, that is t, the result cannot get hold of
any context. Hence we need a less absolutist version of (|·|) which merely lowers
rather than collapses the hierarchy. We call that operation (|·|)2, of the informal

schematic type CPS≤2[t] → CPS0[t] and CPSi+2[t] → CPSi[t] where i ≥ 1.
Whereas (|m|) delimits all the contexts of m, (|m|)2 delimits only the first two
contexts of the hierarchy. Quantifiers within m of level 3 and higher will be able

26

to get hold of the context of (|m|)2. One may think of (|·|)2 as the inverse of ↑↑.
The following example illustrates the lowering:

[[someone1 left]] = λk1. λk2. k1 (leave � n) (λv. k2∃nv)(37a)

(|[[someone1 left]]|)2 = ∃0(leave � 0)(37b)

(|↑ [[someone1 left]]|)2 = ∃0(leave � 0)(37c)

(|↑↑ [[someone1 left]]|)2 = λk1. λk2. k1 (leave � n) (λv. k2∃nv)(37d)

In (37a) and the identical (37d), the existential quantifies over the potentially
wide context k1. In (37b) and (37c), whose denotations are again identical, ∃0
scopes just over leave � 0 and extends no further.

Why did we choose 2 as the number of contexts to delimit at the embedded
clause boundary? Any number i ≥ 2 will work, to explain the quantifier ambi-
guity within the embedded clause and wide-scope indefinites. We chose i = 2 for
now pending analysis of more empirical data.

If (37) is the specification for (|·|)2, then (38) below is the implementation. It
is derived from the schema (26) by cutting it off after the third line and inserting
the generic lowering-by-two operation as the final default case.

(38) (|m|)2
def
=



m if m : {0}

m(λv. v) if m : {nn0}

m(λv. λk. kv)(λv. v) if m : {nnl1l1l2l20}

m(λv. λk. kv)(λv. λk. kv) otherwise

It is easy to show that the definition (38) indeed satisfies (37). A useful lemma is
the identity (↑ m)(λv. λk. kv) = m, easily verified from the definition (27) of ↑.

To make use of this lowering operation (|·|)2, we adjust the lexical entries
in Figure 12 as shown in Figure 13. The main change is replacing (|·|) in the
semantic composition rules for embedded clauses with (|·|)2. In other words, we
now distinguish the main clause boundary from embedded clause boundaries.
Figure 13 also reflects our postulate: only indefinites may be at the CPS level 3
and higher – not universals.

The typical example (33) can now be analyzed as follows (see Fig. 12 for the
denotations of disappeared and report):

(39) [M Everyone1 reported that [S Max and somei lady disappeared].]

When the level i of somei is 1 or 2, the indefinite is trapped in the scope island.

(40a) ∀0report � (∃0(lady � 0 ∧ disappear � (alongWith �max � 0))) � 0

At the level i = 3, the indefinite scopes out of the clause but is defeated by the
universal in the subject position, giving us another linear-scope reading, along
the lines expounded in §2.2.

(40b) ∀0∃1lady � 1 ∧ report � (disappear � (alongWith �max � 1)) � 0

27

Syntax Semantic type Denotation [[·]]
VP → Vs that S etn or ((et)n → {α})→ {β} [[Vs]] >(|[[S]]|)2
NP → that S en or (en → {α})→ {β} That � (|[[S]]|)2
NP → NP1 and NP2 en or (en → {α})→ {β} alongWith � [[NP1]] � [[NP2]]
N → max e max
N → lady et lady

Det → some3, a3 (et)→ (en+1→{β3(n+1)γ}) λz. ↑ [[some2]] z
→ {β3nγ}

Det → some4, a4 (et)→ (en+1→{β4(n+1)γ}) λz. ↑ [[some3]] z
→ {β4nγ}

Fig. 13. Adjustments to the syntax and the multi-level direct-style continuation se-
mantics for the additional fragment, to account for wide-scope indefinites. If the size
of the sequence γ is j, the size of β3 is 3(j + 2) and of β4 is 7(j + 2).

Finally, some4, lowered from level 4 to level 2 as it crosses the embedded clause
boundary, has sufficient strength left to scope over the entire sentence.

(40c) ∃0lady � 0 ∧ ∀1report � (disappear � (alongWith �max � 0)) � 1

5.3 Inverse linking

Our analysis of inverse linking turns out quite similar to the analysis of wide-
scope indefinites. We take the argument NP of a PP to be a scope island, albeit
it is evidently a weaker island than an embedded tensed clause. We realize the
island by an operation similar to (|·|)2. Therefore, a strong enough quantifier
embedded in NP can escape and take a wide scope. That escaping from the
island corresponds to inverse linking.

To demonstrate our analysis, we extend our fragment with prepositional
phrases; see Figure 14. We add a category of N′ of nouns adjoined with PP.
We generalize Det to take as its argument N′ rather than bare common nouns.
For simplicity, we use the same (|·|)2 operation for the PP island as we used for
the embedded-clause island. Recall that (∧) is a constant of the type t(tt) and
we write the DQ expression (∧) � d1 � d2 as d1 ∧ d2.

The type of the quantificational determiners shows that a determiner takes
a restrictor and a continuation, which may contain n other free variables. The
determiner adds a new one, which it then binds. Although the denotations of
determiners in Figure 14 bind the variables they themselves introduced, that
property is not assured by the type system. For example, nothing prevents us
from writing ‘bad’ lexical entries like λz.∀nz or 1. Although the type system will
ensure that the overall denotation is closed, what a binder ends up binding will
be hard to predict. It is an interesting problem to define ‘good’ lexical entries
(with respect to scope) and codify the notion in the type system. This is the
subject of ongoing work [18].

28

Syntax Semantic type Denotation [[·]]
N′ → N en → nα λx. λk. k ([[N]] � x)
N′ → N′ PP en → nα λx. (∧)>([[N′]] x)>([[PP]] x)
PP → from NP en → nα λx. (|from> [[NP]] >x|)2
NP → Det N′ (en → {α})→ β [[Det]] [[N′]]

Det → every1 (en+1 → {(n+ 1)nαβγ})
→ (en+1 → {(n+ 1)αβ})→ {γ}

λz. λk1. z n (λx. λk2.
k1 n (λv. k2 (∀n(x⇒ v))))

Det → some1, a1 (en+1 → {(n+ 1)nαβγ})
→ (en+1 → {(n+ 1)αβ})→ {γ}

λz. λk1. z n (λx. λk2.
k1 n (λv. k2 (∃n(x ∧ v))))

Det → no1 (en+1 → {(n+ 1)nαβγ})
→ (en+1 → {(n+ 1)αβ})→ {γ}

λz. λk1. z n (λx. λk2.
k1 n (λv. k2 (¬ � ∃n(x ∧ v))))

Fig. 14. Adjustments to the syntax and the multi-level direct-style continuation seman-
tics for the additional fragment, to account for prepositional phrases. The higher-level
quantificational determiners are produced with the ↑ operations; see Figure 13 for il-
lustration. If the size of the sequence α is j, the size of β is also j and the size of γ is
2j + 1.

We analyze inverse linking thusly.

[NP No [N′ [N′ man] [PP from a foreign country]]] was admitted.(41a)

¬ � ∃0man � 0 ∧ (∃1country � 1 ∧ from � 1 � 0) ∧ admitted � 0(41b)

∃0country � 0 ∧ ¬ � ∃1man � 1 ∧ from � 0 � 1 ∧ admitted � 1(41c)

The PP in (41a) contains an ambiguous quantifier. If the quantifier is weak, it
is trapped in the PP island and gives the salient reading (41b). If the quantifier
is strong enough to escape, the inverse-linking reading (41c) emerges. We thus
reproduce quantifier ambiguity for QNP within NP and explain inverse linking.

6 Conclusions

We have given the first rigorous account of linear- and inverse-scope readings,
scope islands, wide-scope indefinites and inverse linking based on the D&F con-
tinuation hierarchy. Quantifier ambiguity arises because quantifier words are
polysemous, with multiple denotations corresponding to different levels of the
hierarchy. The higher the level, the wider the scope. Embedded clauses and PPs
create scope islands by lowering the hierarchy and trapping low-level quantifiers.
Higher-level quantifiers (which we postulate only indefinites possess) can escape
the island and take wider scope. The continuation hierarchy lets us assign scope
to indefinites and universals and explain their differing scope-taking abilities.

Our analysis is directly compositional: each surface syntactic constituent cor-
responds to a well-formed denotation, and each surface syntactic formation rule
corresponds to a unique semantic combinator.

We have shown how to build the continuation hierarchy modularly and on-
demand, without committing ourselves to any particular hierarchy level but

29

raising the level if needed as a denotation is being composed. In particular,
quantifier-free lexical entries have unlifted types and simple denotations.

We look forward to extending our analysis to other aspects of scope – how
quantifiers interact with coordination (as in (6)), pronouns and polarity items –
and to distributivity in universal quantification. We would also like to investigate
if hierarchy levels can be correlated with Minimalism features or feature domains.
Finally, we plan to extend our analyses of single sentences to discourse.

Acknowledgements We are very grateful to Chris Tancredi for many helpful
suggestions and a thought-provoking conversation. We thank anonymous review-
ers for their comments.

References

[1] Montague, R.: The proper treatment of quantification in ordinary English.
In Thomason, R.H., ed.: Formal Philosophy: Selected Papers of Richard
Montague. Yale University Press, New Haven (1974) 247–270

[2] Szabolcsi, A.: The syntax of scope. In: Handbook of Contemporary Syn-
tactic Theory. Blackwell (2000) 607–634

[3] Szabolcsi, A.: Quantification. Cambridge University Press, Cambridge
(2009)

[4] Reinhart, T.: Syntactic domains for semantic rules. In Guenthner, F.,
Schmidt, S.J., eds.: Formal Semantics and Pragmatics for Natural Lan-
guages. Reidel, Dordrecht (1979) 107–130

[5] Barker, C.: Continuations and the nature of quantification. Natural Lan-
guage Semantics 10 (2002) 211–242

[6] de Groote, P.: Type raising, continuations, and classical logic. In van Rooy,
R., Stokhof, M., eds.: Proceedings of the 13th Amsterdam Colloquium, In-
stitute for Logic, Language and Computation, Universiteit van Amsterdam
(2001) 97–101

[7] Shan, C.c.: Linguistic side effects. In Barker, C., Jacobson, P., eds.: Direct
Compositionality, New York, Oxford University Press (2007) 132–163

[8] Bekki, D., Asai, K.: Representing covert movements by delimited contin-
uations. In: Proceedings of the 6th International Workshop on Logic and
Engineering of Natural Language Semantics, Japanese Society of Artificial
Intelligence (2009)

[9] Bernardi, R., Moortgat, M.: Continuation semantics for the Lambek-Grishin
calculus. Information and Computation 208 (2010) 397–416

[10] Shan, C.c.: Inverse scope as metalinguistic quotation in operational seman-
tics. In Yoshimoto, K., ed.: Proceedings of the 4th International Workshop
on Logic and Engineering of Natural Language Semantics, Japanese Society
of Artificial Intelligence (2007) 167–178

[11] Shan, C.c.: Delimited continuations in natural language: Quantification
and polarity sensitivity. In Thielecke, H., ed.: CW’04: Proceedings of the
4th ACM SIGPLAN Continuations Workshop. Number CSR-04-1 in Tech.
Rep., School of Computer Science, University of Birmingham (2004) 55–64

30

[12] Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, New York, ACM
Press (1990) 151–160

[13] Barker, C., Shan, C.c.: Donkey anaphora is in-scope binding. Semantics
and Pragmatics 1 (2008) 1–46

[14] Champollion, L., Tauberer, J., Romero, M.: The Penn Lambda Calcula-
tor: Pedagogical software for natural language semantics. In King, T.H.,
Bender, E.M., eds.: Proceedings of the Workshop on Grammar Engineering
Across Frameworks, Stanford, CA, Center for the Study of Language and
Information (2007) 106–127

[15] Barker, C., Shan, C.c.: Types as graphs: Continuations in type logical
grammar. Journal of Logic, Language and Information 15 (2006) 331–370

[16] Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic
delimited continuations by a type-directed selective CPS-transform. In
Hutton, G., Tolmach, A.P., eds.: ICFP ’09: Proceedings of the ACM Inter-
national Conference on Functional Programming, New York, ACM Press
(2009) 317–328

[17] Partee, B.H., Rooth, M.: Generalized conjunction and type ambiguity. In
Bäuerle, R., Schwarze, C., von Stechow, A., eds.: Meaning, Use and Inter-
pretation of Language. Walter de Gruyter, Berlin (1983) 361–383

[18] Kameyama, Y., Kiselyov, O., Shan, C.c.: Combinators for impure yet hy-
gienic code generation. In Chin, W.N., Hage, J., eds.: PEPM, New York,
ACM Press (2014) 3–14

