Transformational Semantics (TS) on a Tree Bank

Oleg Kiselyov

Tohoku University, Japan

LENLS
November 14, 2017
Outline

- Introduction

 Transformational Approach by a FraCAS Example

 Complications

 Conclusions and Reflections
Motivation

Semantics-by-Transformations (TS)

- QR *but* restrained, rigorous, type preserving, mostly deterministic
- Negative predictions
- Quantifier ambiguity, scoping islands and binding, crossover, topicalization, inverse linking, (non-canonical) coordination

Carried out mechanically

- TS is precisely specified and can be carried out mechanically: Semantic calculator
- Do it in bulk and *automatically*
Motivation

Semantics-by-Transformations (TS)

- QR *but* restrained, rigorous, type preserving, mostly deterministic
- Negative predictions
- Quantifier ambiguity, scoping islands and binding, crossover, topicalization, inverse linking, (non-canonical) coordination

Carried out mechanically

- TS is precisely specified and can be carried out mechanically: Semantic calculator
- Do it in bulk and automatically

Not that straightforward
Motivation

Semantics-by-Transformations (TS)

- QR *but* restrained, rigorous, type preserving, mostly deterministic
- Negative predictions
- Quantifier ambiguity, scoping islands and binding, crossover, topicalization, inverse linking, (non-canonical) coordination

Carried out mechanically

- TS is precisely specified and can be carried out mechanically: Semantic calculator
- Do it in bulk and automatically

Not that straightforward

The talk is an improved version of the paper
Outline

FraCAS corpus

Abstract (Logical) Form

Transformational Semantics

Logic Formula

Theorem Prover

Entailment Decision
Outline

FraCAS corpus

some magic

Abstract (Logical) Form

Transformational Semantics

some more magic

First-order Logic Formula

First-order Theorem Prover

Entailment Decision
Outline

Introduction

➢ Transformational Approach by a FraCAS Example

Complications

Conclusions and Reflections
Textual inference problem set

Problem 049:

1. A Swede won a Nobel prize.
2. Every Swede is a Scandinavian.
3. A Scandinavian won a Nobel prize.

Is (3) entailed from (1) and (2)?
Annotated FraCAS

((IP-MAT (NP-SBJ (D A) (ADJ Swede)))
 (VBD won) (NP-OBJ (D a) (NPR Nobel) (N prize))
 (PU .))
 (ID 86_JSeM_beta_150530))

((IP-MAT (NP-SBJ (Q Every) (ADJ Swede)))
 (BEP is) (NP-OBJ (D a) (ADJ Scandinavian))
 (PU .))
 (ID 87_JSeM_beta_150530))

The first two Problem 049 sentences annotated within the Penn Historical Corpora System
Why To use this input format? Ask me later
The Abstract Form

cl (a_x (swede entity)) (won (a_y nobel_prize))

cl (every_x (swede entity)) (is_cn (scandinavian entity))
The Abstract Form

cl (a_x (swede entity)) (won (a_y nobel_prize))

cl (every_x (swede entity)) (is_cn (scandinavian entity))

Typed Term

entity: CN
swede : CN → CN
a_x : CN → NP
won : NP → VP
cl : NP → VP → S
TS transformations

\[\text{cl} \left(a_x \text{ (swede entity)} \right) \left(\text{won} \left(a_y \text{ nobel prize} \right) \right) \]
TS transformations

\[\text{cl } (a_x \text{ (swede entity)}) \text{ (won } a_y \text{ nobel_prize}) \]

\[\text{Ex } (\text{swede entity}) \\
(\text{cl } x \text{ (won } a_y \text{ nobel_prize}))) \]
TS transformations

\[\text{cl} \ (a_x \ (\text{swede entity})) \ (\text{won} \ (a_y \ \text{nobel_prize})) \]

\[\text{Ex} \ (\text{swede entity}) \]
\[\quad (\text{cl} \ x \ (\text{won} \ (a_y \ \text{nobel_prize}))) \]

\[\text{Ex} \ (\text{swede entity}) \]
\[\quad (\text{Ey} \ \text{nobel_prize} \ (\text{cl} \ x \ (\text{won} \ y))) \]
TS transformations

\[cl \ (a_x \ (\text{swede entity})) \ (\text{won} \ (a_y \ \text{nobel_prize})) \]

\[\text{Ex} \ (\text{swede entity}) \]
\[\quad (cl \ x \ (\text{won} \ (a_y \ \text{nobel_prize}))) \]

\[\text{Ex} \ (\text{swede entity}) \]
\[\quad (\text{Ey} \ \text{nobel_prize} \ (cl \ x \ (\text{won} \ y))) \]

- QR, in a precisely specified, and typed-assured way
- Each transformation is deterministic
- The order of transformations is generally not
- We try them all
First-Order Formulas

fof(s1,axiom,
 ?[X]: ((in(X,swede) & in(X,entity)) &
 (?[Y]: (in(Y,nobel_prize) & rel(Y,won,X))))).

fof(s2,axiom,
 ![X]: ((in(X,swede) & in(X,entity)) =>
 (in(X,scandinavian) & in(X,entity))))).

fof(c,conjecture,
 ?[X]: ((in(X,scandinavian) & in(X,entity)) &
 (?[Y]: (in(Y,nobel_prize) & rel(Y,won,X))))).

TPTP Notation
Demo
Outline

Introduction

Transformational Approach by a FraCAS Example

► Complications

Conclusions and Reflections
Tecto-grammatization

Given: messy, flat annotated tree

((IP-MAT (NP-SBJ (D A) (ADJ Swede))
 (VBD won) (NP-OB1 (D a) (NPR Nobel) (N prize))
 (PU .))
 (ID 86_JSeM_beta_150530))

Want: clean formula

cl (a_x (swede entity)) (won (a_y nobel_prize))
Tecto-grammatization

Given: messy, flat annotated tree

((IP-MAT (NP-SBJ (D A) (ADJ Swede))
 (VBD won) (NP-OB1 (D a) (NPR Nobel) (N prize))
 (PU .))
 (ID 86_JSeM_beta_150530))

Cleaned-up and binarized tree

((IP-MAT (NP-SBJ (Q a) (nc (adj swede) (N entity)))))
 (tv-app (tv won) (NP (Q a) (N nobel_prize))))

Want: clean formula

cl (a_x (swede entity)) (won (a_y nobel_prize))
Tecto-grammatization

Given: messy, flat annotated tree

((IP-MAT (NP-SBJ (D A) (ADJ Swede))
 (VBD won) (NP-OB1 (D a) (NPR Nobel) (N prize))
 (PU .))
(=n (ID 86_JSeM_beta_150530)))

Cleaned-up and binarized tree

(IP-MAT (NP-SBJ (Q a) (nc (adj swede) (N entity))))
(tv-app (tv won) (NP (Q a) (N nobel_prize))))

Want: clean formula

\[cl (a_x (swede entity)) (won (a_y nobel_prize)) \]

Tecto-grammatization is general-purpose, a composition of (many small) macro-tree transducers
Magic of type-checking

Tecto-grammatization is untyped and ad hoc

TS transformations are typed and type-preserving
Magic of type-checking

Tecto-grammatization is untyped and ad hoc

TypeChecking

TS transformations are typed and type-preserving
Logical problems

First-order Meaning

+ Semi-decidable
+ Excellent *automatic* first-order theorem provers
 - How to deal with *many, most, few, at least three, etc*?
Logical problems

<problem id="002" fracas_answer="yes">
 <p idx="1">
 Every Italian man wants to be a great tenor.
 </p>
 <p idx="2">
 Some Italian men are great tenors.
 </p>
 <h>
 There are Italian men who want to be a great tenor.
 </h>
 <a> Yes
 <note> Note that second premise is unnecessary and irrelevant </note>
</problem>

Conversion to XML by Bill MacCartney
Every Italian man wants to be a great tenor.

fof(s1,axiom,
 ?[Y]: ((in(Y,great) & in(Y,tenor)) &
 (![X]: ((in(X,italian) & in(X,man)) =>
 rel(Y,wantToBe,X))))).
Several

Some Italian men are great tenors.

fof(s2, axiom,
(([[X]: (in(X, sks23) <=> (in(X, great) & in(X, tenor)))] &
([Xs21]: (in(Xs21, sks22) <=>
 (in(Xs21, italian) & in(Xs21, man))))) &
several(sks22, sks23))).
Several

There are Italian men who want to be a great tenor.

fof(c,conjecture,
 ?[Y]: ((in(Y,great) & in(Y,tenor)) &
 (((!X]: (in(X,skc3) <=> in(X,exist))) &
 (![Xc1]: (in(Xc1,skc2) <=>
 ((in(Xc1,italian) & in(Xc1,man)) &
 rel(Y,wantToBe,Xc1)))))
 => several(skc2,skc3))).
Several

fof(several1, axiom, ![P,P1,Q,Q1]:
 ((several(P,Q) &
 (![X]: ((in(X,P) & in(X,Q)) => ((in(X,P1) & in(X,Q1)))))
 => several(P1,Q1))).

fof(sevmany, axiom, ![P,Q]:
 (many(P,Q) => several(P,Q))).

fof(sevmost, axiom, ![P,Q]:
 (most(P,Q) => several(P,Q))).
Definite descriptions

Problem 017:

- An Irishman won the Nobel prize for literature.
- An Irishman won a Nobel prize.
Bare Plurals

Problem 013

1. Both leading tenors are excellent.
2. Leading tenors who are excellent are indispensable.
3. Both leading tenors are indispensable.
Outline

Introduction

Transformational Approach by a FraCAS Example

Complications

► Conclusions and Reflections
Conclusions

TS does work on a tree bank

- QR, movement, Cooper storage,…
 in a precisely specified, and a typed-assured way
- (although that doesn’t say much)
- Can do everything that natural semantics can

One Sentence vs Corpus, Manual vs. Automatic
A world of difference

Future Work

- Plurality (definite plurals, bare plurals and their multiple meanings, distributivity)
- TS with the event semantics (to deal with tense, etc)

http://okmij.org/ftp/gengo/transformational-semantics/