
1

Gradually Transforming Syntax to Semantics

Oleg Kiselyov Leo Tingchen Hsu

Tohoku University, Japan

New Landscapes in Theoretical Computational Linguistics
OSU, October 16, 2016



2

Summary: Semantics-by-Transformations

QR

I Transformation to semantics (covert movement), . . .

I Negative predictions

Now

I restrained, rigorous, type preserving

I mostly deterministic

I quantifier ambiguity, scoping islands and binding,
crossover, topicalization, inverse linking

I The product of long evolution (of my views)

I Precisely specified and can be carried out mechanically:
Semantic calculator

I Compositionality: not just meanings but transformations



3

Broader Context

meaning from some (abstract) form

Proof search
I Logically insightful

I Hard to get negative predictions

I Hard to characterize the space of derivations



3

Broader Context

meaning from some (abstract) form

Evaluation
Chung-chieh Shan: Linguistic side-effects
Barker et al.: Monads in natural languages
DRT

I Algorithmic; possible claim to real life

I Mostly deterministic (as real programs)

I Inherently partial

I (Usually) precisely specified and mechanized

I Too rigid

I Too easy to get bogged down in technical details



3

Broader Context

meaning from some (abstract) form

History

I 2007-2008 multi-prompt delimited control

I 2009 ACG with multi-prompt delimited control

I 2011-2012 ACG with monads, then applicatives

I 2015 ACG with staging and applicatives

I 2015 LENLS talk (still applicatives)

I 2015 LENLS paper (starting to abstract the details away)



4

Problems

(1) Every girli’s father loves heri mother.

(1a) *Every girli’s father loves itsi mother.

(1b) *Heri father loves every girli’s mother.

(1c) A girli met every boy who liked heri.

(2a) That Johni left upset hisi teacher.

(2b) *That every boyi left upset hisi teacher.

(3a) Alice’s present for himi, every boyi saw.

(3b) *Every boyi, hisi mother likes.

(4) Two politicians spy on someone from every city.



4

Problems

(1) Every girli’s father loves heri mother.

(1a) *Every girli’s father loves itsi mother.

(1b) *Heri father loves every girli’s mother.

(1c) A girli met every boy who liked heri.

(2a) That Johni left upset hisi teacher.

(2b) *That every boyi left upset hisi teacher.

(3a) Alice’s present for himi, every boyi saw.

(3b) *Every boyi, hisi mother likes.

(4) Two politicians spy on someone from every city.



5

(Concrete) Terms

"John"·"loves"·"Mary"

Algebraic structure

Carrier : string

"John" : string

"loves" : string

"mary" : string

· : string→ string→ string



5

(Concrete) Terms

"John"·"loves"·"Mary"

Algebraic structure

Carrier : string

"John" : string

"loves" : string

"mary" : string

· : string→ string→ string

Too concrete. Too little typed



6

Abstract (Tecto) Terms

cl john (love mary )

Multisorted Algebraic structure

Carriers : S, NP, N, V P, PP
cl : NP → V P → S
john : NP
mary : NP
love : NP → V P



7

Logic Terms

love john mary

First-Order Multisorted Algebraic structure

Types : e, t
mary : e
john : e
love : e→ e→ t
conj, disj, . . . : t→ t→ t
x, y, z, . . . : e
∀x : t→ t
∃y : t→ t

Not λ-calculus



8

More than one Abstract Language

everyx : N → NP
ax : N → NP

varx , vary , . . . : NP
Ux ,Uy , . . . : N → S → S
Ex ,Ey , . . . : N → S → S
he, she, it : NP



9

Transformation Approach Overview

Abstract
cl john (love mary )

↙ ↘

Syntax
"John"·("loves"·"Mary")

Semantics
love mary john

(Context-sensitive) re-writing



10

Quantifier ambiguity

cl (ay woman) (love (everyx man))

↙ ↘ LE

Syntax
"a"·"woman"·"loves"·

"every"·"man"

(Ey woman)
(cl vary (love (every man)))

↓ LU
(Ey woman)(Ux man)
(cl vary (love varx ))

↓
Semantics

∃y.woman y ∧ ∀x.man x⇒ love x y

LU [cl C[everyx dr] d] 7→ (Ux dr) (cl C[varx ] d)
LU [cl d C[everyx dr]] 7→ (Ux dr) (cl d C[varx ])



10

Quantifier ambiguity

cl (ay woman) (love (everyx man))

↙ ↘ LE

Syntax
"a"·"woman"·"loves"·

"every"·"man"

(Ey woman)
(cl vary (love (every man)))

↓ LU
(Ey woman)(Ux man)
(cl vary (love varx ))

↓
Semantics

∃y.woman y ∧ ∀x.man x⇒ love x y

LU [cl C[everyx dr] d] 7→ (Ux dr) (cl C[varx ] d)
LU [cl d C[everyx dr]] 7→ (Ux dr) (cl d C[varx ])

QR, in a precisely specified, and typed-assured way



11

Implementing re-writing

LU [cl C[everyx dr] d] 7→ (Ux dr) (cl C[varx ] d)
LU [cl d C[everyx dr]] 7→ (Ux dr) (cl d C[varx ])

I Shan: delimited continuations

I Barker, Charlow: monads

I ACG: linear lambda-calculus

I AACG: applicative

I Us: Whatever



11

Implementing re-writing

LU [cl C[everyx dr] d] 7→ (Ux dr) (cl C[varx ] d)
LU [cl d C[everyx dr]] 7→ (Ux dr) (cl d C[varx ])

I Shan: delimited continuations

I Barker, Charlow: monads

I ACG: linear lambda-calculus

I AACG: applicative

I Us: Whatever



12

Problems

(1) Every girli’s father loves heri mother.

(1a) *Every girli’s father loves itsi mother.

(1b) *Heri father loves every girli’s mother.

(1c) A girli met every boy who likedi her.

(2a) That Johni left upset hisi teacher.

(2b) *That every boyi left upset hisi teacher.

(3a) Alice’s present for himi, every boyi saw.

(3b) *Every boyi, hisi mother likes.



13

Demos



14

Conclusions

Transformational Formalism
I Abstract 7→ Syntax & Semantics, compositionally

I Transformations are composed from smaller ones

I Transformation are context-sensitive and non-trivial

Mechanical implementation: semantics calculator

QR, movement, Cooper storage,. . .
in a precisely specified, and a typed-assured way

http://okmij.org/ftp/gengo/transformational-semantics/



15

Reflections

Ad hoc and illogical?

But proof system is also sort of re-writing...

Minimalism?
Movements...

What is wrong Lambda-Calculus?

I ACG (Lambda-Grammars) are based on it

I But it is not a context-sensitive re-writing system by nature



15

Reflections

Ad hoc and illogical?

But proof system is also sort of re-writing...

Minimalism?
Movements...

What is wrong Lambda-Calculus?

I ACG (Lambda-Grammars) are based on it

I But it is not a context-sensitive re-writing system by nature



15

Reflections

Ad hoc and illogical?

But proof system is also sort of re-writing...

Minimalism?
Movements...

What is wrong Lambda-Calculus?

I ACG (Lambda-Grammars) are based on it

I But it is not a context-sensitive re-writing system by nature



15

Reflections

Ad hoc and illogical?

But proof system is also sort of re-writing...

Minimalism?
Movements...

What is wrong Lambda-Calculus?

I ACG (Lambda-Grammars) are based on it

I But it is not a context-sensitive re-writing system by nature


	Introduction
	Transformational Approach
	Demos
	Conclusions and Reflections

