Metropolis-Hastings for Mixtures of Conditional Distributions

 $plc = do x \leftrightarrow$ **y** \leftarrow ret

Why embedded conditioning matters

1.1 Computing the likelihood for the conditioned variable

Joint distribution on (x,y) $p1 = do x \leftarrow dist bern 0.5$ $y \leftarrow \text{if } x \text{ then } \text{dist } \text{norm } 10 \text{ 1 else } \text{dist } \text{norm } 11 \text{ 1}$ return (x,y) Conditioning on y being 10 $p1c' = do(x,y) \leftarrow p1$ observe (y=10) - Not a valid Hakaru10 statement!return x Valid conditioning on y being 10 $p1c'' = do(x,y) \leftarrow p1$ observe lh_y 10 — where to get y's likelihood from? return x

A better idea is to *push* the conditioning statement into p1, where y is compute

1.2 Modularity

If we are allowed to compose previously written models into new ones, what

How to MCMC sample from models

2 Warm-up: Models with branching

Deriving the correct Wingate et al. formula $p2 = do x \leftarrow dist bern a$ $y \leftarrow \text{if } x \text{ then } \text{do } \{yt \leftarrow \text{et; return } yt\} \text{ else } \text{do } \{yf \leftarrow \text{ef; return } yf\}$ return (x,y)

Acceptance ratio for $s_1 \rightarrow s_2$

 $\alpha(s_1, s_2) = \min(1, r(s_2, s_1)) \qquad r(s_2, s_1) = \frac{\pi(s_2)q(s_2, s_1)}{\pi(s_1)q(s_1, s_2)}$ $(q(s_1, s_2)$: proposal kernel; $\pi(s)$ target density)

Wingate-like method 2.1

- A model (= program): a DAG of elementary random primitives (ERP) like be
- Each ERP is uniquely named (contra-Wingate)
- |p|: the number of *active* ERPs in p
- A sample from a program (= trace): a set of samples of all ERPs
- To sample from a program, we build a Markov Chain over the space of traces, by proposing an update to one ERP sample

Oleg Kiselyov
Tohoku Universit
oleg@okmij.org

← dist bern 0.5 ← if x then condition 10 norm 10 1 else condition 10 norm 11 1 urn x	 What Can y tance Why is
	2.2
	Curre Propo
	Propo • x from • cho • switt
	which
ted and where its distribution is obvious. Hence we get p1c.	З р3с
used to be 'top level' conditioning quickly ends up buried inside. with embedded conditioning?	To be p3 =
	p3c
	Consi
	Additi
	Accep
ern in p2	Addition Structure CC
	۱.

t \ /

is the distribution of x?

ou write an MCMC sampling procedure for that distribution? What is the accepratio formula?

is y unused? Is conditioning a side-effect?

MH sampling from p2

rent state $s_1: (x = true, y = yt)$ $\pi(s_1) = \pi(x = \mathsf{true}) \ \delta(y = yt) \ \pi(et = yt) \ \pi(ef = yf)$ bosed state s_2 : (x=false, y=yf) $\pi(s_2)$ similarly osal kernel $q(s_1, s_2)$ from all other eligible ERPs: 1/(1 + |et|). ose to update x from true to false: b_{tf} itch from y=yt to y=yf: 1

 $r(s_2, s_1) = (1 - a)/a \cdot b_{ft}/b_{tf} \cdot (1 + |et|)/(1 + |ef|)$ i is the correct (in the 3d revision) Wingate formula

Models with conditioning and branching

= do x \leftarrow dist bern a $y \leftarrow \text{if } x \text{ then } \text{do } \{yt \leftarrow et ; return yt\} -- now et, ef may have$ else do {yf \leftarrow ef ; return yf} -- conditioning! return (x,y) explicit = do x \leftarrow dist bern a $(y,z) \leftarrow \text{if } x \text{ then } do \{(yt,zt) \leftarrow et; return (yt,zt)\}$ else do {(yf, zf) \leftarrow ef; return (yf, zf)} return (x,y,z) = p3 conditioned on z=0 sider the same transition as before $s_1: (x=true, y=yt) \longrightarrow s_2: (x=talse, y=yf)$ $\pi(s_1) = \pi(x = \mathsf{true}) \ \delta(y = yt) \ \pi(et = yt) \ \pi(ef = yf) \ \pi(zt = 0)$ tional factor $\pi(zt=0)!$

ptance ratio

 $r(s_2, s_1) = \frac{\pi(x = \mathsf{false})}{\pi(x = \mathsf{true})} \frac{\pi(zf = 0)}{\pi(zt = 0)} \frac{b_{ft}}{b_{tf}} \frac{1 + |et|}{1 + |ef|}$ tional factor scoring the observation z=0 within the distributions of et and ef.

Submodels in conditional branches affect the acceptance ratio for the move to switch branches: onditioning is a side-effect!

4 Implementation

Hakaru10 http://okmij.org/ftp/kakuritu/Hakaru10/

