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e What is the distribution of x?

e Can you write an MCMC sampling procedure for that distribution? What is the accep-
tance ratio formula?

plc = do x < dist bern 0.5
y < if x then condition 10 norm 10 1

else condition 10 norm 111 e Why is y unused? Is conditioning a side-effect?
return X
1 Why embedded conditioning matters 2.2 MH sampling from p2
1.1 Computing the likelihood for the conditioned variable Current state  sy: (v=true, y=yt) m(s1) = m(w=true) o(y=yt) w(el=yt) m(ef=y[)
Proposed state so: (x=false, y=y f) m(s9) similarly
Joint distribution on (x,y)
pl = do x < dist bern 0.5 Proposal kernel g(s1, s9)
y < if x then dist norm 10 1 else dist norm 111 e 2 from all other eligible ERPs: 1/(1 + |et|).
t :
return. (x,y) e chose to update = from true to false: b;
Conditioning on y being 10 oh | ot 0 e Fe 1
olc’ — do (xy) ¢ pl e switch from y=yt to y=y f:
observe (y=10) —— Not a valid HakarulQ statement!
return r(sg,s1) = (L—a)/a-bg /by (14 |et])/(1+|ef])
Valid conditioning on y being 10 which is the correct (in the 3d revision) Wingate formula
plc” =do (x,y) < pl
observe |h'y 10 —— where to get y's likelihood from?
return X 3 Models with conditioning and branching
A better idea is to push the conditioning statement into p1, where y is computed and where its distribution is obvious. Hence we get plc. p3c = do x < dist bern a
y < if x then do {yt <—et ; return yt} —— now et, ef may have
: else do {yf <—ef ; return yf} —— conditioning!
1.2 Modularity return (x,y)
If we are allowed to compose previously written models into new ones, what used to be ‘top level’ conditioning quickly ends up buried inside.
To be explicit
[How to MCMC sample from models with embedded conditioning?] P3 = dox <= dist bern a
(y,z) < if x then do {(yt,zt) < et; return (yt,zt)}

else do {(yf,zf) < ef; return (yf,zf)}

2 Warm-up: Models with branching e — p;egg,:gitf;;gjgn 0

Deriving the correct Wingate et al. formula
p2 = do x < dist bern a
y < if x then do {yt < et; return yt} else do {yf < ef; return yf} m(s1) = m(z=true) é(y=yt) n(et=yt) m(ef=yf) m(2t=0)
return (x,y) Additional factor 7(zt=0)!

Consider the same transition as before sy: (r=true, y=yt) ~> so: (r=false, y=yf)

Acceptance ratio for s; — s9 A t r
cceptance ratio

— mi _ T(s2)q(s2,51)
a(s1, s9) = min(1,7(s2,s1)) r(sg,51) = (51)q(51,52) m(z=false) 7(zf=0) bp 1+|et|

(q(s1, s2): proposal kernel; 7(s) target density) r(52,51) = T mZtrue) 7(2t=0) by THle]]
Additional factor scoring the observation =0 within the distributions of et and ef.
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2.1 Wingate-like method Submodels in conditional branches affect the acceptance ratio for the move to switch branches:

e A model (= program): a DAG of elementary random primitives (ERP) like bern in p2 Conditioning IS a side-effect!

e Each ERP is uniquely named (contra-Wingate) N )

e |p|: the number of active ERPs in p
e A sample from a program (= trace): a set of samples of all ERPs
e To sample from a program, we build a Markov Chain over the space of traces, by proposing an update to one ERP sample Hakaru10 http://okmij.org/ftp/kakuritu/Hakarul0/

4 Implementation



