Probabilistic Programming Language and its
Incremental Evaluation

Oleg Kiselyov

Tohoku University, Japan
oleg@okmij.org

Abstract. This system description paper introduces the probabilistic
programming language HakarulO, for expressing, and performing in-
ference on (general) graphical models. The language supports discrete
and continuous distributions, mixture distributions and conditioning.
HakarulO is a DSL embedded in Haskell and supports Monte-Carlo
Markov Chain (MCMC) inference.

HakarulO is designed to address two main challenges of probabilistic pro-
gramming: performance and correctness. It implements the incremental
Metropolis-Hastings method, avoiding all redundant computations. In
the presence of conditional branches, efficiently maintaining dependen-
cies and correctly computing the acceptance ratio are non-trivial prob-
lems, solved in HakarulO. The implementation is unique in being ex-
plicitly designed to satisfy the common equational laws of probabilistic
programs. HakarulO is typed; specifically, its type system statically pre-
vents meaningless conditioning, enforcing that the values to condition
upon must indeed come from outside the model.

1 Introduction

Broadly speaking, probabilistic programming languages are to express compu-
tations with degrees of uncertainty, which comes from the imprecision in input
data, lack of the complete knowledge or is inherent in the domain. More precisely,
the goal of probabilistic programming languages is to represent and automate
reasoning about probabilistic models [4, 16], which describe uncertain quanti-
ties — random variables — and relationships among them. The canonical example
is the grass model, with

bern 0.3 bern 0.5 three random variables rep-
resenting the events of rain,

of a switched-on sprinkler

. and wet grass. The (a pri-
ori) probabilities of the first
nor 0.9 0.8 0.1 two events are judged to be
30% and 50% correspond-
ingly. Probabilities are real
numbers from 0 to 1 that may be regarded as weights on non-deterministic
choices. Rain almost certainly (90%) wets the grass. The sprinkler also makes

Fig. 1. Grass model

the grass wet, in 80% of the cases. The grass may also be wet for some other rea-
son. The modeler gives such an unaccounted event 10% of a chance. This model
is often depicted as a directed acyclic graph (DAG) — so-called Bayesian, or be-
lief network [17] (Fig.1) — with nodes representing random variables and edges
conditional dependencies. Associated with each node is a distribution (such as
Bernoulli distribution bern: the flip of a biased coin), or a function that computes
a distribution from the node’s inputs (such as the noisy disjunction nor to be
described below).

The sort of reasoning we wish to perform on the model is finding out the
probability distribution of some of its random variables. For example, we can
work out from Fig.1 that the probability of the grass being wet is 60.6%. Such
reasoning is called probabilistic inference. Often we are interested in the distri-
bution conditioned on the fact that some random variables have been observed
to hold a particular value. In our example, having observed in the morning that
the grass is wet, we want to find out the chance it was raining overnight. We are
thus estimating a hidden parameter — inferring the likelihood of an unseen or
unobservable cause — from observations. For background on the statistical mod-
eling and inference, the domain area of the present paper, the reader is referred
to Pearl’s classic [17] and Getoor and Taskar’s collection [4].

In the probabilistic language HakarulO to be presented in this paper, the
conditional model just described in English can be written as follows:

grass = do
rain < dist bern 0.3
sprinkler < dist bern 0.5

grass_is.wet < dist (True ‘condition' nor 0.9 0.8 0.1) rain sprinkler
return rain

—— noisy—or function
nor strengthX strengthY noise = \xy —
bern $ 1 — nnot (1—strengthX) x * nnot (1—strengthY) y % (1—noise)

—— noisy not function

type Prob = Double

nnot = Prob — Bool — Prob

nnot p True =p

nnot p False =1
Even though some words like dist are not yet defined, one can already see the
correspondence with Fig.1. The grass code compactly and, mainly, unambigu-
ously represents the model — for the domain experts and also for the HakarulO
system. The latter relieves us from working out probabilities by hand, perform-
ing the requested inference. Thus probabilistic programming languages let us
separate the description of the model from computations on them, making the
models declarative and accessible, for domain experts, to discuss and modify.

Probabilistic programming languages are easier to use and develop when they

are embedded DSLs, implemented as a library or a macro on top of the existing
general-purpose programming language. HakarulO is in fact such a DSL, embed-
ded in Haskell. The grass model is the ordinary Haskell function, making use of
the library functions bern, dist and condition. The full power of Haskell and all

of its libraries is available for expressing deterministic parts of the model (such
as the noisy-or probability computation). Embedded DSL let us also take the
full advantage of the abstraction facilities of the host language such as func-
tions, module systems, etc. For example, we have defined nor as a particular
parameterized Bernoulli distribution conditioned on two inputs x and y. This
function can later be re-used in other models. We may hence compose models
from simpler components. Starting from the pioneering work of Sato [19], many
probabilistic DSL have been proposed [5, 8], with host languages been logical
[2, 19], functional [6, 12, 20, 22], object-functional [18], etc. Wingate et al. [21]
deserves special mention for proposing a technique of adding probabilistic pro-
gramming facilities to just about any language. The authors demonstrated this
on the examples of Scheme and Matlab. Wingate’s et al. approach has become
well-spread and employed in many more probabilistic systems such as [9, 22].

There are so many probabilistic languages and we are still writing papers
about (more of) them — driven by two main challenges. One is obvious, the other
may come as a surprise. The obvious challenge is performance. An expressive,
pleasant to use, well abstracted probabilistic programming language may be, it
is all for naught if doing inference with realistic models takes unreasonable time
or runs out of memory. For example, the probability monad — which adds weights
to the well-known List monad for non-determinism — is the straightforward and
the easiest to understand example of probabilistic programming in Haskell. It
is Haskell folklore, well described in [3]. It is also disastrously inefficient, failing
even for toy problems. Therefore, it is all too common in Machine Learning/AI
communities to tailor the model to a specific inference method, and tune the
inference code for a specific model. However prominent are the drawbacks of
such tight coupling, often it is the only way to handle problems of realistic size.

That correctness is still a challenge may be surprising. Given the long history
of probabilistic programming, one may think that the basics of the implemen-
tation are beyond doubts. Yet we keep finding problems in the published work
[11]. The well-known and widely used systems such as STAN [9] turn out to
give plain wrong answers even in simple cases, as Hur et al. [10] have clearly
demonstrated.

Contributions Hakarul0O was developed to address both challenges, performance
and correctness. It started as a project to improve the implementation of the
(original) Hakaru [24] on two points: avoid redundant re-computations and to
strengthen the typing discipline. It was discovered [11] along the way that the
implementation principles, taken from [21] were flawed. Hakarul0 is the complete
re-write, on new principles, to be described in the present paper. Specifically, the
paper makes the following contributions.

1. It presents the probabilistic programming language HakarulO embedded as
a DSL in Haskell.

2. It describes the design of HakarulO, specifically, its type system, which en-
sures not only that a model is well-typed, but also that it is well-conditioned.
That is, the values used for conditioning really come from the sources ex-
ternal to the model, rather than being produced from random sources and

computations within the model. In [20] that semantic well-conditioning con-
straint is a mere coding convention, whose violation leads to a run-time ex-
ception. We encode the constraint in types, without losing the benefits of the
do-notation. Although the original Hakaru [24] enforced well-conditioning
statically, it had to give up on the ordinary monads and made the condi-
tioning difficult and error-prone to use: the observed quantities had to be
referred to by De Bruijn-like indices. The type system of HakarulO improves
not only on the static guarantees but also on the ‘syntax’ of the language:
its Haskell embedding.

3. We describe the implementation of the Metropolis-Hastings (MH) proba-
bilistic inference method (one of the Markov Chain Monte Carlo (MCMC)
methods, see §4 for a reminder) that ensures semantic-preserving model
transformations such as introduction and elimination of dirac random vari-
ables. The implementation is thus guaranteed to obey theoretically justified
equational laws of probabilistic programs. The correct MH implementation,
in the presence of branching, is quite non-trivial [10].

4. We present the method to improve the efficiency of MH by avoiding redun-
dant re-computations. Although the idea is simple — upon resampling re-
compute only those parts of the model that depend on the changed value —
the challenge is to minimize the overhead of determining the dependencies
and their order. The challenge is acute in the presence of branching: if-then-
else statements.

HakarulO thus fixes the three problems of the popular Wingate et al. ap-
proach [21] that have been pointed out in [11]. First, the implementation is
designed to respect the unit law of the Dirac distribution. Second, HakarulO by
design avoids the accidental sharing of random primitives. In Wingate et al. such
sharing, however unjustified theoretically, was justified practically as increasing
the performance. HakarulO improved the performance by avoiding unnecessary
recomputations. The third problem, not able to use conditioning other than ‘at
the top level” has also been dealt with. This problem is so involved and important
that is out of scope here, to be discussed in a separate paper.

We start in §2 with a HakarulO tutorial. §3 briefly evaluates the expres-
siveness and performance of the system. §4 describes the implementation in
detail. We then review the related work and conclude. The complete code for
Hakarul0O with many tests and examples is available at http://okmij.org/ftp/
kakuritu/Hakarul0/.

2 HakarulO by Example

This section introduces Hakarul0 on a series of many small examples, showing off
the features of the language. Incidentally, these simple models are useful regres-
sion tests for any probabilistic system. The section also demonstrates equational
laws, or valid transformations of HakarulO programs.

Hakarul0 is designed for models that are described by a finite directed acyclic
graph like Fig. 1, whose nodes represent random variables and edges indicate

(typically causal) dependencies. Unlike graphical models in the strict sense [16],
we allow dependencies with arbitrary pure computations.

2.1 Model Compositions and their Laws

The first, elementary program is
pbern = dist bern 0.4

whose inferred type is Model Bool. The program represents the model consisting
of a single Boolean (‘Bernoulli’) random variable, whose distribution is True
with the probability 40% and False with the probability 60%. One may think
of the function bern : Double — DistK Bool as creating a distribution given its
parameter, and dist = (a — DistK b) — a — Model b as sampling from it'. The
types DistK and Model are abstract; the latter has the additional structure to
be shown shortly.
The function memC, the interpreter of probabilistic programs,

mcmC : Integer — Model a — [a]

pbern_run = mcmC 10 pbern
performs the MH inference on a model and returns the list of samples from
the model’s distribution. In particular, mecmC 10 pbern produces a list of 10
booleans, which indeed contains 4 True and 6 False values. Hakaru supports not
only discrete like bern but also continuous distributions:

pnorm = dist normal 10 0.5

Here, pnorm, of the inferred type Model Double is a model with the single normally-
distributed random variable, with the mean 10 and the standard deviation 0.5.
Hakarul0 offers other primitive distributions, such as categorical, uniform, gamma
and beta.

Almost all models are more complex, with more random variables, and mainly,
with dependencies between random variables. (HakarulO intentionally does not
support cyclic dependencies, as the semantics of such models is problematic.)
The following model has two random variables, normal- and Dirac-distributed?.
The parameter of the latter depends on the value of the former, for which we
re-use the earlier written pnorm:

—— pdepl : Model Double
pdepl = do

X <— pnorm

diracN (x+1)

To build complex models we use the Haskell do notation. In the example above,
we ‘name’ the submodel (random variable) pnorm as x, which we later use in
the expression to compute the parameter of the Dirac distribution. Haskell em-
bedding truly brings modularity: we can name HakarulO models (binding them
to Haskell variables) and (re)use constructed models as parts of other models,
as we have just done with pnorm. Since the Dirac distribution is frequent and

! These signatures are somewhat simplified. We will later see that dist is overloaded.
2 Dirac distribution, or Dirac delta, is taken as density of a discrete random variable
with the single value.

special, as we are about to see, there is a shorter syntax for it, just diracN.
As expected, the inferred distribution of pdepl is exactly the same as that of
dist normal 11 0.5.
Likewise, the model
pdepR = do
X <— pnorm
diracN x
is equivalent to just pnorm. This is the general property, not limited to normal
distributions: for any model p
do {x « p; diracN x}

has the distribution identical to that of p. Even the sequences of samples for the
two programs are identical. Likewise, for any e,
do {x « diracN e; p}

is equivalent to let x=e in p. Hence diracN acts as the left and the right unit
of the model composition. Not surprisingly, diracN has the alias return. At this
point a Haskell programmer may think that Model is a monad. This is not quite
true, as we shall soon see.

The joint distribution of pbern and pnorm models is described by

pjoin = do
X ¢— pbern
y < pnorm
return (pair x y)
Then memC 100 pjoin produces a set of (Bool,Double) pairs sampled from the
joint distribution, which in this case is the product of pbern and pnorm distribu-
tions. That the distributions of x and y are independent can be seen syntactically,
from the fact that the model named y, namely, pnorm, has no mentioning of x.
We can even integrate (that is, ‘marginalize’) over x:
pmarg = do
X ¢— pbern
Yy < pnorm
return y
Since x does not appear further in the program, this random variable is irrelevant
and is essentially marginalized. Hence the distribution of pmarg is the same as
that of pnorm (although the sequences of samples certainly differ). This property
is again general, for all models (not using conditioning, see below).

To demonstrate once more the advantage of the Haskell embedding, we bor-
row the example of a simple hierarchical model from [10, Fig. 3]. In the stan-
dalone, C-like imperative probabilistic language of that paper, the example looks
as follows:

double x;

int i =0;

x ~ Gaussian(0, 1);
while (i < 10) do {

x ~ Gaussian(x, 3);

i =i+1;
}

return x;

The graph of this model with 11 variables looks like the straight line. In this
C-like code, like in C, x denotes a sample from the model rather than a model.
In HakarulO, we write the hierarchical model as
phier = (iterate (\m — do {x<—m; dist normal x 3}) $ dist normal 0 1) !! 10

taking the advantage of Haskell’s standard library: iterate f x produces a list

whose i-th element is the i-th iterate of f over
x. The significance of the example is that the
I | popular probabilistic programming systems
1011 i like STAN infer a wrong distribution for it,

g] as demonstrated in [10]. HakarulO, like the
system of [10], infers the expected normal
distribution with the center 0 and the stan-
dard deviation v/91. We can verify the fact
by computing the (estimate of the) Kullback-
e Leibler (KL) divergence, a common metric of
10t 10° 10° dissimilarity between distributions:
phier_kl n :S(Ii]rbpée'gabulate 0.5 $ memC n phier)

(tabulate 0.5 $ memC n $ dist normal 0 (sqrt 91))

KL Divergence for the Hierarchical model

Here tabulate computes the histogram with the specified bin size. The above
figure plots phier_kl n for the different number of samples n. For the correct
sampler, KL is expected to decay as O(n~*) for some constant k. Hence, the
plot of KL vs. n on the log-log scale should look like a straight line.

2.2 Branching Models

HakarulO can express not only ‘straight-line’ but also branching models. An
example is a simple mixture model
mixng = do
x < dist normal 0 1
if_ ((>0) <$> x)
(dist normal 10 2)
(dist gamma 3 (1/3))
whose distribution is the mixture of normal and gamma distributions, with the
random variable x determining the proportion of the mixture. One can also read
this program as sampling either from the normal or the gamma distributions,
depending on the sign of x. The mixng program is the first betraying Model being
not quite a monad. The variable x is not actually of the type Double, as one might
have thought. We have maintained the illusion so far because numbers in Haskell
are overloaded. Sadly, booleans are not. As should be apparent from the use of
Applicative operator <$> | which is just fmap, Model a is something like M (A a)
where M is a monad but A is an applicative. We discuss the representation of
Model in §4.
Just by looking at the mixng code one can tell that what matters for the final
distribution is the event of x being positive — which, for the standard normal

distribution happens 50% of the time. Therefore, mixng should be equivalent to
the following mixture
mixng' = do
x < dist bern 0.5
if- x
(dist normal 10 2)
(dist gamma 3 (1/3))
That is, memC 5000 mixng should be roughly the same sequence of samples
as memC 5000 mixng’ — and also as interleave (mecmC 2500 (dist normal 10 2))
(memC 2500 (dist gamma (1/3))). Again, we verify the similarity using the KL
divergence, which is under 2.3e—2. This example is also borrowed from [10, Fig 2].
Despite its simplicity, several widely known and used probabilistic programming
systems (e.g., STAN) infer wrong distributions for it.

2.3 Conditioning

Finally, HakarulO supports conditioning, that is, inferring the conditional dis-
tribution of a model where some of its variables have been observed to hold
particular values. Conditioning is extraordinarily tricky, especially in case of
continuous distributions. The interested reader may look up the Borel paradox.
The syntax and the type system of HakarulO are specifically designed to steer
the programmer (far) away from the pitfalls.

We take as an example the experiment of estimating the bias of a coin, that
is, its inherent probability b of coming up as head (that is, True). We toss the
coin twice and observe the results as cl and c2. The following is the model of
the experiment, taking the observed values as parameters.

biased_coin cl c2 = do

b < dist beta 11

dist (cl ‘condition' bern) b

dist (c2 ‘condition' bern) b

return b
We do not know the true bias b, but assume a priori that it is distributed as
beta 1 1. This is a popular assumption (not in small part due to the fact we
can compute the posterior analytically). We toss the coin twice and ‘observe the
results as ¢l and c2’: specify that the first toss came in reality as c1 and the
second as c2. Then biased_coin c1 c2 gives us the (posterior) distribution of b,
letting us estimate the coin’s bias. If in the experiment the coin came up first
head and then tail, the posterior analytically is beta 2 2, with the average 0.5
and the variance 0.05. Running memC 10000 (biased_coin True False) gives the
list of 10000 samples, from which we estimate the average as 0.499.

As biased_coin code demonstrates, in HakarulO conditioning may only be ap-
plied to distributions. One may think that (cl ‘condition' bern) creates a new
distribution out of bern, with the singular value cl. Conditioning on arbitrary
boolean formulas is fraught with peril, both theoretical and practical, degener-
ating MCMC algorithm into the inefficient rejection sampling. Since repeated
conditioning does not make sense, (c1 ‘condition' (c2 ‘condition* bern)) is a type

error. HakarulO is indeed typed, although we have not paid much attention to
types, which were all inferred. Types do prevent silly errors like
biased_coin_ill_typed ¢l c2 = do
b < dist bern 0.5
dist (cl ‘condition' bern) b
dist (c2 ‘condition' bern) b
return b
since the parameter of bern, the probability, cannot be a Boolean. Types also
prevent less obvious errors like

biased_coin_ill_typed_too cl c2 = do
b < dist bern 0.5

dist (b ‘condition bern) 0.4

return b
Here, we attempted to condition bern on the random choice within the model.
This is not allowed: observations must be external to the model. In [20], this
semantic condition was a merely a coding convention, whose violation manifested
as a run-time exception. In HakarulO, the violation is a type error.

Previously we have seen that random variables that do not contribute to the
result in any way are effectively marginalized. Conditioning changes that. The
two condition lines in the biased_coin model are the random variables that do not
seem to contribute to the model (therefore, we did not even give them names).
However, they had effect. The following model makes that fact clear:

post_bias ¢ = do
coin < dist bern 0.5
if_ coin (dist (c ‘condition' normal) 0 1)
(dist (c ‘condition' normal) 100 1)

return coin
The result of the model does not overtly depend on the result of the if_ statement.
However, it changes the coin’s posterior distribution: running memC 100 (post_bias 1)
gives all True samples.

We conclude the tutorial by looking back at the canonical grass model ex-
ample described in §1, repeated below for reference.

grass = do

rain < dist bern 0.3
sprinkler < dist bern 0.5

grass_is.wet < dist (True ‘condition' nor 0.9 0.8 0.1) rain sprinkler

return rain
This code hopefully has become more understandable. Evaluating memC 20000 grass
and counting the number of True gives the posterior estimate of rain having ob-
served that the grass is wet: it comes out to 0.468, which matches the analytically
determined result.

3 Evaluation

The HakarulO tutorial might have given an impression that HakarulO tries so
hard to preclude problematic behavior, by restricting conditioning and models,

10

that one cannot do much interesting in it. In this section we briefly evaluate the
expressiveness of the language on two realistic models.

Bayesian Linear Regression The first model comes from the small problems
collection of challenge problems® assembled in the course of DARPA’s Prob-
abilistic Programming for Advancing Machine Learning (PPAML) program?.
It is Problem 4.1, Bayesian linear regression: Given the set of training points
(@ij,v:),t = 1..N,j = 1..k and the generative model y; = Zj x5 * wj + noise;
find the posterior distribution on w;. In the conventional linear regression lan-
guage, we are given N observations of y assumed to be a linear combination of
the controlled quantities x with the parameters w; we have to estimate w. The
generative model is expressed in HakarulO as
type RegrDatum = ([Double],Double) —— Xsand Y

model : [RegrDatum] — Model [Double]
model xsy = do

let mu = replicate dimK 0
w_mean < normals mu 2
w < normals w_mean 1

noisesd < (1/) <$> dist gamma 0.5 0.5

let make_cond (xs,y) = dist (y ‘condition' normal) (dot xs w) noise_sd

mapM_ make_cond xsy

return $ collect w
Its argument is the list of the training points (z;;, ;). The model starts by defin-
ing the prior for the parameters w and the standard deviation noise_sd for the
noise (as specified in the problem description). We then create a random variable
for each noisy observation point and condition it to y;. We are interested in the
distribution of the parameter vector w given the conditioning. The HakarulQ
model rather closely matches the problem description (and the RSTAN code
given in the problem description document). The model is straightforward but
not small: its graph has 511 vertices (there are five hundred observations and
five parameters).

The model is naturally expressed in terms of vectors; Hakarul0O however does
not provide out of the box any distributions over vectors. Nevertheless, we can
express them through HakarulO primitives in our host language, Haskell. For
example, we can write normals, which produces a list of independently distributed
normal random variables of the same standard deviation std whose means are
given by the list means:

normals means std = mapM (\m — dist normal m std) means

Likewise we can write collect (to convert a list of random variables into a random
list) in pure Haskell — to say nothing of the dot-product dot.

Population Estimation We also evaluate HakarulO by implementing a realistic
model of population estimation, taken from [14, Ex 1.1]: “An urn contains an

3 http://ppaml.galois.com/wiki/wiki/CP4SmallProblemsCollection
4 http://www.darpa.mil/program/probabilistic-programming-
for-advancing-machine-Learning

11

unknown number of balls — say, a number chosen from a Poisson or a uni-
form distributions. Balls are equally likely to be blue or green. We draw some
balls from the urn, observing the color of each and replacing it. We cannot
tell two identically colored balls apart; furthermore, observed colors are wrong
with probability 0.2. How many balls are in the urn? Was the same ball drawn
twice?” This example is hard to implement in many probabilistic programming
languages. That is why it was used to motivate the language BLOG.
First we define ball colors
data Color = Blue | Green deriving (Eq, Show)
opposite_color = Color — Color

opposite_color Blue = Green
opposite_color Green = Blue

and introduce the distribution for the observed ball color accounting for the
observation error:

observed_color color = categorical [(color, 0.8), (opposite_color color, 0.2)]

Although the exact number of balls in unknown, we can reasonably impose
an upper bound. We create that many instances of uniformly color-distributed
random variables, for each ball. We populate the IntMap data structure, mapping
ball’s index to the corresponding random variable, for easy retrieval.

maxBalls = 8

balls_prior n = do

balls < sequence o replicate n $ dist uniformly (pure [Blue,Green])
return $ M.fromList $ zip [1..] balls

Some of these random variables will be unused since the number of balls in the
urn is often less than the upper bound. The unused variables will be marginal-
ized®.

The model is conceptually simple: it takes a list of observations obs as an
argument, generates random variables for all possible balls, draws the number
of balls from the prior and dispatches to the instance of the model with that
number of balls.

cballs_model [obsl,obs2,...] = do
balls < balls_prior maxBalls
nballs < dist uniformly (pure [1.. maxBalls])

if_ ((= 1) <$> nballs) (cballs_model_with_Nballs balls obs 1) $
if_ ((= 2) <$> nballs) (cballs_model_with_Nballs balls obs 2) $

if_ (= 8) <§> nballs) (cballs.model_with_Nballs balls obs 8) $
return ()
return nballs

When the number of balls is fixed, the experiment is easy to model: pick one ball
b and check its true color balls | b against the color of the first observed ball;
repeat for the second observed ball, etc.

5 Imposing the upper bound on the number of balls may be undesirable, especially
for the Poisson distribution. In principle, HakarulO could instantiate conditional
branches of a model lazily; in which case balls could be an infinite list. We are
investigating this possibility.

12

cballs_model_with_Nballs balls [obsl,obs2 ,...] nballs = do
b « dist uniformly (pure [1.. nballs])
if_ ((= 1) <$> b) (dist (obsl ‘condition* observed_color) (balls ! 1)) $
if_ ((= 2) <$> b) (dist (obsl ‘condition' observed_color) (balls ! 2)) $

b « dist uniformly (pure [1.. nballs])
if_ (= 1) <$> b) (dist (obs2 ‘condition' observed _color) (balls ! 1)) $
if_ ((= 2) <$> b) (dist (obs2 ‘condition' observed_color) (balls ! 2)) $

return ()
The result is a rather large Bayesian network with deeply nested conditional
branches with conditioning in the leaves. The fact that the same balls variable
is shared among all branches of the complex if-statement corresponds to the
intuition that the same ball can be drawn twice since we return the drawn balls
into the urn. A ball keeps its true color, no matter how many times it is drawn.

The code outline just shown is not proper HakarulQ (and is not proper
Haskell) because of many ellipses. It is clear however that the code has the reg-
ular structure, which can be programmed in Haskell. For example, the (proper,
this time, with ellipses filled in) code for cballs_model is as follows:

cballs_model = [Color] — Model Int
cballs_model obs = do

balls < balls_prior maxBalls

nballs < dist uniformly (pure [1.. maxBalls])

let obs_number i = if_ ((= i) <$> nballs) $ cballs_model_with_Nballs balls obs i

foldr obs_number (return (pure())) [1.. maxBalls]

return nballs

One may think that the huge size of the model makes the inference difficult.
However, only small part of the large nest of conditional branches is evaluated
on each MH step. Therefore, performance is rather good: on 1.8GHz Intel Core
i3, Hakarul0O running within the GHCIi interpreter (bytecode, no optimizations)
takes 16 seconds to do 10,000 samples and reproduce the results of this model
programmed in Hansei [12] (running in OCaml bytecode, using importance sam-
pling, taking 5000 samples within 13.4 seconds) and the results reported in [14,
Fig. 1.7], which took 35 seconds on 3.2GHz Pentium 4 to obtain.

3.1 Performance

The motivation for HakarulQ was to improve the performance of the original
Hakaru [24], which was the straightforward implementation of the Wingate et
al. [21] algorithm. The previous section has already touched upon the Hakarul0
performance. This section evaluates performance directly, against the original
Hakaru, on the phier model from §2. Recall, its expected distribution is normal
with the average 0 and variance 91. The table below reports the estimates of the
average and variance, as well as the CPU time taken to obtain 1 million samples
from the model. The table compares Hakarul0 with the original Hakaru. The
platform is Intel Core i3 1.8GHz; the systems were compiled with GHC 7.8.3
with the —02 flag.

13

Average Variance CPU time (sec)

Hakaru original 0.39 87 72 sec
HakarulO 0.22 93 20 sec
HakarulO indeed significantly improves performance.

4 Implementation

HakarulO programs represent directed graphical models. Although we can use
state and other effects (e.g., reading various parameters from a file) to build
the graph, models themselves are declarative, describing connections between
random variables, or their distributions. Having built the model, we want to
determine the distribution of some of its random variables, either marginalizing
or conditioning on the others. Usually we determine the desired distribution
as a sequence of samples form it. If the model is encoded as a program that
does the sampling of random variables respecting the dependencies, determining
the distribution amounts to repeatedly running the program and collecting its
results. Taken literally, this process is rather inefficient however.

Conditioning, especially in the case of continuous distributions, poses a prob-
lem. Consider the model

do

tempr « dist uniform (—20) 50

(25 ‘condition' normal) tempr 0.1

return tempr
which represents a simple measurement (of tempr, the air temperature). The
measurement has random noise, which is believed to be Gaussian with the stan-
dard deviation 0.1. We are interested in the distribution of the true temperature
given the observed value 25 (degrees Celsius). The naive procedure will uni-
formly sample tempr from [—20,50], then sample from normal tempr 0.1, and, if
the latter result differs from 25, reject the tempr sample and repeat. Alas, we will
be rejecting almost all samples and produce nothing: mathematically speaking,
the event that a value drawn even from the normal distribution centered at 25,
is exactly 25 has the zero probability. A more useful question therefore to ask
is how likely 25 may come as a sample from the distribution normal tempr 0.1.
It becomes clear why HakarulO insists the conditioning be applied only to dis-
tributions: we have to know what distribution the observation comes from, so
we can tell how likely it is. Sampling thus becomes an optimization problem,
maximizing the livelihood. One of the multi-dimensional optimization methods
is Markov-Chain Monte-Carlo (MCMC).

HakarulO supports one of the MCMC methods: Metropolis-Hastings (MH)
method of sampling from a model distribution. We remind the algorithm on the
following example:

mhex = do
x ¢ dist normal 0 1

y < dist normal x 2
if_ ((>0.5) <$> x)

14

(return x)
(do {z + dist beta 1 1; return (y + 2)})

The algorithm constructs the sequence of Doubles, drawn from the distribution
of mhex, that is, the distribution of the values returned by the last statement
of the program. To start with, MH “runs” the program, sampling from the
distributions of its random variables. For example, x gets a sample from the
standard normal distribution, say, 0.1. Then y is sampled from normal 0.1 2, say,
as —0.3, and z is sampled as 0.5. The result of the whole program is then 0.2.
Along with the samples, MH remembers their probability in the distribution. It
is more convenient to work with the logarithms, that is, log likelihoods (LL).
For example, the LL of the initial x sample is —0.616. The collection of samples
along with their LLs is called the trace of the program. LL of the trace is the
sum of the LLs of its samples.

The just constructed trace becomes the initial element in the Markov chain.
The next element is obtained by attempting to ‘disturb’ the current trace. This
is the key to the efficiency of Markov Chain Monte Carlo (MCMC) as con-
trasted to the naive resampling (simple Monte Carlo): rather than resample all
of the random variables, we attempt to resample only one/a few at a time. The
algorithm picks a subset of random variables and proposes to change them, ac-
cording to some proposal distribution. Commonly, and currently implemented
in HakarulO, the algorithm selects one random variable and resamples it from
its distribution. Suppose we pick x and find another sample from its standard
normal distribution. Suppose the result is 0.6. The program is then re-run, while
keeping the values of the other random variables. In other words, we re-compute
the trace to account for the new value of x. The change in x switches to the first
branch of the if statement, and the program result becomes 0.6. Since y was not
affected by the change proposal, its old sample, —0.3, is kept. However, it is now
drawn from the different distribution, normal 0.6 2, an hence has the different
LL. Thus even if a random variable does not contribute to the result of a trace,
it may contribute to its LL. From the LLs of the original and the updated trace,
MH computes the acceptance ratio (a number between 0 and 1) and accepts
the updated trace with that probability. If the trace is accepted, it becomes the
new element of the Markov chain. Otherwise, the original trace is retained as
current. Running the trace re-computation many times constructs the sequence
of samples from the distribution of the trace — or, retaining only the trace result,
the sequence of samples from the program distribution.

4.1 Design Overview

We now describe the HakarulO implementation in more detail. HakarulO repre-
sents the trace — random variables of the model and their dependencies — as a
directed acyclic graph (DAG). Each node (vertex) in the graph stands for one
random variable (whose value can be sampled and resampled) or an observed
variable, whose value cannot be resampled. There are also computational nodes,
representing ‘samples’ from the dirac distribution. They cannot be resampled

15

either. §4.3 describes the reasons for the special treatment of the dirac distri-
bution. One node in a graph, with no outgoing vertices, is designated as the
‘result’ node. The graph with the result type a has the type SExp a%. For the
grass model the trace graph has three nodes and looks exactly like the graphical
representation of the model, Fig. 1.
A HakarulO model has the type
type Model a = MCMCM (SExp a)

It is a computation that constructs the trace graph. MCMCM is a monad, but
SExp is not. It is an applicative [13]: it lets us construct new graph nodes, without
looking at their values. The function

mcmC : Integer — Model a — [a]

first builds the trace graph and then repeatedly runs the trace update algorithm
the specified number of times. The fact that SExp is not a monad is significant:
the current node values cannot influence the graph construction. Therefore, after
the graph is built, its structure does not change. All dependencies among nodes
can be computed once and for all.

The type system not only makes the implementation more efficient. It also
enforces semantic constraints. Let’s recall the code that attempts to condition
on the value computed within the model, which is invalid semantically.

biased_coin_ill_typed_too ¢l c2 = do

b < dist bern 0.5

dist (b ‘condition' bern) 0.4

return b
This code does not type-check since the first argument of condition should be
Bool, since bern is the distribution over booleans. However, b is not Bool, it
is of the type SExp Bool. In the original Hakaru [24], the semantic constraint
was enforced via a parameterized monad, which made its syntax (the Haskell
embedding) cumbersome. Worse, the values to condition upon could only be
referred to indirectly, via De Bruijn-like indices, which were very easy to confuse.
The type system of the embedded language thus has significant influence on its
‘syntax’, its embedding.

4.2 Incremental Recomputation

One of the main features of HakarulO is its incremental recomputation algo-
rithm, which avoids the redundant computations during the trace update. Only
those nodes that (transitively) depend on the resampled random variable are re-
computed. The following example should clarify the meaning of the dependency:
pdep = do

x < dist normal 0 1

y < dist normal x 1

z < dist normal y 1

return (x+y+z)

5 The actual implementation has one more level of indirection, but the description
given here is a good approximation.

16

Suppose MH proposes to resample x (and only x). Although the y sample keeps
its old value, its distribution parameters, x specifically, changed. Therefore, the
LL of the old y sample in the new distribution has to be recomputed. The
variable z is not affected by the resampling proposal; also, the parameters of its
distribution remain the same. Therefore, no update to the z node is needed. The
last, Dirac, node of the trace, corresponding to return (x+y-+z), is also updated,
to account for the new x: the special treatment of Dirac nodes is explained in
the next subsection.

Since the type system ensures that the structure of the graph is preserved,
the dependency graph can be computed and topologically sorted once and for all.
The fact that HakarulO models are acyclic and HakarulO programs are declar-
ative (with no mutations) lets us avoid the topological sort and rely on the
‘creation times’ of trace nodes. A node can only depend on those constructed
before it.

The update procedure has the obvious correctness requirement: a node is
updated only after all the nodes it depends on have been updated. If we con-
sider the trace update as a graph traversal, the correctness property amounts to
maintaining the invariant that a visited node has the creation time earlier than
any other node in the update queue. This invariant has guided writing the code
and remains in the code in the form of assertions (mostly for documentation).

4.3 Special Treatment of the Dirac Distribution

HakarulO by design enforces the laws that

p
let x =vinp

do { x + p; diracN x }
do { x + diracN v; p }

for all programs p.

The law is tricky to enforce. Moreover, an MH implementation that does not
pay attention to it (such as [21], for example) exhibits incorrect behavior, as
pointed out in [11]. We recall the latter’s argument here.

Let us consider the following program

p2 = do {x < dist uniform 0 1; diracN x}

Suppose in the initial trace x is sampled to 0.5 and the MH algorithm now
proposes to change it to 0.7. When updating the trace, the values of other random
variables are kept as their are; only their LL may change. Thus the value of the
dirac node will be kept at 0.5; the update procedure will then try to find its LL
within the changed distribution dirac 0.7. Clearly the LL of the old sample in the
new distribution is — inf. Therefore, the proposal to resample x will be rejected.
FEvery proposal to modify x will likewise be rejected and so the Markov chain of
p2 will contain the identical samples.

Mathematically, composing with Dirac is the identity transformation, so p2
should be equivalent to just uniform 0 1, whose Markov chain is anything but
constant. Without taking precautions, the MH algorithm converges to the wrong
distribution for p2.

17

One may be tempted to dismiss the problem: the chain fails to mix (all
proposals are rejected) because of the single-variable update proposals. However,
more general proposals require the interface for the user to tell the system how to
make correlated multi-variable proposals. Moreover, the user has to know how to
make good a proposal, which is a non-trivial skill. Asking the end user for non-
trivial extra hints seems especially bothersome for such a simple problem. Once
we know which equational laws we have to satisfy, it is quite easy to account for
it and make the problems involving dirac go away.

Therefore, HakarulO implementation treats dirac nodes specially. They are
considered as pure computation nodes, and their value is always updated when-
ever their dependencies change. In effect, any proposal to change one random
variable is automatically extended to the proposal to change all dependent dirac
random variables, in a way that the latters’ LL stays zero. HakarulO thus employs
multi-variable correlated proposals, for all dirac variables. Therefore, HakarulO
satisfies the Dirac laws by construction.

4.4 Branching

Branching models, with if-expressions, bring in quite a bit of complexity. A
change in the branch condition effectively causes one part of the model van-
ish and a new submodel, from the other branch, to appear. Maintaining node
dependencies and correctly computing the acceptance ratio in such a dynamic
environment is non-trivial.

HakarulO avoids any modifications to the graph structure during the trace
update. It compiles both if-branches when constructing the initial graph. That
is, the model if_ test thModel elModel corresponds to the following DAG:

The entry node corresponds to the test condi-
tion. The exit node is the result node of the entire
if-statement; it holds the value of the thModel or the
elModel, depending on the value of the test-node.

Updating the nodes in the inactive branch, whose
values will be ultimately ignored, is not good for per-
formance. Therefore, we mark the nodes in the non-
current branch as inactive, and delay their updates
until they are activated. Thus each node, along with its current value, LL and
the distribution also keeps the inactivation count. (The inactivity mark is not a
simple boolean because of the nested conditionals and because the same node
may appear in several conditionals).

test-node

exit-node

5 Related Work

There are many probabilistic programming languages, with a variety of imple-
mentations [7, 16]. Closely related to HakarulO in its design is Figaro [18], which
is also an embedded DSL, in Scala. Like Hakarul0, a Figaro program produces a
trace graph, which is then repeatedly updated by the MH algorithm. Figaro does

18

not appear to use the incremental evaluation. Infer.net [15] is also an embedded
DSL, for the .NET platform, that first constructs a graph; instead of MH it relies
mostly on Expectation Propagation and its variants for inference.

The system of Scibior et al. [20] is related in its use of Haskell and MCMC.
The similarities end here, however. Scibior et al. use a monad to express models.
Therefore, the model construction is “too dynamic” and the semantic constraints
on conditioning cannot be statically enforced. On the other hand, Scibior et
al. can express cyclic models (whose semantics, however, may be difficult to
determine.) Scibior et al. implement different MCMC algorithms; none of the
implementations are incremental at present.

Although the MH algorithm is the old staple — the original MCMC algo-
rithm — it is not the only one. More advanced MCMC algorithms have been pro-
posed, and recently have been incorporated into probabilistic programming, most
prominently in Anglican [22]. It is an interesting challenge to turn these algo-
rithms incremental and implement within Hakarul0, while preserving Hakarul0’s
features such as conditioning within conditional branches.

Yang et al. [23] propose an incremental evaluation algorithm, using in effect
staging, or program generation. They analyze the initial trace and then generate
code for the efficient MH update.

Hur et al. [10], whose paper we often used for references and examples, pro-
pose the provably correct MH algorithm for the imperative, C-like probabilistic
language. It has to deal with the problem of multiple assignments to random
variables. The problem does not exist in the declarative Hakarul0, where a ran-
dom variable, as the name of a model, is immutable.

6 Conclusions and Future Work

We have presented the probabilistic programming language HakarulO embedded
as a DSL in Haskell. The language features the type system to prevent silly and
more subtle mistakes with probabilistic conditioning. We have described the
incremental MH evaluation of HakarulO programs.

The immediate future work is using the language for more, interesting models.
We should consider adding Dirichlet processes. An interesting design challenge
is the interface to let the user specify proposals, including proposals to change
several random variables in concert.

Although the minimalism of HakarulO simplifies the implementation and
checking of its correctness, it makes writing interesting models, such as those in
83, cumbersome. HakarulO may hence be viewed as an intermediate language.
Fortunately, Haskell proved quite powerful ‘macro’ language to improve conve-
nience.

Acknowledgments 1 am indebted Rob Zinkov and Chung-chieh Shan for many
helpful discussions. Comments and suggestions by anonymous reviewers are
gratefully acknowledged. The work on HakarulO was supported by DARPA grant
FA8750-14-2-0007.

19

References

1]
2]

[10]

[11]

AISTATS 2014, number 33, Cambridge, 2014. MIT Press.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A prob-
abilistic Prolog and its application in link discovery. In Manuela M. Veloso,
editor, Proceedings of the 20th International Joint Conference on Artificial
Intelligence, 6-12 January 2007.

Martin Erwig and Steve Kollmansberger. Probabilistic functional program-
ming in Haskell. Journal of Functional Programming, 16(1):21-34, January
2006.

Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational
Learning. MIT Press, Cambridge, November 2007.

Noah D. Goodman. The principles and practice of probabilistic program-
ming. In POPL ’13: Conference Record of the Annual ACM Symposium on
Principles of Programming Languages, pages 399-402, New York, January
2013. ACM Press.

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. Church: A language for generative models. In
David Allen McAllester and Petri Myllymaéki, editors, Proceedings of the
2/th Conference on Uncertainty in Artificial Intelligence, pages 220-229,
Corvallis, Oregon, 9-12 July 2008. AUAIT Press.

Noah D. Goodman and Andreas Stuhlmtiller. The design and implementa-
tion of probabilistic programming languages. http://dippl.org, 2014.
Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K.
Rajamani. Probabilistic programming. In FOSE, pages 167-181. ACM,
2014.

Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adap-
tively setting path lengths in Hamiltonian Monte Carlo. e-Print 1111.4246,
arXiv.org, 2011.

Chung-Kil Hur, Aditya Nori, Sriram Rajamani, and Selva Samuel. A prov-
ably correct sampler for probabilistic programs. In FSTTCS 2015, 2015.
Oleg Kiselyov. Problems of the lightweight implementation of probabilistic
programming. In Proc. Workshop on probabilistic programming semantics,
2016.

Oleg Kiselyov and Chung-chieh Shan. Monolingual probabilistic program-
ming using generalized coroutines. In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence, pages 285-292, Corvallis, Oregon,
19-21 June 2009. AUAI Press.

Conor McBride and Ross Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(1):1-13, January 2008.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong,
and Andrey Kolobov. BLOG: Probabilistic models with unknown objects.
In Getoor and Taskar [4], chapter 13, pages 373-398.

Tom Minka, John M. Winn, John P. Guiver, and Anitha Kannan. Infer. NET
2.2. Microsoft Research Cambridge. http://research.microsoft.com/
infernet, 2009.

20
[16]

[17]

[23]

[24]

Kevin Murphy. Software for graphical models: A review. International
Society for Bayesian Analysis Bulletin, 14(4):13-15, December 2007.
Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco, CA, 1988. Revised
2nd printing, 1998.

Avi Pfeffer. Figaro: An object-oriented probabilistic programming language.
Technical Report 137, Charles River Analytics, 2009.

Taisuke Sato. A glimpse of symbolic-statistical modeling by PRISM. Jour-
nal of Intelligent Information Systems, 31(2):161-176, October 2008.
Adam S/Cibior7 Zoubin Ghahramani, and Andrew D. Gordon. Practical
probabilistic programming with monads. In Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, pages 165-176, New York, 2015. ACM
Press.

David Wingate, Andreas Stuhlmiiller, and Noah D. Goodman. Lightweight
implementations of probabilistic programming languages via transforma-
tional compilation. In AISTATS 2011, number 15, pages 770-778, Cam-
bridge, 2011. MIT Press. Revision 3. February 8, 2014.

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new
approach to probabilistic programming inference. In AISTATS 2014 [1],
pages 1024-1032.

Lingfeng Yang, Pat Hanrahan, and Noah D. Goodman. Generating efficient
MCMC kernels from probabilistic programs. In AISTATS 2014 [1], pages
1068-1076.

Rob Zinkov and Chung-chieh Shan. Probabilistic programming language
Hakaru. vl. DARPA PPAML Report, 2014.

