
Embedded Probabilistic Programming?

Oleg Kiselyov1 and Chung-chieh Shan2

1 FNMOC oleg@pobox.com
2 Rutgers University ccshan@rutgers.edu

Abstract. Two general techniques for implementing a domain-specific
language (DSL) with less overhead are the finally-tagless embedding of
object programs and the direct-style representation of side effects. We
use these techniques to build a DSL for probabilistic programming, for
expressing countable probabilistic models and performing exact inference
and importance sampling on them. Our language is embedded as an ordi-
nary OCaml library and represents probability distributions as ordinary
OCaml programs. We use delimited continuations to reify probabilistic
programs as lazy search trees, which inference algorithms may traverse
without imposing any interpretive overhead on deterministic parts of a
model. We thus take advantage of the existing OCaml implementation
to achieve competitive performance and ease of use. Inference algorithms
can easily be embedded in probabilistic programs themselves.

1 Introduction

In many fields of science and engineering, including artificial intelligence (AI),
cryptography, economics, and biology, probabilistic (or stochastic) models are
a popular way to account for and deal with uncertainty. The uncertainty may
be inherent in the domain being modeled, induced by our imperfect knowledge
and observation of the domain, or introduced to simplify a problem that is in
principle deterministic. For example, all three kinds of uncertainty enter models
in our area of interest, natural-language dialogue: many words and phrases are
ambiguous, so interlocutors do not know exactly each other’s communicative
intentions, and it may be expedient to lump possible intentions into a finite
number of equivalence classes.

Whichever kind of uncertainty they are used to model, probabilities are real
numbers that can be regarded as weights on nondeterministic choices. A canon-
ical example of a probabilistic model is that of a lawn whose grass may be
wet because it rained, because the sprinkler was on, or for some other reason.
Mathematically speaking, we have three Boolean variables rain, sprinkler,
and grass_is_wet, and a probability distribution defined by

Pr(rain) = 0.3,
Pr(sprinkler) = 0.5,

Pr(grass_is_wet | rain = r ∧ sprinkler = s) = 1− n(0.1, r) · n(0.2, s) · 0.9.
? Thanks to Olivier Danvy, Avi Pfeffer, and the anonymous reviewers. Thanks also to

Aarhus University for hosting the second author in the fall of 2008.

We use the ‘noisy not’ function n above to express possibilities such as a light
rain that dries immediately and a sprinkler with low water pressure:

n(p, true) = p, n(p, false) = 1.

By the definition of conditional probability (Pr(A|B) = Pr(A ∧ B)/Pr(B)),
the product of these distributions is the joint distribution of all three variables.
Unlike this simple example, many probabilistic models in production use contain
deterministic parts (laws of motion, for example) alongside random parts [14, 32].

Given a probability distribution such as the lawn model just defined, we
want to perform inference, which means to compute the probability distribution
(called a marginal distribution) over some random variables in the model that
we care about. For example, we might want to compute Pr(grass_is_wet). We
might also want to sample from the distribution, which means to generate a
possible assignment of values to random variables such that each assignment’s
probability of being generated is equal to its probability in the model. Sampling
from a distribution is a popular way to conduct approximate inference: we can
approximate Pr(grass_is_wet) by sampling the random variable grass_is_wet
many times and calculating the proportion of times that it comes out true.

We often want to perform inference or sampling not on our probabilistic
model as is but conditional on some observed evidence. For example, having ob-
served that the grass is wet, we may want to compute Pr(rain | grass_is_wet),
either exactly or approximately. Such inference lets us explain observed evidence
and learn from them, especially if, as Bayesians, we treat probabilities themselves
(such as Pr(rain)) as random variables [37].

1.1 Languages for probabilistic models

Like many AI researchers, we aim to represent probability distributions so that
humans can develop and understand them easily and computers can perform
inference and sampling on them efficiently. In other words, we aim to build
a domain-specific language for probability distributions. Many such languages
have been described in the literature [18, 36]. They are instances of declarative
programming, in that they separate the description of models from the compu-
tations on them.

A fundamental and popular way to represent a probability distribution is as a
graphical model (specifically a Bayes net), a directed acyclic graph whose nodes
represent random variables and edges indicate (typically causal) dependencies.

rain sprinkler

grass_is_wet

Each node X is annotated with the conditional probability distribution of its
value given the values of its parents ~Y . The notion of dependencies is such that
Pr(X|~Z) = Pr(X|~Y) if Z is a superset of Y ; informally, each node depends
directly on its parents only.

Humans find graphical models intuitive because they describe sampling pro-
cedures: to pick a value for a node X, first pick values for its parents ~Y , then
refer to the conditional probability distribution Pr(X|~Y) for the node X. The
dependency structure that graphical models express also gives rise to efficient
inference algorithms. However, as graphical models scale up to real problems in-
volving thousands or more of random variables and dependencies, they become
unwieldy in the raw.

It helps to embed [25, 31] a language of probability distributions in a host
language such as MATLAB [35] or Haskell [8]. The embedded language is more
commonly called a toolkit for probabilistic reasoning, because it is structured as a
library of data types of graphical models and random variables along with infer-
ence procedures that operate on them. Similarly, distributions can be represented
and reasoned about in a logic using formulas that talk about probabilities [22].
In the embedded setting, graphical models can be constructed using programs
written in the host language, so repeated patterns (such as random variables
that recur for each time step) can be factored out and represented compactly.
However, a toolkit defines its own data types; for example, random integers are
distinct from regular integers and cannot be added using the addition operation
of the host language. This linguistic mismatch typically degrades the efficiency,
concision, and maintainability of deterministic parts of a model. In particular,
it is difficult to include the toolkit itself in a model, as is useful for agents to
reason about each other.

The notational overhead caused by linguistic mismatch can be eliminated by
building a standalone language for probability distributions. Such a language
typically adds constructs for probabilistic choice and evidence observation to
a general-purpose language, be it of a functional [20, 30, 38, 40, 42], logical
[2, 7, 28, 34, 41, 43], or relational [16, 17, 32, 45, 46] flavor. For example, the
conditional distribution Pr(rain | grass_is_wet) can be expressed as follows
for inference in IBAL [38].

rain = dist [0.3 : true, 0.7 : false]
sprinkler = dist [0.5 : true, 0.5 : false]
grass_is_wet = dist [0.9 : true, 0.1 : false] & rain

| dist [0.8 : true, 0.2 : false] & sprinkler
| dist [0.1 : true, 0.9 : false]

observe grass_is_wet in rain

The construct dist expresses probabilistic choice, and the construct observe
expresses evidence observation (here, that grass_is_wet is true). Because the
entire language is probabilistic, the same operation can be used to, for example,
add random integers as to add regular integers. It is easy to express deterministic
parts of a model, simply by not using probabilistic constructs in part of the
code. These notational conveniences make programs in a standalone probabilistic
language easier for domain experts to develop and understand.

The main drawback of a standalone probabilistic language is that it cannot
rely on the infrastructure of an existing host language. To start with, the vast
majority of standalone probabilistic languages are implemented as interpreters

rather than compilers (with the notable exceptions of AutoBayes [13] and HBC
[5]). In contrast, an embedded probabilistic language can piggyback on its host
language’s compilers to remove some interpretive overhead. We are also not
aware of any probabilistic language implemented in itself, so again the language
cannot be included in a model for multi-agent reasoning. In general, a standalone
language takes more effort to implement than an embedded one, if only due to the
need to implement ‘boring bits’ such as string processing, I/O, timing facilities,
and database interfaces. A foreign function interface to a mainstream language
can help fill the void of libraries, but glue code imposes its own overhead.

1.2 Our approach: a very shallow embedding

We combine the advantages of embedded and standalone probabilistic languages
by embedding a language of probabilistic distributions into a general-purpose
language in a very shallow way. That is, probabilistic functions are embedded as
host-language functions, calls to them are embedded as host function calls, and
random integers can be added using the addition operation of the host language.
This approach lets us take advantage of the existing infrastructure of the host
language while also reducing notational and interpretive overhead.

For example, the conditional distribution Pr(rain | grass_is_wet) can be
expressed as the following host-language program. We use the host language’s
abstraction facility to factor out the notion of a coin flip that yields true with
probability p.

let flip p = dist [(p, true); (1.-.p, false)]

let grass_model () =
let rain = flip 0.3 and sprinkler = flip 0.5 in
let grass_is_wet = flip 0.9 && rain

|| flip 0.8 && sprinkler
|| flip 0.1 in

if grass_is_wet then rain else fail ()

Our host language is OCaml: the code above is just an OCaml program that de-
fines two ordinary functions flip (of type float -> bool) and grass_model (of
type unit -> bool). The definition of grass_model binds the ordinary Boolean
variables rain, sprinkler, and grass_is_wet using the functions dist (for
making a probabilistic choice) and fail (for observing impossible evidence).
These functions are provided by a library we built without modifying or dupli-
cating the implementation of OCaml itself.3 Accordingly, we can express proba-
bilistic models using OCaml’s built-in operations (such as &&), control constructs
(such as if), data structures, module language, and wealth of libraries, including
our implementations of probabilistic inference, which are useful for multi-agent
reasoning. We can use OCaml’s type system to discover mistakes earlier, and
OCaml’s bytecode compiler to perform inference faster.
3 In contrast, IBAL happens to be written in OCaml, but it cannot perform inference

on OCaml programs such as this one or itself.

On one hand, because our approach represents probability distributions as
ordinary programs, it is easier for programmers to learn, especially those already
familiar with the host language. On the other hand, there is some linguistic
mismatch between evaluating a probability distribution and evaluating a call-
by-value program, so some thunks are necessary. These occurrences of ‘fun () ->’
in the code are only slightly bothersome, and we could easily write a Camlp4
preprocessor to eliminate them. They would be unnecessary if we were to express
distributions in Haskell rather than OCaml, as monadic computations.

To continue the example above briefly, we can use two other library functions
reify and normalize to evaluate the model at OCaml’s top-level prompt ‘#’:

normalize (reify None grass_model);;
reify: done; 14 accepted 9 rejected 0 left
bool pV = PV [(0.468471442720369724, V true);

(0.53152855727963022, V false)]

Whereas dist takes a list of weighted possibilities as input and makes a random
choice, reify takes a probabilistic program (a thunk) as input and computes
its list of weighted possibilities (return values). The normalize function then
rescales the weights to sum up to 1. The result above says that the conditional
probability that it rained, given that the grass is wet, is 47%. If we do not like this
result, we can define and evaluate a different model interactively. Alternatively,
we can compile the model by placing the code above for grass_model in a file
along with the following driver.

let PV choices = normalize (reify None grass_model) in
let [(p, _)] = List.filter (function (_,V x) -> x) choices in
Printf.printf "The probability it rained is %g" p

1.3 Contributions

This paper describes our design of a practical DSL for probabilistic program-
ming. We achieve a very shallow embedding of the language, by a novel com-
bination of two existing techniques for eliminating notational and interpretive
overhead in embedded languages.

1. The direct-style representation of side effects [11, 12] using delimited control
operators [4, 10] lets us reify a probabilistic program as a weighted search
tree without the run-time overhead of stepping through deterministic code.

2. The finally-tagless embedding of object programs [1] using combinator func-
tions [33, 47] allows multiple inference algorithms to operate on the same
model without the run-time overhead of tagging values with their types.

We apply these general techniques to probabilistic programming and demon-
strate how they make embedded DSL programs faster to run and easier to write.
We then show how to implement interpreters for our language that perform exact
and approximate inference efficiently. More specifically:

1. We implement variable elimination [6], an existing algorithm for exact in-
ference.

2. We develop importance sampling [15, 44] with look-ahead, a new, general
algorithm for approximate inference.

3. We support lazy evaluation in probabilistic programs.
4. Users of our library are free to implement their own inference algorithms.

Our implementation, with many examples, benchmarks, and tests, is available
online at http://okmij.org/ftp/kakuritu/README.dr. It is only a few hun-
dred lines long, yet its speed and accuracy on available benchmarks [27] are com-
petitive with other, state-of-the-art implementations of probabilistic languages
such as IBAL [39]. Our work thus establishes that these general techniques for
very shallow embeddings are effective in the case of probabilistic programming
and compatible with inference algorithms as advanced as importance sampling.
The latter compatibility is surprising because a very shallow embedding prevents
inference procedures from inspecting the source code of probabilistic programs.

Having reviewed related work above, we structure the rest of this paper as
follows. Section 2 develops our very shallow embedding of a probabilistic DSL
in OCaml in several steps. We begin with a finally tagless embedding, which
is statically typed without tagging overhead, but whose straightforward imple-
mentation is verbose to use and does not run deterministic code at full speed.
Following Filinski’s [11] representation of monads, we address these shortcomings
by converting to CPS and then to direct style.

The remainder of the paper shows how to implement efficient inference al-
gorithms by reifying a stochastic computation as a lazy search tree. Section 3
describes the use of reification for exact inference and for stepping through a
stochastic model. Section 4 describes our algorithm for importance sampling
with look-ahead. Section 5 introduces lazy evaluation in the embedded program.
Finally, we describe our performance testing and conclude.

2 Embedding stochastic programs

In this section, we develop our very shallow embedding of a probabilistic DSL in
OCaml in three steps. First, in §2.1, we define the probabilistic DSL in tagless
final form: as a signature that lists the operations and their types. Second, in
§2.2, we describe a basic implementation of the signature, using the probabilistic
monad realized as a lazy search tree. The third step is to eliminate the notational
overhead of writing deterministic code and the interpretive overhead of running
it. In §2.3, we show how to implement the same signature in continuation-passing
style (CPS). We then introduce the delimited control operators shift and reset
in §2.4, so as to present the ultimate embedding of our language in §2.5.

2.1 Tagless final probabilistic language

To begin, we define the language, that is, introduce its operations and their
types. We define the syntax of the language as the following OCaml signature

ProbSig, so that each implementation of the language is a module that matches
the signature [1]. The implementations below make the language call-by-value.

type prob = float

module type ProbSig = sig
type ’a pm
type (’a,’b) arr

val b : bool -> bool pm
val dist : (prob * ’a) list -> ’a pm
val neg : bool pm -> bool pm
val con : bool pm -> bool pm -> bool pm
val dis : bool pm -> bool pm -> bool pm
val if_ ; bool pm -> (unit -> ’a pm) -> (unit -> ’a pm) -> ’a pm
val lam : (’a pm -> ’b pm) -> (’a,’b) arr pm
val app : (’a,’b) arr pm -> (’a pm -> ’b pm)

end

Our ultimate embedding in §2.5 is very shallow in the sense that it identifies our
probabilistic DSL with the host language OCaml. For exposition, however, we
start with Erwig and Kollmansberger’s toolkit approach [8] and keep the DSL
distinct from OCaml.

For simplicity, the signature ProbSig includes only the base type of booleans
and the operations necessary for the lawn example. Following the tagless-final
approach [1], a boolean expression in the DSL, which denotes a distribution over
booleans, is represented as an OCaml expression of the type bool pm. Here pm
is an abstract type constructor, whose name is short for ‘probability monad’
[8, 19, 42]. Different implementations of ProbSig define pm in their own ways,
giving rise to different interpreters of the same DSL. As an example, the ‘true’
literal in the DSL is represented in OCaml as b true, of the abstract type
bool pm. The expression denotes the distribution over ‘true’ with probability 1.

Besides booleans, our language has functions. A function expression in the
DSL, say of type bool->bool, is represented as an OCaml expression of the type
(bool,bool) arr pm. Here arr is a binary type constructor, again abstract. We
use higher-order abstract syntax to represent binding. For example, we represent
the curried binary function on booleans λx. λy. x∧¬y in the DSL as the OCaml
expression lam (fun x -> lam (fun y -> con x (neg y))), whose inferred
type is (bool, (bool,bool) arr) arr pm. To apply this function to the literal
‘false’, we write app (lam (fun x -> ...)) (b false).

This DSL is probabilistic only due to the presence of the dist construct,
which takes a list of values and their probabilities. The dist expression then
denotes a stochastic computation with the given discrete distribution.

A probabilistic program is a functor that takes a ProbSig module as argu-
ment. For example, we can write the lawn example as follows:

module Lawn(S: ProbSig) = struct
open S

let flip p = dist [(p, true); (1.-.p, false)]

let let_ e f = app (lam f) e

let grass_model () =
let_ (flip 0.3) (fun rain ->
let_ (flip 0.5) (fun sprinkler ->
let_ (dis (con (flip 0.9) rain)

(dis (con (flip 0.8) sprinkler)
(flip 0.1))) (fun grass_is_wet ->

if_ grass_is_wet (fun () -> rain) (fun () -> dist []))))
end

For convenience, we introduce the let_ ‘operator’ above.
This example shows a significant notational overhead. For example, boolean

stochastic variables have the type bool pm rather than just bool, so we cannot
pass a random boolean to OCaml functions accepting ordinary booleans, and we
need to use con rather than the built-in conjunction operator &&. Also, we cannot
use OCaml’s let and have to emulate it by let_. The notational overhead is as
severe as if our embedded DSL were just a toolkit. By the end of the section, we
shall eliminate most of the overhead except a few stray fun () ->.

Despite its verbosity, our embedding already takes advantage of the type
system of the host language: our DSL is typed, and we do not need our own
type checker—the OCaml type checker infers the types of stochastic expressions
just as it does for all other expressions. For example, the expression app (b
true) (b false) is flagged as a type error because bool is not an arrow type.

2.2 Search-tree monad

The first implementation of our language uses the probability monad that rep-
resents a stochastic computation as a lazy search tree. That is, our first ProbSig
module instantiates pm by the type constructor pV defined below.

type ’a vc = V of ’a | C of (unit -> ’a pV)
and ’a pV = (prob * ’a vc) list

Each node in a tree is a weighted list of branches. The empty list denotes
failure, and a singleton list [(p, V v)] denotes a deterministic successful out-
come v with the probability mass p. A branch of the form V v is a leaf node that
describes a possible successful outcome, whereas a branch of the form C thunk
is not yet explored.

The intended meaning of a search tree of type ’a pV is a discrete probability
distribution over values of type ’a. Of course, several distinct trees may represent
the same distribution; for example, the following trees all represent the same
distribution.

[(0.6, V true); (0.4, V false)]

[(0.4, V true); (0.4, V false); (0.2, V true)]

[(0.4, V true); (1.0, C (fun () ->
[(0.4, V false); (0.2, V true)]))]

[(0.4, V true); (0.8, C (fun () ->
[(0.5, V false); (0.25, V true)]))]

[(0.4, V true); (0.8, C (fun () ->
[(0.5, V false); (0.25, V true);
(0.25, C (fun () -> []))]))]

The first tree is just a probability table; it is the smallest, consisting only of
a root node. We call such trees flat or fully explored, because they represent a
distribution that has been evaluated or inferred completely. The last three trees
contain unexplored branches, signified by the C variant. In particular, the last
example includes a failure node [], which becomes manifest when the branch
C (fun () -> []) is explored.

We consider trees that represent the same distribution equivalent. Con-
structively, we introduce the following normalization, or, exploration procedure
for search trees. The procedure traverses the tree depth-first, forces thunks of
branches not yet explored to reveal their content, and accumulates all found val-
ues along with their weights in the probability table. While exploring a branch
(p, C t), we scale the probabilities of the found values by the factor p. The
resulting probability table is returned as a flat search tree. The procedure uses a
map PMap from values to probabilities to collate the values encountered during
exploration. The procedure below is more general in that it explores the tree up
to the depth specified by the first argument; giving the value None as the first
argument requests complete normalization. Applying explore None to all these
trees returns the same result, so they are all equivalent.

let explore (maxdepth : int option) (choices : ’a pV) : ’a pV =
let rec loop p depth down choices ((ans,susp) as answers) =
match choices with
| [] -> answers
| (pt, V v)::rest ->

loop p depth down rest
(PMap.insert_with (+.) v (pt *. p) ans, susp)

| (pt, C t)::rest when down ->
let down’ =
match maxdepth with Some x -> depth < x | None -> true

in loop p depth down rest
(loop (pt *. p) (depth + 1) down’ (t ()) answers)

| (pt, c)::rest ->
loop p depth down rest (ans, (pt *. p,c)::susp) in

let (ans,susp) = loop 1.0 0 true choices (PMap.empty,[])
in PMap.foldi (fun v p a -> (p, V v)::a) ans susp

The last two lines prepend the collated values to the list of unexplored branches.
The type constructor pV, equipped with the operations pv_unit and pv_bind

below, forms a monad [48]:

let pv_unit (x : ’a) : ’a pV = [(1.0, V x)]
let rec pv_bind (m : ’a pV) (f : ’a -> ’b pV) : ’b pV =
List.map (function

| (p, V x) -> (p, C (fun () -> f x))
| (p, C t) -> (p, C (fun () -> pv_bind (t ()) f)))
m

Monad laws are satisfied only modulo tree equivalence. For example, for
values x of type ’a and f of type ’a -> ’b pV, the tree resulting from OCaml
evaluating pv_bind (pv_unit x) f is equivalent but not identical to the result
of f x. More precisely, if the trees are finite, then exploring them fully (by
applying explore None) yields identical results. For infinite trees, which too
can be represented by the type ’a pV, characterizing equivalence is trickier [49].

We use this search-tree monad to define the SearchTree module below, our
first implementation of the ProbSig signature.

module SearchTree = struct
type ’a pm = ’a pV
type (’a,’b) arr = ’a -> ’b pV

let b = pv_unit
let dist ch = List.map (fun (p,v) -> (p, V v)) ch
let neg e = pv_bind e (fun x -> pv_unit (not x))
let con e1 e2 = pv_bind e1 (fun v1 ->

if v1 then e2 else (pv_unit false))
let dis e1 e2 = pv_bind e1 (fun v1 ->

if v1 then (pv_unit true) else e2)
let if_ et e1 e2 = pv_bind et (fun t ->

if t then e1 () else e2 ())
let lam e = pv_unit (fun x -> e (pv_unit x))
let app e1 e2 = pv_bind e1 (pv_bind e2)

end

This implementation is the standard monadic embedding of a call-by-value lan-
guage. For example, neg is the straightforward ‘lifting’ of boolean negation so to
accept and produce values of the monadic type bool pV. The implementation
of con shows short-cut evaluation: if the first argument evaluates to false, we
produce the result ‘false’ without evaluating the second argument. The imple-
mentations of dis and if_ follow a similar pattern. The only interesting part is
the implementation of dist, which merely converts its argument (specifying the
distribution) to a flat search tree. We can use this implementation to run the
lawn example, by instantiating the Lawn functor with the module SearchTree:

module SST = Lawn(SearchTree)

The resulting module SST contains a field grass_model, of the inferred type
bool SearchTree.pm, or bool pV:

let sst1 = SST.grass_model ()
↪→ val sst1 : bool SearchTree.pm = [(1., C <fun>)]

That tree is obviously unexplored. Exploring it to depths 3, 9, and 11 gives

let sste3 = explore (Some 3) sst1
↪→ [(0.15, C <fun>); (0.15, C <fun>);

(0.35, C <fun>); (0.35, C <fun>)]

let sste9 = explore (Some 9) sst1
↪→ [(0.27, V true); (0.012, C <fun>);

(0.0003, C <fun>); (0.0027, C <fun>);
(0.0012, C <fun>); (0.0108, C <fun>); ...]

let sste11 = explore (Some 11) sst1
↪→ [(0.2838, V true); (0.322, V false)]

Only when we explore the tree to depth 11 do we finally obtain the exact distri-
bution denoted by the lawn model: an unnormalized distribution of rain. After
normalization, it becomes what we have seen in §1.2.

The depth of this search tree reveals the run-time overhead imposed by this
implementation. Because booleans and functions in our DSL do not share the
types of ordinary booleans and functions in OCaml, we cannot invoke a stochastic
function as an ordinary function, and we cannot pass stochastic booleans to
OCaml boolean functions. We cannot even use OCaml’s boolean constants true
and false as they are; rather, we have to lift them to b true and b false,
search trees of type bool pV. Computing with such lifted values is not only
more verbose but also less efficient: in the SearchTree module, all operations
on trees involve pv_bind, which always increases the depth of the tree by one.

This example thus illustrates that the notational overhead in our represen-
tation of stochastic programs corresponds to an interpretive overhead in the
search-tree implementation. When a sequence of deterministic operations is ap-
plied to a stochastic expression, as in neg (neg rain), each step incurs its own
overhead of pv_bind and pv_unit traversing and constructing lists and variant
data structures. We next obviate the pattern matching performed by pv_bind.

2.3 Embedding in continuation-passing style

We eliminate the run-time and notational overhead in this and the next two
sections.

We still use search trees to represent stochastic expressions, but we no longer
implement the stochastic language using the operations pv_unit and pv_bind
in the search-tree monad. We use the continuation monad instead: we represent
a stochastic expression of type ’a not as a tree of type ’a pV but in CPS,
as a function from the continuation type ’a -> bool pV to the answer type
bool pV. This move is same as Hughes’s [26] and Hinze’s [24] move from term
implementations to context-passing implementations to reduce pattern-matching
and improve efficiency. For this section, it is enough to fix the answer type at
bool pV rather than make it ’w pV for some generic ’w.

Our new implementation of ProbSig is as follows. Most of this code is trivial;
for example, the implementation of app is the standard CPS transform of call-
by-value application.

module CPS = struct
type ’a pm = (’a -> bool pV) -> bool pV
type (’a,’b) arr = ’a -> (’b -> bool pV) -> bool pV

let b x = fun k -> k x
let dist ch = fun k ->

List.map (function (p,v) -> (p, C (fun () -> k v))) ch
let neg e = fun k -> e (fun v -> k (not v))
let con e1 e2 = fun k -> e1 (fun v1 ->

if v1 then e2 k else b false k)
let dis e1 e2 = fun k -> e1 (fun v1 ->

if v1 then (b true k) else e2 k)
let if_ et e1 e2 = fun k -> et (fun t ->

if t then e1 () k else e2 () k)
let lam e = fun k -> k (fun x -> e (fun k -> k x))
let app e1 e2 = fun k -> e1 (fun f -> e2 (fun x -> f x k))

let reify0 m = m pv_unit
end

The most interesting case is again dist: the expression dist ch (where ch is
a list of choices) accepts a continuation k as usual but does not return the
result of invoking k. Rather, dist ch expresses nondeterminism by immediately
returning the search tree resulting from feeding each choice in ch to k. That
is, dist ch k builds a collection of branches, each of which, upon exploration,
returns the result of the rest of the computation using a particular choice in ch.
This definition of dist is the same as applying pv_bind to the previous definition
SearchTree.dist.

We can run our lawn example using this new implementation of ProbSig.
We pass the module CPS to the Lawn functor.

module SCP = Lawn(CPS)

The resulting module SCP contains a field grass_model with the type unit ->
(bool -> bool pV) -> bool pV. Forcing this thunk gives not a tree anymore
but a higher-order function accepting continuations of type bool -> bool pV.
In other words, grass_model () is a CPS computation. To convert this result
to a search tree so that we can compute the distribution, we have to reify it by
feeding it the initial continuation pv_unit. We do so by applying reify0.

let scp1 = CPS.reify0 (SCP.grass_model ())
↪→ [(0.3, C <fun>); (0.7, C <fun>)]

The result scp1 is indeed a search tree. It still has a few unexplored branches;
exploring the resulting tree to the depths 1 and 4 gives

let scpe1 = explore (Some 1) scp1
↪→ [(0.135, C <fun>); (0.015, C <fun>); (0.135, C <fun>);

(0.015, C <fun>); (0.315, C <fun>); (0.035, C <fun>);
(0.315, C <fun>); (0.035, C <fun>)]

let scpe4 = explore (Some 4) scp1
↪→ [(0.2838, V true); (0.322, V false)]

Exploring this tree to depth 4 already flattens it, so it is not nearly as deep as
the tree sst1 computed in §2.2. This comparison hints that we have removed
some overhead in the SearchTree implementation of the language.

We can see why the new implementation of ProbSig incurs less overhead
by considering the example neg (neg rain) above. Although we still cannot
negate the random boolean rain directly using OCaml’s built-in not, at least
the definition of neg no longer uses pv_unit and pv_bind, so the inner call to
neg no longer builds a tree only to be traversed and discarded right away by
the outer call. Rather, each boolean is passed to the rest of the computation
as is, without building any tree until reify0 constructs a leaf node or dist
constructs a choice node. This CPS implementation is thus more efficient than
the search-tree implementation, yet equivalent according to the monad laws.

Some overhead remains. Stochastic boolean values remain distinct from ordi-
nary boolean values, so we still have to write b true to use even a boolean con-
stant in the language, and applying b at run time is not free. The per-application
overhead, albeit reduced, is still present due to the need to explicitly invoke con-
tinuations. We next eliminate all this overhead, mechanically.

2.4 Delimited control

To eliminate the notational and run-time overhead of the embedding of our
stochastic DSL, we will use delimited control operators shift and reset. This
section briefly introduces these operators.

The implementation of CPS.dist in §2.3 pointed out that a stochastic ex-
pression may be regarded as one that can return multiple times, like a fork
expression in C. If fork were available in OCaml, we would use it to implement
dist. Ordinary OCaml functions, which execute deterministically in a single
‘thread’, could then be used as they are within a stochastic computation.

The library of delimited continuations for OCaml [29] does provide the ana-
logue of fork. To be more precise, the library provides two functions reset and
shift [3, 4].4 The function reset, of type (unit -> ’a) -> ’a, is analogous
to try in OCaml. It takes a thunk, evaluates it, and returns its value—unless a
control effect occurs during the evaluation. Thus, reset (fun () -> 41 + 2)
returns 43. Control effects are raised by the function shift, which generalizes
raising an exception. In particular, reset (fun () -> 41 + shift (fun k ->
2)) returns the value 2: one may regard shift (fun k -> 2) to throw the
integer 2 as an exception, caught by the closest dynamically enclosing reset.

In the example reset (fun () -> 41 + shift (fun k -> 2)), shift is
applied in the context of the addition to 41 enclosed in reset. That context can
4 The library actually implements so-called multi-prompt delimited continuations,

similar to cupto [21]. We embed stochastic computations using only a single prompt,
which we store in a global variable and elide for clarity. The accompanying source
file probM.ml shows the actual implementation.

be represented as a function fun x -> reset (fun () -> 41 + x). Informally,
the application of shift is replaced by x bound outside of reset. Therefore,
reset (fun () -> 41 + shift (fun k -> 2)) evaluates as

reset (fun () -> (fun k -> 2)
(fun x -> reset (fun () -> 41 + x)))

and the result is 2, as we saw. The following examples proceed likewise.

reset (fun () -> 41 + shift (fun k -> k 2))
↪→ reset (fun () -> (fun k -> k 2)

(fun x -> reset (fun () -> 41 + x)))
↪→ reset (fun () -> reset (fun () -> 41 + 2))
↪→ 43

and

reset (fun () -> 41 + shift (fun k -> k (k 2)))
↪→ reset (fun () -> (fun k -> k (k 2))

(fun x -> reset (fun () -> 41 + x)))
↪→ reset (fun () -> (fun x -> reset (fun () -> 41 + x))

(reset (fun () -> 41 + 2)))
↪→ 84

The last example shows that the context of shift, captured as a function, can be
applied more than once. In other words, the shift expression can return more
than once. In this regard, shift behaves like fork, splitting the computation
into two threads and returning different values in them. That is exactly the
behavior we need to implement dist with no overhead on deterministic code.

2.5 Direct embedding of the probabilistic DSL

We can finally implement our embedded DSL without overhead on determinis-
tic code. Following Filinski [11], we do so by mechanically converting the CPS
implementation to direct style.

module Direct = struct
type ’a pm = ’a
type (’a,’b) arr = ’a -> ’b

let b x = x
let dist ch = shift (fun k ->
List.map (function (p,v) -> (p, C (fun () -> k v))) ch)

let neg e = not e
let con e1 e2 = e1 && e2
let dis e1 e2 = e1 || e2
let if_ et e1 e2 = if et then e1 () else e2 ()
let lam e = e
let app e1 e2 = e1 e2

let reify0 m = reset (fun () -> pv_unit (m ()))
end

The transformation is straightforward, especially for expressions that use their
continuations normally. The transformation makes the continuation argument k
in the CPS implementation implicit, and so neg becomes just not. For the same
reason, app, lam, and b become the identity function. The only interesting cases
are dist and reify0. As explained in §2.3, the definition of CPS.dist is special:
CPS.dist ch does not return the result of applying a continuation, but rather
produces a search tree directly. The implementation of dist above expresses
exactly the same operation in direct style, but the continuation argument k is
implicit, so we access it using the control operator shift. Similarly, whereas
CPS.reify0 supplies the initial continuation pv_unit as an explicit argument,
the implementation of reify0 above uses reset to supply it implicitly.

We can run the lawn example as before, passing the Direct implementation
to the functor Lawn. We obtain the same result as in §2.3:

module SDI = Lawn(Direct)
let sdi1 = Direct.reify0 (SDI.grass_model)
↪→ [(0.3, C <fun>); (0.7, C <fun>)]

let sdie4 = explore (Some 4) sdi1
↪→ [(0.2838, V true); (0.322, V false)]

The type of a stochastic computation that returns results of type ’a is ’a pm,
which in the Direct implementation is just ’a. Thus, a random boolean is just an
ordinary boolean, which can be passed to ordinary boolean functions such as not.
We can apply all ordinary OCaml functions, even compiled third-party libraries,
to a stochastic value without lifting or changing them at all. Furthermore, since
our direct embedding no longer distinguishes stochastic expressions from other
(effectful) expressions in OCaml, we can dispense with the ProbSig structure.
We can program probabilistic models directly in OCaml, using all of its facilities
including let and let rec forms. The notational overhead has vanished (save
a few stray thunks). This is how we wrote the lawn example in §1.2, directly in
OCaml. The function reify mentioned there is the composition of explore and
reify0. Applying reify None to the model performs exact inference, presenting
the distribution of the model as a flat search tree.

One may remark that the thunk in the definition of reify0 represents a
certain overhead. Indeed, the result of an expression, even if it is completely de-
terministic, is represented as a search tree, and this boxing is overhead. However,
this overhead is incurred each time a complete probabilistic model is reified, not
each time the model performs a deterministic operation. Unlike earlier imple-
mentations, we can apply deterministic functions to stochastic values with no
overhead. We pay the price of embedding stochastic computations only when
calling the two stochastic operators dist and reify0. The deterministic parts
of a stochastic program run at full speed, as if no randomness were present and
no inference were in progress. We have achieved our goal to eliminate run-time
and notational overhead for deterministic parts of probabilistic models.

3 Accelerating inference using reification and reflection

We have seen that exact inference can be performed on a stochastic expression
by reifying it into a lazy search tree (using reify0) then fully exploring the tree
(using explore None). In this section, we show that reify0 and explore are
useful not only for producing the final inference result; these functions can help
achieve the result faster. In other words, these functions let users of our library
write optimized inference procedures. In particular, we implement the optimized
exact-inference procedure known as variable elimination [6].

Throughout the rest of this paper, we use the very shallow embedding de-
scribed in §2.5. We first introduce a function that generalizes dist there:

let reflect (choices : ’a pV) : ’a =
let rec make_choices k pv =
List.map (function

| (p, V x) -> (p, fun () -> k x)
| (p, C x) -> (p, fun () -> make_choices k (x ())))
pv

in shift (fun k -> make_choices k choices)

Whereas dist takes as argument a weighted list of possibilities, reflect receives
weighted possibilities in the form of a search tree. The only difference between
a list and a tree is that a tree may not be flat and may even contain unexplored
branches—hence the additional case alternative (p, C x) -> ... above. Both
dist and reflect express a random choice according to their argument.

We find reflect useful because it is an inverse of reify0, in the following
sense. The type of reflect is ’a pV -> ’a, and the type of reify0 is (unit -> ’a)
-> ’a pV. Informally, reflect turns a search tree into a stochastic expression,
whereas reify0 turns a stochastic expression (encapsulated in a thunk) into a
search tree. For example, our lawn model in §1.2 defines a thunk grass_model
of type unit -> bool; the stochastic expression grass_model () produces a
random boolean. If we pass grass_model to the function reify0, we obtain

let gm_tree = reify0 grass_model
↪→ val gm_tree : bool pV = [(0.3, C <fun>); (0.7, C <fun>)]

The result gm_tree reifies the stochastic expression grass_model () in the form
of a tree. We can explore gm_tree to get a shallower search tree describing the
same distribution:

let gm_tree1 = explore (Some 4) gm_tree
↪→ val gm_tree1 : bool pV = [(0.2838, V true); (0.322, V false)]

Applying the function reflect to the trees gm_tree and gm_tree1 produces two
stochastic expressions that express the same distribution as grass_model (),
the stochastic expression we started with. Using reify0, we can turn these
stochastic expressions into equivalent search trees.

These observations on reify0 and reflect hold in general: for each search
tree pv and stochastic expression e,

reify0 (fun () -> reflect pv) ≡ pv
reflect (reify0 (fun () -> e)) ∼ e

where ≡ means that two search trees are equivalent and ∼ means that two
stochastic expressions are equivalent in that they express the same distribution.
Thus, reify0 and reflect form a reification-reflection pair [11].

As we just observed, any terminating stochastic expression is equivalent to
reifying it then reflecting the resulting search tree. In this sense, reification-
reflection is a sound program transformation, preserving program equivalence.
It turns out that inference on the transformed program often takes less time
and space. For example, if e is the expression dist [(0.5, e1); (0.5, e2)]
where e1 and e2 are complex deterministic expressions, then reifying e gives
the search tree [(0.5, V v1); (0.5, V v2)] where v1 and v2 are the results
of e1 and e2. Therefore, reflecting the search tree gives a stochastic expres-
sion that, albeit equivalent to e, can be evaluated faster because e1 and e2 no
longer need to be evaluated. Reification followed by reflection can thus speed up
inference—especially if the result of reification is (partially) flattened before re-
flection, because flattening reduces the tree by removing shallow failures and col-
lating repeated values. For example, reflect gm_tree1 uses the result of exact
inference on the lawn model, so it runs faster than the original grass_model ().

This optimization of reification followed by (partial) flattening and reflection
gives rise to the inference technique known as variable elimination [6]. Its benefit
is demonstrated by the following example, computing the XOR of n coin tosses.

let flips_xor n () =
let rec loop n =
if n = 1 then flip 0.5

else flip 0.5 <> loop (n-1)
in loop n

The search tree for flips_xor 10 is a full binary tree of depth 10. The explo-
ration of this tree for exact inference has to enumerate all of its 1024 leaves.
Many parts of the computation are shared: each flip 0.5 forks the search tree
into two branches that make the same recursive call loop (n-1). Variable elim-
ination is thus much more efficient than brute-force exact inference:

let flips_xor’ n () =
let rec loop n =
if n = 1 then flip 0.5

else let r = reflect (explore None
(reify0 (fun () -> loop (n-1))))

in flip 0.5 <> r
in loop n

Exact inference now explores 9 trees of depth 2, or a total of 9×4+2 = 38 leaves.
As is usual of dynamic programming, the optimization turns an exponential-time
algorithm into a linear-time one, by sharing the computation for loop (n-1)
across the two possible results of flip 0.5 in loop n.

More generally, whenever we have a stochastic function f, we can replace it
by the stochastic function

let bucket = memo (fun x -> explore None (reify0 (fun () -> f x)))
in fun x -> reflect (bucket x)

where memo memoizes a function. This latter stochastic function can then be in-
voked multiple times in different branches of the search tree, without repeatedly
applying f to the same argument. This technique lets us handle benchmarks in
Jaeger et al.’s collection [27] in at most a few seconds each. The memo table is
also called a bucket, so variable elimination is also called bucket elimination [6].
It is similar to the nested-loop optimization of database join queries.

4 Importance sampling with look-ahead

Because we can reify a probabilistic program as a lazy search tree, we (like any
other user of our library) can implement inference algorithms as operations that
explore the tree without slowing down the deterministic parts of the model. We
have described exact inference algorithms (brute-force enumeration and variable
elimination) above. In this section we implement approximate inference.

Recall that reifying a stochastic computation yields a lazy search tree, a data
structure of the type ’a pV. Exact inference traverses the whole tree. For many
probabilistic models in the real world, however, the tree is too large to traverse
completely, even infinite. Instead, we can sample from the distribution expressed
by the probabilistic program, by tracing a path down the tree to a leaf. Whenever
we arrive at a choice node, we select a branch at random, according to its weight.
By repeating this process many times and computing the frequencies of those
sampled values that are not failures, we can approximate the distribution.

This naive, or rejection, sampling method accurately approximates the prob-
abilities of likely values. However, it poorly approximates the tail of the distri-
bution, and it takes too long if most sampled paths end up in failure. Alas, a
low success probability is quite common. An illustrative if contrived example is
computing the and of n tosses of a fair coin by a drunk who often loses the coin.

let drunk_coin () =
let toss = flip 0.5 in
let lost = flip 0.9 in
if lost then fail () else toss

let rec dcoin_and = function
| 1 -> drunk_coin ()
| n -> drunk_coin () && dcoin_and (n-1)

The function drunk_coin models the toss of a fair coin by a drunk; with the
probability 0.9 the coin ends up in a gutter. The example is simple enough that
the exact distribution of and of 10 tosses can be easily computed, either analyt-
ically or by complete exploration of the search tree: [(9.7656e-14, V true);

(0.05263, V false)]. Rejection sampling returns [(0.01, V false)] for 100
samples and [(0.052, V false)] for 10,000 samples. The probability for the
drunk coin to come up heads ten times in a row is too low to be noticed by
the rejection sampling. If we assert such an observation and wish to estimate
its probability, the rejection sampling of fun () -> dcoin_and 10 || fail ()
offers little help: even with 10,000 attempts, all samples are unsuccessful.

Importance sampling [15, 44] is an approximate inference strategy that im-
proves upon rejection sampling by assigning weights to each sample. For exam-
ple, because assigning true to the variable lost leads to failure, the sampler
should not pick a value for lost randomly; instead, it should force lost to be
false, but scale the weight of the resulting sample by 0.1 to compensate for this
artificially induced success.

Pfeffer [39] introduced an importance-sampling algorithm to perform approx-
imate inference for the probabilistic language IBAL. The main technique is called
evidence pushing because it reduces nondeterminism in the search by pushing
observed evidence towards their random cause in a stochastic program. Evidence
pushing in the IBAL interpreter requires very sophisticated data-flow analysis on
probabilistic programs, which our inference procedures cannot perform because
they cannot inspect the source code of probabilistic programs.

Nevertheless, we can perform importance sampling on the lazy search tree
that results from reifying a probabilistic program. The key is to explore the tree
shallowly before committing to any random choice among its branches. When-
ever this look-ahead comes across a branch that ends in failure, that branch is
eliminated from the available choices. Similarly, whenever the look-ahead comes
across a branch that ends in success, the successful result is registered as a sam-
ple, and that branch is again eliminated from the available choices. After the
look-ahead, the sampler randomly selects among the remaining choices and re-
peats the process. The probability of choosing a branch is proportional to its
probability mass. We also remember to scale the importance of all further sam-
ples by the total probability mass of the open branches among which we chose
one. Since the look-ahead notices not only shallow failures but also shallow suc-
cesses, one trace down the tree may yield more than one sample.

We have implemented importance sampling with look-ahead as described
above. As one might expect, it is much more accurate than rejection sam-
pling on programs like dcoin_and. For example, using our algorithm to sample
5000 times from dcoin_and 10 estimates the distribution as [(8e-14, V true);
(0.0526, V false)]; we now obtain quite an accurate estimate of the proba-
bility of the coin to come up heads ten times in a row. Recall that rejection
sampling failed to estimate this probability even with twice as many samples.

5 Lazy evaluation

Because events in the world usually take place in a different order from when
they are observed, values in a probabilistic program are usually produced in a
different order from when they are observed. Just as in logic programming, this

mismatch makes the search tree much larger, because the part of the search tree
between making a random choice and observing its consequence is duplicated.
To reduce this mismatch, we turn to lazy evaluation.

The following contrived example illustrates the mismatch that motivates lazy
evaluation. We define the producer flips p n to be the random result of flipping
n independent coins, each true with probability p. We also define the observer
trues n xs to check that a list of n booleans consists entirely of true.

let rec flips p = function
| 0 -> []
| n -> let x = flip p in

let xs = flips p (n - 1) in
x :: xs

let rec trues n xs = match (n, xs) with
| (0, []) -> true
| (n, (x::xs)) -> x && trues (n - 1) xs

The program if trues 20 (flips 0.5 20) then () else fail () expresses
the observation that a sequence of 20 fair-coin flips comes out all true. It is
easy to see mathematically that the probability of this observation is 2−20, but
the inference algorithms described above need to explore millions of tree nodes
to compute this probability as nonzero, because the entire list of 20 booleans is
produced before any element of the list is observed. It is especially common for
this kind of dissociation between production and observation to arise naturally
in probabilistic models of perception; for example, to parse a given sentence is
to observe that a randomly produced sentence is equal to the given sentence.

To reduce the delay between the production and observation of random val-
ues, we can revise the probabilistic program using lazy evaluation. We provide
a library function letlazy, which adds memoization to a thunk. For example,
letlazy (fun () -> flip p) below creates a thunk that evaluates flip p the
first time it is invoked, then returns the same boolean thereafter. The data con-
structors LNil and LCons are lazy analogues of the list constructors [] and ::.

let rec flips p = function
| 0 -> LNil
| n -> let x = letlazy (fun () -> flip p) in

let xs = letlazy (fun () -> flips p (n - 1)) in
LCons (x, xs)

let rec trues n xs = match (n, xs) with
| (0, LNil) -> true
| (n, LCons (x,xs)) -> x () && trues (n - 1) (xs ())

To be sure, letlazy does not memoize the lazy search tree that results from
reifying a probabilistic program. That would make the tree stay longer in memory
but not have any fewer nodes. What letlazy memoizes is an object value within
the probabilistic program. Importance sampling then requires only one sample
to compute the probability 2−20 exactly.

It is incorrect to implement letlazy using OCaml’s built-in laziness, because
the latter uses the mutable state of the underlying hardware, which does not
‘snap back’ when the inference procedure backtracks to an earlier point in the
execution of the probabilistic program. Instead, we implement letlazy by using
or emulating thread-local storage [23].

For equational reasoning, it is useful for the expression letlazy t (where t
is a thunk) to denote the same distribution as let v = t () in fun () -> v.
If the body of t involves observing evidence (for example, if t is fail), then
this equivalence may not hold because, if the thunk returned by letlazy t is
never invoked, then neither is t. To maintain the equivalence, we can change
letlazy to always invoke t at least once. This variation on lazy evaluation is
called delayed evaluation [39].

6 Performance testing

The examples above are simple and contrived to explain inference algorithms. We
have also expressed and performed inference on a model of realistic complexity,
namely Pfeffer’s [39] music model. This model describes the transformation of
melodic motives in classical music as a combination of transposition, inversion,
deletion and insertion operations. The number of operations and their sequence
are random, as is the effect of transposition on each note. Given a transformed
melody, we wish to obtain the conditional distribution of original motives that
could have given rise to the transformed melody.

Exact inference is infeasible for this model because the search tree is very
wide and deep: 40% of the nodes have 8 or more children, and the depth of the
tree reaches 10. Rejection sampling is also useless because the overall probability
of matching the given transformed melody is quite low—on the order of 10−7.
The importance sampling procedure described in Section 4, with the crucial help
of lazy evaluation described in Section 5, estimated the conditional probabilities
with roughly the same accuracy as Pfeffer’s state-of-the-art implementation of
evidence pushing for his IBAL language.

For concreteness, we describe a typical instance of this test. The original
melody (#1) and transformed melody (#1) are two different motives taken from
a movement in an early piano sonata by Beethoven. On a 2GHz Pentium 4
computer, we ran 100 trials in which Pfeffer’s importance sampler had 30 seconds
per trial (following his original testing), 100 trials in which our sampler had 30
seconds per trial, and another 100 trials in which our sampler had 90 seconds
per trial.

Given 30 seconds, Pfeffer’s sampler runs about 70,000 times; it estimates the
evidence probability to be exp(−14.6) on average, with the standard deviation
exp(−15.1). Also given 30 seconds, our sampler runs about 10,000 times; it esti-
mates the evidence probability to be exp(−13.7) on average, with the standard
deviation exp(−13.8). When given 90 seconds, our sampler runs about 30,000
times; it estimates the evidence probability to be exp(−13.6) on average, with
the standard deviation exp(−14.4). For both samplers, the histogram of esti-

mated probabilities that result from repeated trials is skewed to the right; the
skewness is roughly the same for the two samplers on each inference problem.

7 Conclusions

We have presented a very shallow embedding of a DSL for probabilistic modeling.
This embedding exemplifies the following advantages of very shallow embeddings
of DSLs in general.

Negligible notational overhead We represent probabilistic programs as or-
dinary OCaml programs, so random integers can be added using ordinary +,
random variables can be bound using ordinary let, and random processes
can be defined using ordinary λ-abstraction.

Type safety OCaml infers type signatures and detects type errors in stochastic
expressions just as in all other OCaml expressions. Our embedding adds no
type tags to run-time values.

No run-time overhead for deterministic code Deterministic constants
and operations used in a probabilistic model, including those in third-party
compiled libraries, run at full speed as if our probabilistic library were not
present. (This lack of overhead is similar to how non-privileged client code
runs under VMWare as if the hypervisor were not present [9].)

Ease of learning and maintenance We use the unmodified OCaml system
as is. Probabilistic programs and inference procedures can use all facilities
of the host language, including I/O, libraries, and a module system.

Our implementation is based on reifying probabilistic models as lazy search
trees. This reification allows us to evaluate the same model using multiple infer-
ence algorithms, including algorithms such as variable elimination and impor-
tance sampling that were thought to require a more deeply embedded proba-
bilistic language. We can also step through the random choices made by a model
by tracing through its search tree.

The size and complexity of the models we have run are in the ballpark of
state-of-the art systems such as IBAL [39]. We plan to exercise this system by
implementing larger probabilistic models of real-world phenomena, in particular
the nested inference that agents conduct about each other.

References

[1] Carette, Jacques, Oleg Kiselyov, and Chung-chieh Shan. 2008. Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed lan-
guages. Journal of Functional Programming. In press.

[2] Cussens, James. 2007. Logic-based formalisms for statistical relational
learning. In [18], chap. 9, 269–290.

[3] Danvy, Olivier, and Andrzej Filinski. 1989. A functional abstraction of
typed contexts. Tech. Rep. 89/12, DIKU, University of Copenhagen, Den-
mark. http://www.daimi.au.dk/~danvy/Papers/fatc.ps.gz.

[4] ———. 1990. Abstracting control. In Proceedings of the 1990 ACM con-
ference on Lisp and functional programming, 151–160. New York: ACM
Press.

[5] Daumé, Hal, III. 2007. Hierarchical Bayes compiler. http://www.cs.utah.
edu/~hal/HBC/.

[6] Dechter, Rina. 1998. Bucket elimination: A unifying framework for prob-
abilistic inference. In Learning and inference in graphical models, ed.
Michael I. Jordan. Dordrecht: Kluwer. Paperback: Learning in Graphical
Models, MIT Press.

[7] Domingos, Pedro, and Matthew Richardson. 2007. Markov logic: A unifying
framework for statistical relational learning. In [18], chap. 12, 339–371.

[8] Erwig, Martin, and Steve Kollmansberger. 2006. Probabilistic functional
programming in Haskell. Journal of Functional Programming 16(1):21–34.

[9] Feigin, Boris, and Alan Mycroft. 2008. Jones optimality and hardware vir-
tualization: A report on work in progress. In Proceedings of the 2008 ACM
SIGPLAN symposium on partial evaluation and semantics-based program
manipulation, ed. Robert Glück and Oege de Moor, 169–175. New York:
ACM Press.

[10] Felleisen, Matthias, Daniel P. Friedman, Bruce F. Duba, and John Merrill.
1987. Beyond continuations. Tech. Rep. 216, Computer Science Depart-
ment, Indiana University.

[11] Filinski, Andrzej. 1994. Representing monads. In POPL ’94: Conference
record of the annual ACM symposium on principles of programming lan-
guages, 446–457. New York: ACM Press.

[12] ———. 1999. Representing layered monads. In POPL ’99: Conference
record of the annual ACM symposium on principles of programming lan-
guages, 175–188. New York: ACM Press.

[13] Fischer, Bernd, and Johann Schumann. 2003. AutoBayes: A system for gen-
erating data analysis programs from statistical models. Journal of Func-
tional Programming 13(3):483–508.

[14] Forbes, Jeff, Timothy Huang, Keiji Kanazawa, and Stuart J. Russell. 1995.
The BATmobile: Towards a Bayesian automated taxi. In Proceedings of the
14th international joint conference on artificial intelligence, 1878–1885. San
Francisco, CA: Morgan Kaufmann.

[15] Fung, Robert, and Kuo-Chu Chang. 1990. Weighing and integrating evi-
dence for stochastic simulation in Bayesian networks. In Proceedings of the
5th conference on uncertainty in artificial intelligence (1989), ed. Max Hen-
rion, Ross D. Shachter, Laveen N. Kanal, and John F. Lemmer, 209–220.
Amsterdam: North-Holland.

[16] Getoor, Lise, Nir Friedman, Daphne Koller, and Avi Pfeffer. 2001. Learning
probabilistic relational models. In Relational data mining, ed. Sašo Džeroski
and Nada Lavrač, chap. 13, 307–335. Berlin: Springer.

[17] Getoor, Lise, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar.
2007. Probabilistic relational models. In [18], chap. 5, 129–174.

[18] Getoor, Lise, and Ben Taskar, eds. 2007. Introduction to statistical relational
learning. Cambridge: MIT Press.

[19] Giry, Michèle. 1982. A categorical approach to probability theory. In Cate-
gorical aspects of topology and analysis: Proceedings of an international con-
ference held at Carleton University, Ottawa, August 11–15, 1981, ed. B. Ba-
naschewski, 68–85. Lecture Notes in Mathematics 915, Berlin: Springer.

[20] Goodman, Noah D., Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. 2008. Church: A language for generative models.
In 2008: Proceedings of the 24th conference in uncertainty in artificial intel-
ligence, ed. David Allen McAllester and Petri Myllymäki, 220–229. AUAI
Press.

[21] Gunter, Carl A., Didier Rémy, and Jon G. Riecke. 1995. A generalization
of exceptions and control in ML-like languages. In Functional program-
ming languages and computer architecture: 7th conference, ed. Simon L.
Peyton Jones, 12–23. New York: ACM Press.

[22] Halpern, Joseph Y. 1990. An analysis of first-order logics of probability.
Artificial Intelligence 46:311–350.

[23] Haynes, Christopher T. 1987. Logic continuations. Journal of Logic Pro-
gramming 4(2):157–176.

[24] Hinze, Ralf. 2000. Deriving backtracking monad transformers. In ICFP
’00: Proceedings of the ACM international conference on functional pro-
gramming, vol. 35(9) of ACM SIGPLAN Notices, 186–197. New York: ACM
Press.

[25] Hudak, Paul. 1996. Building domain-specific embedded languages. ACM
Computing Surveys 28(4es):196.

[26] Hughes, John. 1995. The design of a pretty-printing library. In Advanced
functional programming: 1st international spring school on advanced func-
tional programming techniques, ed. Johan Jeuring and Erik Meijer, 53–96.
Lecture Notes in Computer Science 925, Berlin: Springer.

[27] Jaeger, Manfred, Petr Lidman, and Juan L. Mateo. 2007. Comparative
evaluation of probabilistic logic languages and systems: A work-in-progress
report. In Proceedings of mining and learning with graphs. http://www.
cs.aau.dk/~jaeger/plsystems/.

[28] Kersting, Kristian, and Luc De Raedt. 2007. Bayesian logic programming:
Theory and tool. In [18], chap. 10, 291–321.

[29] Kiselyov, Oleg. 2006. Native delimited continuations in (byte-code)
OCaml. http://okmij.org/ftp/Computation/Continuations.html#
caml-shift.

[30] Koller, Daphne, David Allen McAllester, and Avi Pfeffer. 1997. Effective
Bayesian inference for stochastic programs. In AAAI-97: Proceedings of the
14th national conference on artificial intelligence, 740–747. The American
Association for Artificial Intelligence, Menlo Park, CA: AAAI Press.

[31] Landin, Peter J. 1966. The next 700 programming languages. Communica-
tions of the ACM 9(3):157–166.

[32] Milch, Brian, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L.
Ong, and Andrey Kolobov. 2007. BLOG: Probabilistic models with un-
known objects. In [18], chap. 13, 373–398.

[33] Mogensen, Torben Ægidius. 1995. Self-applicable online partial evaluation
of the pure lambda calculus. In Proceedings of the 1995 ACM SIGPLAN
symposium on partial evaluation and semantics-based program manipula-
tion, 39–44. New York: ACM Press.

[34] Muggleton, Stephen, and Niels Pahlavi. 2007. Stochastic logic programs: A
tutorial. In [18], chap. 11, 323–338.

[35] Murphy, Kevin. 2007. Bayes Net Toolbox for Matlab. http://www.cs.
ubc.ca/~murphyk/Software/BNT/bnt.html.

[36] ———. 2007. Software for graphical models: A review. International Society
for Bayesian Analysis Bulletin 14(4):13–15.

[37] Pearl, Judea. 1988. Probabilistic reasoning in intelligent systems: Networks
of plausible inference. San Francisco, CA: Morgan Kaufmann. Revised 2nd
printing, 1998.

[38] Pfeffer, Avi. 2007. The design and implementation of IBAL: A general-
purpose probabilistic language. In [18], chap. 14, 399–432.

[39] ———. 2007. A general importance sampling algorithm for probabilistic
programs. Tech. Rep. TR-12-07, Harvard University.

[40] Phillips, Andrew, and Luca Cardelli. 2007. Efficient, correct simulation of
biological processes in the stochastic pi-calculus. In Proceedings of CMSB
2007: Computational methods in systems biology, ed. Muffy Calder and
Stephen Gilmore, 184–199. Lecture Notes in Computer Science 4695, Berlin:
Springer.

[41] Poole, David, and Alan Mackworth. 2009. Artificial intelligence: Founda-
tions of computational agents. Cambridge: Cambridge University Press.

[42] Ramsey, Norman, and Avi Pfeffer. 2002. Stochastic lambda calculus and
monads of probability distributions. In POPL ’02: Conference record of the
annual ACM symposium on principles of programming languages, 154–165.
New York: ACM Press.

[43] Sato, Taisuke. 2008. A glimpse of symbolic-statistical modeling by PRISM.
Journal of Intelligent Information Systems 31(2):161–176.

[44] Shachter, Ross D., and Mark A. Peot. 1990. Simulation approaches to gen-
eral probabilistic inference on belief networks. In Proceedings of the 5th
conference on uncertainty in artificial intelligence (1989), ed. Max Hen-
rion, Ross D. Shachter, Laveen N. Kanal, and John F. Lemmer, 221–234.
Amsterdam: North-Holland.

[45] Sutton, Charles, and Andrew McCallum. 2007. An introduction to condi-
tional random fields for relational learning. In [18], chap. 4, 93–127.

[46] Taskar, Ben, Pieter Abbeel, Ming-Fai Wong, and Daphne Koller. 2007. Re-
lational Markov networks. In [18], chap. 6, 175–199.

[47] Thiemann, Peter. 1999. Combinators for program generation. Journal of
Functional Programming 9(5):483–525.

[48] Wadler, Philip L. 1992. The essence of functional programming. In POPL
’92: Conference record of the annual ACM symposium on principles of pro-
gramming languages, 1–14. New York: ACM Press.

[49] Wand, Mitchell, and Dale Vaillancourt. 2004. Relating models of back-
tracking. In ICFP ’04: Proceedings of the ACM international conference on
functional programming. New York: ACM Press.

