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Prolog再再再考考考: 急急急がががななないいいででで推推推測測測

オレッグ・キセリョーヴ　亀山 幸義 ∗†

古典Prologは、項代数、非決定性、単一化, 反例探索、論理と制御の分離 という最も基本的な概念を簡潔にまとめ
ている素敵な言語である。プログ ラムが双方向に動くのは不思議だ。しかし、現実のPrologプログラムが 持つ問
題-カットの多用、算術, FFI, committed choice, 頻繁な発散など -が古典Prologの利点を打消してしまう。
古典Prologは、魅力的な問題だ。古典Prologの勉強をして、その問題から 教訓を学ぶ必要がある。その教訓とし
て、非決定性は基本的だが、標準の 実行モードになるべきではない、そして、遅延推測を使わないと性能が悪 すぎ
る、ということがあげられる。
古典Prologの利点は、普通の正格な関数型言語で実装できる。本研究では、 遅延推測をOCamlライブラリとして実
現し、そのライブラリを使って Prologの典型的な例を記述する。加えて、双方向に動く型推論、 committed choice
(maximal munch)を使って双方向に動くparser combinators を記述する。これらは古典Prologで表現できない。これ
らの実装から、 論理変数の独特な性質、エルブラン領域の列挙の最適化の立場から見た単一化、 WAMへのコンパ
イルなどが理解できる。

Classical Prolog is an elegant language that concisely represents the fundamental concepts of term algebra, non-
determinism, unification, counter-example driven search, and the separation of logic and control. The ability to run
a program forwards and backwards is uncanny. However, real Prolog programs are replete with cuts, FFI calls,
committed choice and unexpected divergence – defiling the Classical purity.
Classical Prolog is an enchanting misconception. It ought to be studied, for its ideas and lessons. One lesson is that
guessing – non-determinism – is fundamental, but should not be the default mode of execution. One should guess,
but guess lazily.
The strong points of Prolog can be brought into an ordinary functional programming language. Using OCaml
as a representative, we implement lazy guessing as a library, with which we reproduce classical Prolog examples.
Furthermore, we demonstrate parser combinators that use committed choice (maximal munch) and can still be run
forwards and backwards. They cannot be expressed in Classical Prolog. Logic variables, unification, and its WAM
compilation strategy naturally emerge as a “mere optimization” of the Herbrand universe enumeration.

1 Introduction

Classical Prolog [2, 13] – the archetype and the
eponym of logic programming – is a fascinating
language, especially for natural language processing
[1, 10] and knowledge representation, planning and
reasoning [3, 8]. It is greatly appealing to declara-
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tively state the properties of a problem and let the
system find the solution. Most intriguing is the abil-
ity to run programs ‘forwards’ and ‘backwards’. We
recall these irresistible features in §2.1.

The concise and declarative formulation of prob-
lems is the gift of non-determinism and the reason
for its invention [11]. Classical Prolog makes non-
determinism the default computational mode. Taken
to such extreme, non-determinism turns from virtue



into vice. Quite many computations and models are
mostly deterministic. Implementing them in Pro-
log with any acceptable performance requires the
extensive use of problematic features such as cut.
Purity is also compromised when interfacing with
mainstream language libraries, which are determin-
istic and cannot run backwards. Divergence is the
constant threat, forcing the Prolog programmers to
forsake the declarative specification and program di-
rectly against the search strategy. All in all, Classical
Prolog is the exquisite square peg in the world with
mostly round holes.

The case in point is the ubiquitous committed
choice [9], which is necessary to express the pervasive
‘maximal munch’ parsing convention (§5) as well as
the ‘don’t care non-determinism’. For these reasons,
committed choice is natively supported in Prolog, as
the ‘soft-cut’. However, Prolog programs with com-
mitted choice can no longer be run backwards: see
§5.1.

The history of Prolog [13], designed on the founda-
tion of non-determinism and resolution, is adapting,
restricting or overcoming these ideas to make the lan-
guage general-purpose. An alternative is to start with
a mature general-purpose, deterministic program-
ming language, with a proven record of solving real-
world problems – and add non-determinism. Is this
a good alternative? We explore this question in §3.
We use Hansei – a probabilistic programming system
implemented as a library in OCaml [6, 7] – to solve a
number of classic logic programming problems, from
zebra to scheduling, to parser combinators, to re-
versible type checking. The complete code accompa-
nying the paper is available at http://okmij.org/

ftp/kakuritu/logic-programming.html.
Many mature functional languages easily let non-

determinism in, thanks to the features like Mon-
adPlus in Haskell or delimited control libraries in
Scala, OCaml or Scheme. Alas, the cheaply added
non-determinism has a ridiculously poor performance
even on toy problems. Making non-determinism us-
able requires non-trivial insight: lazy sharing, see
§3.2.

As a larger case study, §5.2 presents a parser com-
binator library to build maximal-munch parsers that
are reversible: a parser may run forwards to parse a

given string, and backwards to generate all parseable
strings, the language of its grammar. Such reversible
parser combinators with the maximal munch cannot
be idiomatically implemented in Classical Prolog.

Our argument is the argument for functional logic
programming [5] – however, realized not as a stan-
dalone language such as Curry but as a library in
the ordinary programming language. We stress that
we do not advocate the embedding of Prolog in a
general-purpose language. Many such embeddings
have been done (in Scheme, Haskell, Scala, etc), all
sharing the drawbacks of Classical Prolog. Rather,
we advocate transcending Prolog: taking its best fea-
tures – separation of the model specification from the
search and non-determinism – and bringing them into
the conventional functional-programming language.
Such bottom-up approach is not only practical but
also theoretically revealing. We see in §6 how logic
variables and unification naturally emerge as a “mere
optimization” of non-deterministic search.

2 Fascination and Disappoint-
ment of Classical Prolog

In this section we recall how Classical Prolog contin-
ues to hold our fascination. We also recall the dis-
appointments and eventual realization that Classical
Prolog is in reality not a general-purpose program-
ming language. This realization drives us to intro-
duce the best Prolog features in the general purpose,
functional languages, in §3.

2.1 The Append example

All the best features of Prolog can be illustrated in
only two lines of code: the append relation:

append([], L,L).
append([H|T],L,[ H|R]) :− append(T,L,R).

The three-place predicate append establishes the re-
lation between three lists l1, l2 and l3 such that l1
is a prefix and l2 is the corresponding suffix of l3.
The two lines declare that the empty list is a pre-
fix of any list, a list is a suffix of itself, and a list
prefix is the sequence of its initial elements. When



we ask a Prolog system if there is a list X such
that append([t,t,t],[f,f],X) holds, Prolog answers ‘Yes’.
Furthermore, it gives us that list X – as if append were
a function to concatenate two lists.

?− append([t,t, t],[ f , f ], X).
X = [t, t, t, f , f ].

Prolog’s append is however is not just a function: it
is a relation. We may specify any two lists and query
for the other one that makes the relation hold. For
example, let us check if a given list has a given prefix,
and if so, remove it (that is, obtain the corresponding
suffix).

?− append([t,t], X,[ t, t, t, f , f ]).
X = [t, f , f ].

Likewise, we can check for, and remove, a given suf-
fix. If the list concatenation was like running append
forwards, prefix removal is like running it backwards.

There are more ways to run append; for example:
find all lists R with the given prefix [t,t,t] and an
arbitrary suffix X.

?− append([t,t, t], X,R).
R = [t, t, t |X].

The answer is given on one line, which, however,
compactly represents an infinite number of solutions.
Hence a question in Prolog may have more than one
answer. We get the first hint of non-determinism.

If we ask for all lists with the [f,f] suffix, Prolog lists
the solutions, as an infinite stream. Non-determinism
becomes clear.

?− append( ,[f, f ], R).
R = [f, f ] ;
R = [ G328, f, f ] ;
R = [ G328, G334, f, f ] ;
R = [ G328, G334, G340, f, f ].
...

Append can also split a given list in all possible
ways, returning its prefixes and suffixes. If the list is
finite, we obtain the finite number of answers.

?− append(X,Y,[t,t, t, f , f ]).
X = [], Y = [t, t, t, f , f ] ;
X = [t], Y = [t, t, f , f ] ;
X = [t, t], Y = [t, f , f ] ;

X = [t, t, t], Y = [f, f ] ;
X = [t, t, t, f ], Y = [f] ;
X = [t, t, t, f , f ], Y = [] ;
false . % no more answers

2.2 Disappointments

The append relation is the best illustration of Pro-
log – of its fascination, and, as we see in this section,
of some of its disappointments. Recall our example
of finding all lists R with the given prefix [t,t,t].

?− append([t,t, t], X,R).
R = [t, t, t |X].

The given answer compactly represents the infinite
set of lists. Only some of them are boolean lists, that
is, made of elements t and f. We cannot enforce the
type of the list elements through a static type system:
Classical Prolog is untyped. One may think the lack
of a type system is a minor drawback. The easy-to-
write specification for boolean lists:

bool(t). bool(f ).
boollist ([]).
boollist ([ H|T]) :− bool(H), boollist (T).

lets us declare that the lists R and X in the original
example are in fact boolean:

?− append([t,t, t], X,R), boollist (X), boollist (R).
X = [], R = [t, t, t] ;
X = [t], R = [t, t, t, t] ;
X = [t, t], R = [t, t, t, t, t] ;
X = [t, t, t], R = [t, t, t, t, t, t] ;
...

The result is disappointing. First, boolean lists with
the given prefix are no longer compactly represented.
More worrisome, Prolog is stuck on t. For example,
[t,t,t,f] is also a boolean list with the prefix [t,t,t],
but we do not see it among the answers. The built-in
search strategy of Prolog is incomplete. If we change
the order of the predicates in the conjunction

?− boollist (X), boollist (R), append([t, t, t], X,R).

we find to our dismay that Prolog loops after giving
the first solution. Therefore, Classical Prolog pro-
grams are not as declarative as one may think: the



order of predicates and clauses matters a great deal.
One must be very familiar with the evaluation strat-
egy to write programs that produce any result, let
alone produce the result fast.

There are more problems, such as numerical cal-
culations or interfacing with foreign functions. They
can be dealt with various success in modern Prolog
systems, via mode inference, tabing and constraint-
solving systems – which take us beyond Classical Pro-
log.

The biggest problem is non-determinism as the de-
fault. Many real-life problems are mostly determin-
istic, or involve long segments of deterministic com-
putations (e.g., number crunching). Encoding such
problems efficiently in Prolog is very difficult, often
requiring ‘cut’ and other impure features, which de-
stroy the reversibility and do not play well with con-
straint solving. §4 gives one example, of the need
for restricting non-determinism and the problem it
causes for Prolog.

When a problem suits Prolog, the answer is breath-
takingly elegant. But most of the time it is not.

3 An alternative to Prolog

As an alternative to Classical Prolog we add non-
determinism to an ordinary language, where deter-
minism is default. An example is a library called
Hansei1, which adds weighted non-determinism
(probabilities) to the ordinary OCaml. (We will ig-
nore the probabilities in this paper.) The techniques
illustrated in this section are not limited to Hansei
or OCaml. One such technique is lazy generation,
assuming the role of logic variables.

The primitives of the library, see Figure 1, are dist,
to non-deterministically choose an element from a
list, and fail. There is also a strange sounding func-
tion reify0 that turns a program into a tree of choices
αpV, letting us program our own search strategies.
The library has many convenient functions written
in terms of the primitives, such as flip, flipping a
coin, and the uniform selection; exact reify exhaus-
tively searches through all the choices and produces
the flattened choice tree, or the probability table.

1http://okmij.org/ftp/kakuritu/

Basic functions

type prob = float
val dist : (prob ∗ α) list → α
val fail : unit → α
val reify0 : (unit → α) → α pV
val letlazy : (unit → α) → (unit → α)

Convenient derived functions

val flip : prob → bool
val uniformly : α array → α
...
val exact reify : (unit → α) → α pV
val reify part : int option → (unit → α) →

(prob ∗ α) list
...

Figure 1: Hansei interface

Hansei (and similar libraries for Scala or Haskell)
show that just adding non-determinism to an estab-
lished language is straightforward. With little effort
we can already write Prolog-like programs, and we do
in §3.1. We also see that the cheap non-determinism
is cheap indeed: it performs poorly and is prone to
divergence. §3.2 presents a smart alternative. Our
running example is writing the classic append rela-
tion of Prolog in Hansei.

3.1 Cheap non-determinism

At first blush, there is little to do. OCaml already has
a built-in operation @ to concatenate two lists. Ex-
tending this function to a relation is also straightfor-
ward, thanks to non-determinism. We demonstrate
on the example of running append backwards: un-
concatenating a given list and producing all its pos-
sible prefixes and the corresponding suffixes. The
task thus is to represent the following Prolog code in
OCaml

?− append(X,Y,[t,t, t, f , f ]).

The key idea is that running backwards is tanta-
mount to generate-and-test: in our case, generat-
ing candidate prefixes and suffixes and then testing
if they make up the given list. We merely need a
generator of lists, all boolean lists in our example.



let rec a list () =
if flip 0.5 then []
else flip 0.5 :: a list ()

Declaratively, a boolean list is either [] or a boolean
list with either true or false at the head. In Hansei
terms, the thunk a list is a probabilistic model, which
we then have to run. Running the model determines
the set of possible worlds consistent with the proba-
bilistic model: the “model” of the model. The set of
outputs in these worlds is the set of answers. Hansei
offers a number of ways to run models and obtain the
answers and their weights. We will be using iterative
deepening, reify part, a version of exact reify whose
first argument is the depth search bound (infinite, if
None). For example, we test a list by generating a
few sample boolean lists:

reify part (Some 3) a list
 [(0.5, []); (0.125, [ false ]); (0.125, [ true])]

Everything is set to implement our idea of running
@ backwards, to unconcatenate the sample list t3f2
obtaining all its prefixes and the corresponding suf-
fixes.

let t3f2 = [true; true; true; false ; false ]
reify part (Some 25) (fun() →
let x = a list () in
let y = a list () in
let r = x @ y in
if not (r = t3f2) then fail ();
(x, y))
 
[(0.0002, ([], [ true; true; true; false ; false ]));
(0.0002, ([ true], [ true; true; false ; false ]));
(0.0002, ([ true; true], [ true; false ; false ]));
(0.0002, ([ true; true; true], [ false ; false ]));
(0.0002, ([ true; true; true; false ], [ false ]));
(0.0002, ([ true; true; true; false ; false ], []))]

It really works as intended, although it takes about
2 seconds even for such a trivial example. Alas, if
we increase the search bound (the first argument of
reify part) to 35, the program practically diverges. It
is not difficult to see why: a list really generates all
possible boolean lists; only very few of them add up
to t3f2; the others will have to be rejected. The prob-
lem with cheap non-determinism is generating vastly

too many candidate solutions, almost all of which are
rejected.

3.2 Smart non-determinism

To use non-determinism effectively requires sophisti-
cation: to avoid generating and considering clearly
failing solutions. The key idea is laziness – delaying
the choices till the last possible moment. Looking
back at Prolog gives us a hint. OCaml lists are fully
determined: [true; false] is the list of the definite size
with definite elements. Prolog lets us write partly
determined lists, such as [t|X]; we know the head of
the list but do not yet know what follows. Compar-
ing this list with others, such as [t,f|Y], increases our
knowledge. Some other comparisons, e.g., with [f|Z],
clearly fail; they fail regardless of what X or Z really
are, so we do not even have to generate them.

To follow the Prolog’s hint, we define partly de-
termined lists in OCaml: boolean lists with a non-
deterministic spine.

type bl = Nil | Cons of bool ∗ blist
and blist = unit → bl

We introduce nil and cons as easy-to-use constructors
of lists and a function to convert blists into ordinary
OCaml lists to show them. Sample lists t3 and f2 will
be used in the examples.

let nil : blist = fun () → Nil
let cons : bool → blist → blist =

fun h t () → Cons (h,t)
val list of blist : blist → bool list

let t3 = cons true (cons true (cons true nil ))
let f2 = cons false (cons false nil )

The append is defined as an ordinary recursive
function, which pattern-matches on the list.

let rec append l1 l2 =
match l1 () with
| Nil → l2
| Cons (h,t) → cons h (fun () →

append t l2 ())

Here is an example of its use:



reify part None (fun () →
list of blist (append t3 f2))
 [(1., [ true; true; true; false ; false ])]

giving the expected result. We have defined append as
a function, and can indeed run it as the concatenation
function, ‘forwards’.

Prolog also lets us concatenate lists that are par-
tially or wholly unknown, represented by logic vari-
ables. For example, append([t,t,t],X,R) will enumer-
ate all lists with [t,t,t] as the prefix, see §2.1. If we are
interested in only boolean lists, we had to complicate
the Prolog code

append([t, t, t], X,R), boollist (X), boollist (R).

and faced the problem of incomplete search: Prolog
could not produce any lists that included f. In Han-
sei, the role of logic variable as the representation for
some boolean list is played by a generator:

let rec a blist () : blist =
letlazy (fun () →

uniformly [| Nil ;
Cons(flip 0.5, a blist ()) |])

We need the magical function letlazy, which at first
blush looks like the identity function. It is another
primitive of Hansei, taking a thunk and returning a
thunk. When we force the resulting thunk, we force
the original one, and remember the result. All fur-
ther forcing return the same result. In functional
logic programming, this is called “call-time choice”.
In quantum mechanics, it is called “wave-function
collapse”. Before we observe a system, for example,
a still spinning coin, there could indeed be several
choices for the result. After we observed the system,
all further observations give the same result. Like the
quantum-mechanical entanglement, letlazy is a way to
share the non-deterministic state.

Passing a blist as the second argument of append,

reify part (Some 3) (fun() →
let x = a blist () in
list of blist (append t3 x))
 
[(0.5, [ true; true; true]);
(0.125, [ true; true; true; false ]);
(0.125, [ true; true; true; true])]

lets us see, within the given search bound, all boolean
lists whose first three elements are true. Unlike the
Prolog code, we are no longer stuck generating lists
whose all elements are true.

The moment of truth is running append backwards.
We have already explained the key idea of generate-
and-test in §3.1. The code in that section is trivial
to adapt to partially determined lists blist; we only
need the comparison function on blists:

let rec bl compare l1 l2 =
match (l1 (), l2 ()) with
| (Nil , Nil ) → true
| (Cons (h1,t1), Cons (h2,t2)) →

h1 = h2 && bl compare t1 t2
| → false

Applying the generate-and-test idea to reverse the
append2:

reify part None (fun() →
let l = append t3 f2 in
let x = a blist () in
let y = a blist () in
let r = append x y in
if not (bl compare r l ) then fail ();
(list of blist x, list of blist y)

gives the same, expected result as in §3.1, but with
a surprise. First, the result is produced 1000 times
faster. Second, the program terminates with the ex-
pected six answers even though we imposed no search
bound: the first argument of reify part is None. Al-
though x and y in the code will generate any boolean
list, thanks to laziness, the search space is effectively
finite, and quite small. Thus the real speed-up due
to laziness is infinite.

The letlazy operation in the definition of a blist is
crucial:

let rec a blist () =
letlazy (fun () →

uniformly [| Nil ;
Cons(flip 0.5, a blist ()) |])

The operation uniformly guesses at the top construc-
tor of the list: Nil or Cons; letlazy delays the guess,

2See the accompanying code for the examples of running
append in other modes.



letting the program proceed until the result of the
guess is truly needed. Hopefully the program rarely
gets to that point because the search encountered a
contradiction at some other place.

Laziness in non-deterministic computations is
hence indispensable. Non-deterministic laziness how-
ever is different from the familiar facility to delay the
computation and memoize its result, such as OCaml’s
lazy, Scheme’s delay or Haskell’s lazy evaluation. We
may think of a non-deterministic choice, flipping a
coin, as splitting the current world. In one world,
the coin came up ‘head’, in the other it came ‘tail’.
If we are to cache the result, we should use different
memo tables for different worlds, because different
worlds have different choices. Ordinary lazy evalua-
tion is implemented by mutation of the ordinary, or
global, or shared memory – shared across all possible
worlds. Non-deterministic laziness needs world-local
memory [4]3.

4 Parsing with committed
choice

Kleene star is an intrinsic operator in regular ex-
pressions and is commonly used in EBNF and other
grammar formalisms. Just as common is the so-
called “maximal munch” restriction on the Kleene
star, forcing the longest possible match. After re-
minding why maximal munch is so prevalent, we de-
scribe the grave problem it poses for parsers that are
meant to be run both forwards and backwards – that
is, to parse a given stream according to the grammar
and to generate all parseable streams, the grammar’s
language.

Maximal munch cuts shorter-match choices and re-
duces non-determinism – hence making forward runs
faster. On the downside, when running the parser
backwards the cut choices mean lost solutions and
the (greatly) incomplete language generation. Hansei
removes the downside. Parsers built with the Hansei
parser combinator library support maximal munch
and can be run effectively backwards to generate the

3World-local memory is also necessary for unification and
general constraint accumulation and solving.

complete language, without omissions. Surprisingly,
Hansei already had the necessary features, in partic-
ular, the nested inference.

5 Maximal munch rule

The maximal munch convention is so common in
parsing that it is hardly ever mentioned. For ex-
ample, a programming language specification cliche
defines the syntax of an identifier as a letter followed
by a sequence of letters and digits, or, in the extended
BNF,

identifier :: = letter letter or digit ∗

where ∗, the Kleene star, denotes zero or more repe-
titions of letter or digit. In the string ”var1 + var2”
we commonly take var1 and var2 to be identifiers.
However, according to the above grammar every pre-
fix of an identifier is also an identifier. Therefore, we
should regard v, va and var as identifiers as well. To
avoid such conclusions and the need to complicate
the grammar, the maximal munch rule is assumed:
letter or digit∗ denotes the longest sequence of letters
and digits. Without the maximal munch, we would
have to write

identifier :: = letter letter or digit ∗

[ look−ahead: not letter or digit ]

It is not only awkward, requiring the notation for
look-ahead, but also much less efficient. If ∗ means
zero or more occurrences, letter or digit∗ on input
”var1 ” will match the empty string, ”a”, ”ar” and
”ar1”. Only the last match leads to the successful
parse of the identifier, recognizing var1. Maximal
munch cuts the irrelevant choices. It has proved so
useful that it is rarely explicitly stated when describ-
ing grammars.

5.1 Maximal munch in Prolog: Re-
versibility lost

Maximal munch however destroys the reversible pars-
ing, the ability to run the parser forward (as a parser
or recognizer) and backward (as a language genera-
tor). We illustrate the problem in Prolog. A rec-
ognizer in Prolog is a relation between two streams



(lists of characters) S and Srem such that Srem is the
suffix of S. In a functional language, we would say
that a recognizer recognizes the prefix in S, returning
the remaining stream as Srem. Here is the recognizer
for the character ’a’:

charA([a|Srem],Srem).

The Kleene-star combinator (typically called
many) takes as an argument a recognizer and repeats
it zero or more times. Without the maximal munch,
it looks as follows:

many0(P,S,S).
many0(P,S,Rest) :−

call (P,S,Srem), many0(P,Srem,Rest).

where P is an arbitrary parser. Thus
many0(charA,S,R) will recognize or generate the
prefix of S with zero or more ’a’ characters. (Re-
call that call is the standard Prolog predicate to
call a goal indirectly: call(charA,S,R) is equivalent
to the charA(S,R).) Thanks to the first clause,
many0(P,S,R) always recognizes the empty string.
Here is how we recognize a∗ in the sample input
stream [a,a,b]:

?− many0(charA,[a,a,b],R).
R = [a, a, b] ;
R = [a, b] ;
R = [b]

and generate the language of a∗:

?− many0(charA,S,[]).
S = [] ;
S = [a] ;
S = [a, a] ;
S = [a, a, a] ; ...

To implement the maximal munch, many should
call the argument parser as long as it succeeds. To
tell if the parser fails or succeeds we turn to soft-
cut. Recall, soft-cut P ∗→Q; R is equivalent to the
conjunction P, Q if P succeeds at least once. Soft-cut
commits to that choice and totally discards R in that
case. R is evaluated only when P fails from the outset.
Soft-cut lets us write many with maximal munch:

many(P,S,Rest) :−
call (P,S,Srem) ∗→many(P,Srem,Rest) ;

S = Rest.

Now the the empty string is recognized (i.e.,
S = Rest) only if the parser P fails. Recognizing a∗
in the sample input

?− many(charA,[a,a,b],R).
R = [b].

becomes quite more efficient. There is only one
choice, for the longest sequence of as. However, at-
tempting to generate the language a∗:

?− many(charA,S,[]).
<loops>

leads to an infinite loop. The argument recognizer,
charA, when asked to generate, always succeeds.
Therefore, the recursion in many never terminates.
When running backwards, the recognizer tries to gen-
erate the longest string of as – the infinite string. Al-
though the empty string belongs to the language a∗,
we fail to generate it.

5.2 Maximal munch in Hansei: Re-
versibility regained

The Hansei parser combinator library, Figure 3, sup-
ports many, which, unlike the one in Prolog, no longer
forces the trade-off between efficient parsing and gen-
eration. Hansei’s many obeys maximal munch and
generates the complete language, with no omissions.
Hansei lets us have it both ways. Before describing
the implementation, we show a few representative ex-
amples, Figure 2.

Examples 5-7 show the argument parsers with
choices, even overlapping choices as in Example 7.
The combinator many (actually, many1 defined as
many1 p = p <∗ many p) may nest. In Example 3,
a∗a does not recognize ”aaa” since the a∗ munches
the entire stream leaving nothing for the parser of
the final a. This is the expected behavior under max-
imal munch. Example 7 shows no parse for the same
reason. Finally in the last example we generate the
complete language for a∗, including the empty string.

To implement the maximal munch in Hansei we
need something like soft-cut, the ability to detect
a failure and proceed. Hansei has exactly the right
tools: reify0 and reflect:



Parser Stream Result
1 many (p char ’a’) ”aaaa” unique
2 many (p char ’a’) <∗> p char ’b’ ”b” unique
3 many (p char ’a’) <∗ p char ’a’ ”aaa” no parse
4 many (p char ’a’) <∗> many (p char ’a’)) ”aaa” unique
5 many ((p char ’a’) <|> (p char ’b’)) ”ababb” unique
6 many ((many1 (p char ’a’)) <|>

(many1 (p char ’b’))) ”aaabab” unique
7 many ((p char ’a’ <∗ p char ’a’) <|> p char ’a’)

<∗ p char ’a’ ”aaa” no parse
8 many (p char ’a’) random ””, ”a”, ”aa”, . . .

Figure 2: Examples of maximal munch parsing

A parser takes a stream and returns the parsing result,
the result of a semantic action, and the remainder of the
stream:

type stream v = Eof | Cons of char ∗ stream
and stream = unit → stream v
type α parser = stream →α ∗ stream

Primitive parser

val let p char : char → char parser

checks the current element of the stream is the given char-
acter, returning it.

Parsing combinators

val (<∗> ) : (α → β) parser → α parser → β parser
val ( <∗ ) : α parser → β parser → α parser
let (<|> ) : αparser → α parser → α parser =
fun p1 p2 st → uniformly [| p1;p2|] st

combine parsers and their semantic actions and express
the rules of the grammar: (<∗> ) combines parsers sequen-
tially and (<|> ) expresses the alternation. The combina-
tor ( <∗ ) is the specializations of (<∗> ).

Figure 3: Hansei parser combinator library

type α vc = V of α
| C of (unit → α pV)

and α pV = (prob ∗α vc) list

val reify0 : (unit → α) → α pV
val reflect : α pV →α

The primitive reify0 converts a probabilistic com-
putation to a lazy tree of choices αpV, whose
nodes contain found solutions V x or not-yet-explored
branches. The primitive reflect, the inverse of reify0,
turns a tree of choices into a probabilistic program
that will make those choices. The primitive reify0
is fundamental in Hansei: probabilistic inference is
implemented by first reifying a program (the genera-
tive model) to the tree of choices and then exploring
the tree in various ways. For instance, the full tree
traversal corresponds to exact inference.

Soft-cut can also be implemented as a choice-
tree traversal, first success below, which explores the
branches looking for the first V leaf. It returns the
tree resulting from the exploration, which could be
empty if no V leaf was ever found. Soft-cut then is
simply

val first success : α pV →α pV

let soft cut :
(unit → α) → (α → ω) → (unit → ω) → ω =
fun p q r →
match first success (reify0 p) with
| [] → r ()
| t → q (reflect t)



We write many in terms of the soft-cut as we did in
Prolog:

let many : α parser → α list parser = fun p →
let rec self st =

soft cut
(* check if p succeeded *)

(fun () → p st )
(* continue with p *)

(fun (v, st ) →
let (vs, st ) = self st in

(v:: vs, st ))
(fun () → ([], st )) (* if p failed *)

in self

The second question is avoiding losing solutions
when running the parser “backwards”. Unlike Pro-
log, Hansei parsers are functions rather than rela-
tions. They take a stream, attempt to recognize its
prefix and return the rest of the stream on success.
They cannot be run backwards. However, we achieve
the same result – producing the set of parseable
streams – by generating all streams, feeding them
to the parser and returning the streams that parsed
completely. Since the number of possible streams is
generally infinite, we have to generate them lazily, on
demand. To ensure completeness – to avoid losing
any solutions – the parsers should have the property

many p (s1 ⊕ s2) = many p s1 ⊕ many p s2

where ⊕ stands for non-deterministic choice. Sur-
prisingly, many p already satisfies it. The trick is
laziness in the stream and Hansei’s support of nested
inference. The primitive reify0 may appear in prob-
abilistic programs – in other words, a probabilistic
model may itself perform inference, over an inner
model. In order for this to work correctly, we had
to ensure that

let x = letlazy (s1 ⊕ s2) in
reify0 (fun () → model x)

≡
let x = letlazy s1 in reify0 (fun () → model x)
⊕
let x = letlazy s2 in reify0 (fun () → model x)

where x is demanded in model. That is, reify0
should reify only the choices made by the inner pro-
gram, and let the outer choices take effect. The

stream generator has to be lazy, so it has the form
letlazy (s1 ⊕ s2). Comparing the nested inference
property with the code for many reveals that the key
property of many p (s1 ⊕ s2) is satisfied without us
needing to do anything. Our many has exactly the
right semantics.

6 Conclusions

Classical logic programming all too often forces us to
choose between efficiency and expressiveness, on one
hand, and completeness on the other hand. Nega-
tion and committed choice make logic programs eas-
ier to write and, in some modes, faster to run. Alas,
some other modes (informally, running ‘backwards’)
become unusable or impossible. Kleene star is a good
example of the trade-off: maximal munch simplifies
the grammar and makes parsing efficient, but de-
stroys the ability to generate grammar’s language.
Functional logic programming systems can remove
the trade-off. Properly implemented encapsulated
search (nested inference, in Hansei) lets us distin-
guish the choices of the parser from the choices of
the stream and cut only the former. Perhaps sur-
prisingly this distinction just falls out of the need
for non-deterministic stream to be lazy. Thus Kleene
star with maximal munch lets us parse and generate
the complete language. In Hansei, we can have it
both ways.

We have gone back to Herbrand: we build the Her-
brand universe (the set of all ground terms) and ex-
plore it to find a model of a program. We build the
universe by modeling ‘logic variables’ as generators
for their domains. Since the Herbrand universe for
most logic programs is infinite, non-strict evaluation
is the necessity. Furthermore, since logic variables
may occur several times, we must be able to corre-
late the generators. Finally, we need a systematic
way of exploring the search space, without getting
stuck in one infinite sub-region. Hansei, among other
similar systems, satisfies all these requirements.

Logic variables and unification have been intro-
duced by Robinson as a way to ‘lift’ ground reso-
lution proofs of Herbrand, to avoid generating the
vast number of ground terms [12]. Logic variables ef-



fectively delay the generation of ground terms to the
last possible moment and to the least extent. Doing
computations only as far as needed is also the goal
of lazy evaluation. It appears that lazy evaluation
can make up for logic variables, rendering Herbrand’s
original approach practical. It remains a fascinating
task to be able to systematically derive a unification
procedure.
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