
Sound and Efficient Language-Integrated Query

Maintaining the ORDER

Oleg Kiselyov and Tatsuya Katsushima

Tohoku University, Japan
oleg@okmij.org

Abstract. As SQL moved from the English-like language for ad hoc
queries by business users to its present status as the universal relational
database access, the lack of abstractions and compositionality in the
original design is felt more and more acute. Recently added subqueries
and common table expressions compensate, albeit generally inefficiently.
The inadequacies of SQL motivated language-integrated query systems
such as (T-)LINQ, which offer an applicative, programming-like query
language compiled to efficient SQL.
However, the seemingly straightforward ranking operations ORDER BY
and LIMIT are not supported efficiently, consistently or at all in sub-
queries. The SQL standard defines their behavior only when applied
to the whole query. Language-integrated query systems do not support
them either: naively extending ranking to subexpressions breaks the dis-
tributivity laws of UNION ALL underlying optimizations and compila-
tion.
We present the first compositional semantics of ORDER BY and LIMIT,
which reproduces in the limit the standard-prescribed SQL behavior but
also applies to arbitrarily composed query expressions and preserves the
distributivity laws. We introduce the relational calculus SQUR that in-
cludes ordering and subranging and whose normal forms correspond to ef-
ficient, portable, subquery-free SQL. Treating these operations as effects,
we describe a type-and-effect system for SQUR and prove its soundness.
Our denotational semantics leads to the provably correctness-preserving
normalization-by-evaluation. An implementation of SQUR thus becomes
a sound and efficient language-integrated query system maintaining the
ORDER.

1 Introduction

Language-integrated query is “smooth integration” of database queries with a
conventional programming language [1, 4]. Not only do we access (generally
external) relational data as if they were local arrays of records. Not only do
we type-check queries as ordinary programs. Mainly, we use the abstraction
facilities of the programming language – functions, modules, classes, etc. – to
parameterize queries, reuse old queries as parts of new ones, and compile query
libraries. Reflecting operations on database relations in the type system is the old
problem with good solutions [3]. Query reuse and composition, detailed below,

2

is more difficult: as we are about to see, the seemingly straightforward operation
to sort the query results – patterned after ORDER BY of SQL – wreaks havoc
with the existing approaches to query composition. It hence acts quite like a side
effect. Seemingly simple, the more one (or stackoverflow users) thinks about it,
the more problematic edge cases come to light. A formal treatment is called for,
which we develop in this paper in terms of a denotational approach.

1.1 Query composition

Since query composition is the central, and subtle problem, we introduce it in
more detail. The query language of this section is SQL, although the rest of
the paper uses the calculus SQUR that is more regular and suited for formal
analysis. However, an implementation of SQUR still eventually produces SQL,
the lingua franca of relational databases. Therefore, understanding the SQL
behavior is crucial. Besides, SQL compositions here and their problems in §1.2
occur in the wild, as seen, e.g., on stackoverflow and in training literature.

Consider a sample database table employee that lists, among others, employee
names, their departments and the hourly wage. The following query then

QE
def
= SELECT E.∗ FROM employee as E WHERE E.wage > 20

reports employees paid at twice the minimum wage. One may also think of the
query as building a filtered table: a subset of well-paid employees. As typical,
the department in the employee table is mentioned by its deptID and so not
informative for people outside the company. Suppose there is a table department
with the descriptive name for each department, along with other data. A more
presentable employee report is then obtained by the so-called join query, which
all relational database systems are meant to run well:

QD
def
= SELECT E.∗, D.name FROM employee as E, department as D

WHERE E.deptID = D.deptID

Queries QE and QD are useful on their own; one may imagine them stored
in a library. It is also useful to combine them, so to report well-paid employees
with descriptive department names. We would like to reuse the queries without
changing them except for substituting table names.

There have been three approaches to query composition, shown in the order
of increasing performance1.

temporary table One may store the results of QE in a (temporary) table
subemp and then perform QD in which employee is replaced with the filtered
subemp. The latter table can be ‘virtual’: a (non-materialized) view or a
so-called common table expression shown below:

1 To obtain an informative report one may, in principle, run QE first and for each
resulting record, query department for the descriptive department name. Such ‘com-
position’ essentially executes as many department queries as there are well-paid
employees and leads to the ‘query avalanche’ well explained in [4]. In this paper we
consider only those compositions that result in a single query.

3

with subemp {QE} QD[employee := subemp]

where QE and QD above are meant to be replaced with the respective SQL
statements; [old := new] stands for substitution. No full subemp is created;
instead, QE runs incrementally.

subquery Another way to compose QE and QD is to consider the query QE as
a table on its own and substitute it for the original employee table in QD:

QD[employee := QE]

Thus QE will run as a subquery of QD2. Subqueries have generally better
performance: the optimizer may rewrite a subquery into a simple join (like
the one shown below), which can then be further optimized. The rewriting
is by no means guaranteed3.

rewriting into flat SQL After composing QE and QD as above, rather than
sending the result to the (‘black-box’) database engine we re-write it our-
selves into a subquery-free (i.e., ‘flat’) SQL using equational laws:

SELECT E.∗, D.name FROM employee as E, department as D
WHERE E.deptID = D.deptID AND E.wage > 20

This is the most performant approach, and in fact recommended in vendor
and training literature. The database user is supposed to do the rewriting.
Language-integrated query, as an intermediary between the programmers
and SQL, aims to isolate them from the vagaries of SQL – in particular, to
perform such re-writing automatically. We demonstrate it in §2.

1.2 Ordering

Ordering of the query results at first glance appears straightforward: for example,
the following modification to QE

QEO
def
= SELECT E.∗ FROM employee as E WHERE E.wage > 20 ORDER BY E.wage

lists employees in the increasing order of their wages. As for instance, the Oracle
documentation puts it, “Use the ORDER BY clause to order rows returned by
the [SELECT] statement. Without an ORDER BY clause, no guarantee exists
that the same query executed more than once will retrieve rows in the same
order.”4 It takes time for the second part of the quote to sink in, however. We
shall see the examples momentarily.

This seemingly simple ORDER BY feature wrecks all three approaches to
compositionality described above. Consider the temporary table approach, with
the ordered QEO in place of QE: with subemp {QEO} QD[employee := subemp].

2 Such subqueries in the FROM SQL clause are sometimes called ‘derived tables’ or
‘inlined views’.

3 For example, MySQL 5.7 never re-writes and hence optimizes subqueries
in the FROM clause: http://dev.mysql.com/doc/refman/5.7/en/subquery-

restrictions.html.
4 https://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_

10002.htm\#sthref6708

4

To order the filtered employee table, it first has to be fully constructed, and then
sorted (at least that is what PostgreSQL does). Therefore, QEO cannot run in-
crementally; it requires space for the filtered data and sorting. Unfortunately,
this expense is all for naught: the rows of the entire composed query are still
reported in unpredictable order. Recall, unless ORDER BY is attached to the
whole query (QD is our example), nothing certain can be said about the order
of its results. Expensive useless operations are not the feature one wishes for in
a practical system.

If we substitute QEO for employee as a (derived) table in QD, we end up
with a subquery containing ORDER BY. According to the Microsoft SQL server
documentation, “The ORDER BY clause is not valid in views, inline functions,
derived tables, and subqueries, unless either the TOP or OFFSET and FETCH
clauses are also specified. When ORDER BY is used in these objects, the clause
is used only to determine the rows returned by the TOP clause or OFFSET and
FETCH clauses. The ORDER BY clause does not guarantee ordered results
when these constructs are queried, unless ORDER BY is also specified in the
query itself.”5 Thus composing of ORDER BY queries is not just about poor
performance. It could be no performance at all: dynamic error when trying to
run the composed query.

Attempting to rewrite the ordered subquery into flat SQL is just as problem-
atic: Re-writing relies on equational laws [6], many of which are no longer valid
in the presence of ordering naively extended to subqueries. As an example, con-
sider one of the equational laws (called ForUnionAll1 in [6, 13]), applied when a
subquery is a UNION ALL of two smaller queries Q1 and Q2:

SELECT ∗ FROM (Q1 UNION ALL Q2) WHERE exp ≡
(SELECT ∗ FROM Q1 WHERE exp) UNION ALL (SELECT ∗ FROM Q2 WHERE exp)

For the ordered query, the analogous distributivity no longer holds:

SELECT ∗ FROM (Q1 UNION ALL Q2) WHERE exp ORDER BY eo 6≡
(SELECT ∗ FROM Q1 WHERE exp ORDER BY eo) UNION ALL

(SELECT ∗ FROM Q2 WHERE exp ORDER BY eo)

Indeed, the left-hand-side query gives the results in a definite order whereas the
right-hand-side does not. (With subranging, LIMIT. . . OFFSET, the failure of
distributivity is even more evident.) Incidentally, in our semantics of ordering
and subranging, distributivity does hold: see §4.

Composing queries with ORDER BY is not contrived: ‘real-life’ database pro-
grammers regularly do that and are regularly confused by the inconsistent, puz-
zling, vendor- and version–specific responses of database engines, as amply doc-
umented in stackoverflow and other fora. For example,

5 https://msdn.microsoft.com/en-us/library/ms188385.aspx

5

“Query with ORDER BY in a FROM subquery produces unordered result. Is
this a bug? Below is an example of this:

SELECT field1, field2
FROM (SELECT field1, field2 FROM table1 ORDER BY field2) alias

returns a result set that is not necessarily ordered by field2.”6

“I am using an application (MapServer) that wraps SQL statements, so that
the ORDER BY statement is in the inner query. E.g.

SELECT ∗ FROM (SELECT ID, GEOM, Name FROM t ORDER BY Name) as tbl

The application has many different database drivers. I mainly use the MS SQL
Server driver, and SQL Server 2008. This throws an error if an ORDER BY
is found in a subquery.”7

One may find many more such discussions8 by googling “ORDER BY derived
table”. The semantics presented in the paper not only answers these questions
but also shows how to transform the problematic queries into portable SQL.

1.3 Contributions

If we are to talk to a relational database and obtain sorted results, we have to
send the SQL code with ORDER BY attached where the SQL standard expects
to see it, to the whole SELECT statement. If we are to freely compose and
reuse the already built queries, we quickly end up with ORDER BY appearing
in subexpressions, often where the SQL standard does not expect to see it. It is
not clear what such composed queries actually mean, let alone how to transform
them to the ones that can be portably executed on various database systems.
(Many systems, e.g., PostgreSQL, Oracle, DB2, and MySQL support nested
ORDER BY, but each differently.) In short, the problem is that neither the
SQL standard, nor its realizations, nor the existing language-integrated query
systems supporting ordering give a compositional semantics to ORDER BY.

We present the first compositional treatment of ORDER BY and the related
LIMIT. . . OFFSET – and its application for optimizing composed queries to
yield efficient and portable SQL. Specifically,

– We present a new language-integrated query calculus SQUR9 with the de-
notational, and hence, compositional semantics. The semantics is strikingly,
ridiculously simple, requiring no domain calculus, no complete partial orders,
no lifted types. As the price for simplicity, bare SQUR, like the old SQL,
lacks abstractions and is cumbersome to use. Unlike SQL, however, SQUR

6 https://mariadb.com/kb/en/mariadb/why-is-order-by-in-a-from-subquery-

ignored/
7 http://dba.stackexchange.com/questions/82930/database-implementations-

of-order-by-in-a-subquery
8 http://stackoverflow.com/questions/18031421/the-order-by-clause-is-

invalid-in-views-inline-functions-derived-tables-subqu

https://www.sqlservercentral.com/Forums/Topic1079476-391-1.aspx
9 The name, just like QueΛ of [13], is a pun for old-timers

6

is composable and hence easily embeddable into a rich metalanguage, which
provides modules, combinators, and other syntax sugar. To demonstrate10,
we have embedded SQUR into OCaml (see below).

– Using the non-standard domain of partially-known values we design a nor-
malization-by-evaluation algorithm, which normalizes a SQUR query into
the form easily convertible to the portable flat SQL. We hence re-implement
QueΛ [13] and reproduce its (and T-LINQ [4]) results. The earlier research
relied on the (syntactic) normalization-by-rewriting and hence had to con-
tend with confluence and termination. Our, semantic, normalization is de-
terministic by construction and is easily shown total;

– We extend the core SQUR with ordering and subranging, maintaining the
denotational, compositional treatment and the normalization-by-evaluation.
Our semantics of ranking coincides with the SQL semantics when applied to
the whole query. Our semantics preserves the distributivity laws of UNION ALL
whereas the naively understood ordering and subranging do not.

– We treat ordering and subranging as effects, and design the corresponding
type-and-effect system. The types tell when subqueries can be eliminated and
when they have to be turned into virtual tables (common-table expressions).

The calculus has been implemented by embedding into OCaml in the tagless-
final style, resulting in a sound and efficient language-integrated–query system.
The implementation is available at http://okmij.org/ftp/meta-programming/
Sqr/ but is not described here for the lack of space.

The structure of the paper is as follows. The next section introduces the core
SQUR: first, by examples and then formally. We give the denotational semantics,
the type system, and the semantic proof of the type soundness. §3 describes the
normalization-by-evaluation for the core calculus, and the generation of flat SQL.
§4 adds sorting and the limiting of the query output. We then review the related
work and conclude.

2 Core SQUR

This section presents the core calculus, to be extended with ranking in §4.
Before the formal presentation (formal definition in §2.1, type system §2.2,

denotational semantics §2.3), we introduce SQUR informally, on examples from
§1.1. The query QE that listed high-paid employees looks in SQUR as follows:

defn Qe:
for(e ← table employee) where e.wage>20 yield e

The first line is not part of SQUR (hence the different font): it is mere a pre-
sentation tool to attach the name to a query for easy reference. One may think
that SQUR is to be subjected to a C-like preprocessor (although we certainly

10 A simpler example of embedding a bare, first-order calculus into a rich, functional
(meta)language is described in http://okmij.org/ftp/tagless-final/nondet-

effect.html.

7

have in mind something more refined: see the accompanying code). The query
QD attaching meaningful department names to employees is

defn Qd emp:
for (e ← emp) for (d ← table department)
where e.deptID = d.deptID yield <name=e.name, dep=d.name, wage=e.wage>

This definition is parameterized by the source of the employee records.
For the presentable report of high-paid employees we compose the two queries,

simply as Qd Qe. After desugaring/preprocessing (i.e., inlining the definitions
and substituting the parameters) we obtain

for (e ← for(e ← table employee) where e.wage>20 yield e)
for (d ← table department)
where e.deptID = d.deptID yield <name=e.name, dep=d.name, wage=e.wage>

which can be interpreted as SQL with the nested SELECTs (derived tables),
as described in §1.1. The paper [13] has explained in detail why subqueries are
suboptimal. Normalizing that query gives

for (e ← table employee)
for (d ← table department)
where e.deptID = d.deptID && e.wage>20
yield <name=e.name, dep=d.name, wage=e.wage>

which corresponds to the simple and efficient flat query at the end of §1.1. §3
explains the normalization, and §3.2 SQL generation, in detail. But first we have
to formally introduce SQUR.

2.1 SQUR, Formally

The basic SQUR is formally defined in Fig. 1. It is reminiscent of nested re-
lational calculus [14]. One of the most glaring, although essentially minor dif-
ferences, is the absence of lambda-abstractions and applications. SQUR hence
is not (an extension of) lambda-calculus. Database systems generally do not
support first-class functions in queries; hence the lack of lambda-abstractions in
SQUR is not an expressiveness limitation in that respect. Furthermore, SQUR
is designed for language-integrated queries: it is intended to be ‘preprocessed’,
that is, embedded into a host language, and hence to take advantage of the host
language’s abstraction mechanisms such as first-class functions, modules, etc.

We use x,y for variables, c for integer, boolean, etc. and table constants, n
and m for numeric literals, l for record labels. The sequence of items e1,. . . ,en is
abbreviated as e,. . . . For clarity, Fig. 1 defines only one basic operation: addition.
Others are analogous and are silently added when needed. Types of SQUR are
base types b, record types <l:b,. . .> where l1,. . . ,ln are field labels, and bag
types t bag where t is a base or a record type. Bag types can be annotated with
the set of effects ε; if empty, it is frequently elided. Effects come into play only
in §4; for now we can assume them empty and ignore.

Besides constants, variable references and primitive operations, the language
supports record construction <l1=e1,l2=e2,. . .> and record field li projection

8

Variables x,y,z. . .
Constants c (integers, booleans, tables, etc.)
Numeric Literals n, m
Record Labels l
Effect Annotations ε
Base Types b ::= int | bool | string
Flat Types t ::= b | <l:b,. . .>
Types s ::= t | t bagˆε | t tbl
Type Environment Γ ::= x:t, y:t tbl, . . .

Expressions
e ::= c | x | e + e | <l=e,. . .> | e.l | for(x←e) e | e] e
| where e e | yield e | table e

Fig. 1. Syntax of core SQUR

e.li, bag comprehensions for(x←e1) e2, and the bag concatenation e1] e2 pat-
terned after SQL’s UNION ALL. The body of for extends as far to the right as
possible (similarly for where and yield). Intuitively, where e1 e2 evaluates to the
empty bag if e1 is false; yield e produces the singleton bag with the result of e.
The language has table constants representing database tables (plus the special
constant bag empty) with their own type t tbl. The expression table e turns a
table into a bag; the need to distinguish table constants comes during normal-
ization and SQL conversion. Since the language has no first-class functions, we
assume from the outset that all variable names (appearing in comprehensions)
are unique.

2.2 Type System

The type system is presented in Fig. 2. The (Const) rule shows the typing of
a single base-type constant true and the single table constant employee. Other
constants are analogous. The type environment Γ contains only the bindings
with flat types and table types (we see the latter bindings only in §4). As one
may expect from the typing of empty containers in general, bag empty can bear
any element type and any effect annotation. From now on, we only deal with
well-typed SQUR terms.

The next section presents the (denotational) dynamic semantics and proves
the type system sound.

2.3 Denotational Semantics

The denotational semantics of SQUR is set-theoretic and Church-style (that is,
only typed expressions are given meaning). Fig. 3 presents semantic domains
and defines T [s] that maps SQUR’s type s to a semantic domain, which is an
ordinary set. If A1 and A2 are sets, we write l1:A1 × l2:A2 for a labeled product:
the set of pairs <l1:a1,l2:a2>, a1 ∈ A1, a2 ∈ A2. The components of the pair
are identified by their labels li rather than their position. If p is such a labeled
pair, we write p.li to access the li-th component, and p × l3:a3 to extend the

9

Const
Γ ` true: bool

Const
Γ ` employee: <name:string, deptID:int , wage:int> tbl

Empty
Γ ` bag empty: t bagˆε

x: t ∈ Γ
Var

Γ ` x: t

Γ ` e1: int Γ ` e2: int
Op

Γ ` e1 + e2 : int

Γ ` e: t tbl
Table

Γ ` table e : t bagˆφ

Γ ` e: b . . .
Rec

Γ ` <l=e,. . .>: <l:b,. . .>

Γ ` e: <l:b,. . .>
Proj

Γ ` e.l i : bi

Γ ` e1: t bagˆε Γ ` e2: t bagˆε
UnionAll

Γ ` e1] e2: t bagˆε

Γ ` e:t
Yield

Γ ` yield e: t bagˆφ

Γ ` e1: bool Γ ` e2: t bagˆε
Where

Γ ` where e1 e2: t bagˆε

Γ ` e1: t1 bagˆφ Γ ,x:t1 ` e2: t2 bagˆε
For

Γ ` for(x←e1) e2 : t2 bagˆε

Fig. 2. Type system

pair with a new component. We write {{a,. . . }} for a multiset with elements ai,
and {{A}} for the set of multisets whose elements come from the set A.

T [int] = N set of integers
T [bool] = {T, F} booleans
T [string] = S set of strings
T [<l1:b1,. . . ,ln:bn>] = l1:T [b1] × · · ·× ln:T [bn] labeled product
T [t tbl] = {{T [t]}} set of multisets of elements of type T [t]
T [t bag] = {{T [t]}} set of multisets of elements of type T [t]

T [x1:t1,. . . ,xn:tn] = x1:T [t1] × · · ·× xn:T [tn] interpretation of the environment

Fig. 3. Semantic domains and the interpretation of types

The semantic function E [Γ ` e:s] ρΓ in Fig. 4 maps a type judgment and the
environment to an element of T [s]. Here ρΓ is an element of the labeled product
T [Γ]. We added the if-then-else conditional to our mathematical notation for
writing denotations, overload ∪ to mean the set or multiset union, and write
{{. . . | x←A}} for a multiset comprehension.

It is clear from Fig. 4 that E [−]ρ is the total map. Hence

Theorem 1 (Type Soundness). For any ρΓ ∈ T [Γ], E [Γ ` e:s] ρΓ ∈ T [s].

The semantics of e1] e2 clearly shows that the UNION ALL operation is as-
sociative and commutative. Moreover, the following distributive laws hold (which
is easy to verify by applying the semantic function to both sides of the equations).
These laws, among others, underlie the normalization-by-rewriting of [4, 6].

Theorem 2 (Distributive Equational Laws of UNION ALL).

for(x ← e1] e2) e ≡ (for(x←e1) e)] (for(x←e2) e)
for(x ← e) e1] e2 ≡ (for(x←e) e1)] (for(x←e) e2)
where e e1] e2 ≡ (where e e1)] (where e e2)

10

E[Γ ` c: s] ρ ∈ T [s]
E[Γ ` bag empty: t bag] ρ = {{}}
E[Γ ` x: t] ρ = ρ.x
E[Γ ` e1 + e2: int] ρ = E[Γ ` e1: int]ρ + E[Γ ` e2: int]ρ
E[Γ ` <l=e,. . .>: <l:b,. . .>] ρ = <l:E[Γ ` e:b]ρ,. . .>
E[Γ ` e.li: bi] ρ = (E[Γ ` e: <l:b,. . .>]ρ).li
E[Γ ` e1] e2: t bag] ρ = E[Γ ` e1: t bag]ρ ∪ E[Γ ` e2: t bag]ρ
E[Γ ` yield e: t bag] ρ = {{ E[Γ ` e: t]ρ }}
E[Γ ` where e1 e: t bag] ρ = if E[Γ ` e1: bool]ρ then E[Γ ` e: t bag]ρ else {{}}
E[Γ ` table e: t bag] ρ = E[Γ ` e: t tbl]ρ
E[Γ ` for(x←e1) e: t bag] ρ =

⋃
{{ E[Γ ,x:t1 ` e: t bag] (ρ× x : x′) |

x′←E[Γ ` e1: t1 bag]ρ }}
Fig. 4. Denotational semantics of Core SQUR

3 Normalization-by-Evaluation

The just described denotational semantics may be regarded as an interpreter
of SQUR queries over an in-memory database of lists of records. Our motiva-
tion however is to run SQUR over external relational databases. Therefore, this
section interprets SQUR expressions as SQL statements – i.e., gives a different
semantics to SQUR, over the domain of SQL queries.

The problem is not trivial: as we saw in §2 earlier and see again later, only
a subset of SQUR expressions can be easily translated to ‘flat’ SQL queries. A
solution suggested in Cooper [6] is to re-write, if possible, the expressions outside
the easily-translatable subset into that good subset. For the simple language
corresponding to our Core SQUR, Cooper (later followed by [4]) introduced a
set of rewriting rules, proved they are type- and semantic- preserving, confluent
and terminating, and the resulting normal forms are easily-translatable to SQL.
No such rules are known for the language extended with ordering, grouping, etc.

We take an approach radically different from [6] and its followers: semantic,
rather than syntactic. We start with the ‘normal form’ for SQUR expressions,
specifically designed to be easily convertible to SQL. We then show how to com-
pute that normal form, through deterministic evaluation. The totality of evalua-
tion proves that all SQUR expressions are translatable to SQL. The denotational
approach makes it rather easy to show the type and semantics preservation of
this normalization by evaluation.

We define the normalization-by-evaluation as giving another, non-standard
interpretation of SQUR, into different semantic domains. This section defines
new semantic functions T n[−] and En[−], clause by clause. The environments
and variables are handled as before:
T n[x1:t1,. . . ,xn:tn] = x1:T n[t1] × · · ·× xn:T n[tn]
En[Γ ` x: t] ρ = ρ.x

The new semantic domains will include, in one form or another, sets of all
SQUR terms of type s, which we denote as Es. The terms are generally open,
so, strictly speaking we have to index E not only by the type but also by the

11

corresponding typing environment. To keep the notation readable (and writable),
however, we make the typing environment implicit. For base types (we only show
int), the new domain is the disjoint union (sum) of T [b] and Eb. To simplify the
notation, we explicitly write only the inr tag of the sum, and elide inl. We also
show the relevant clauses of a new semantic function, I[−]: T n[s] → Es, called
reification. It is in some sense (made precise later) an ‘inverse’ of evaluation,
producing the SQUR expression with the given (non-standard) meaning.

T n[int] = N⊕ Eint

En[Γ ` 0: int] ρ = 0 (other integer constants are similar)
En[Γ ` e1 + e2: int] ρ = add (En[Γ ` e1: int] ρ) (En[Γ ` e2: int] ρ) where
add 0 x = x
add x 0 = x
add n m = n+m n,m ∈ N
add x y = inr (I[x] + I[y])

I[0] = 0
I[inr e] = e

The standard and non-standard semantics thus differ in assigning meaning
to open expressions: the former interprets, say, x+1 to mean a N → N function
(viz., the increment). On the other hand, the non-standard semantics interprets
the same expression as itself (plus the implicit typing environment associating
x with int). The non-standard domain is hence the domain of partially-known
values, familiar from partial evaluation, also known as a glued domain [7].

The interpretation of record types is similar:
T n[<l:b,. . .>] = l:T n[b] × · · · ⊕ E
En[Γ ` <l=e,. . .>: <l:b,. . .>] ρ = <l:En[Γ ` e:b]ρ,. . .>
En[Γ ` e.li: bi] ρ = prjl (En[Γ ` e: <l:b,. . .>]ρ) where
prjl <l:x,. . .> = x
prjl (inr e) = inr e.l

I[<l:x,. . .>] = <l:I[x],. . .>
I[inr e] = e
The non-standard semantic domain for bag types is quite more complex.

Formally, the meaning of a t bag expression is a multiset whose elements (to be
called primitive comprehensions) are triples (ts,y,w) where w is the non-standard
boolean representing the guard of the comprehension; y is the meaning of the
(generic) comprehension element and ts is the set of pairs (x,m) where m is a
table constant of type t’ tbl for some t’ and x: t’ is a fresh variable. We will
use a special notation for such triple: fors(x←m. . .) whr w yld y, which should
remind one of SQUR’s repeated comprehension expressions (with n ≥ 0)

for(x1← table m1) . . . for(xn← table mn) where w yield y

We write M for the set of table constants. The reification clause should explain
the intent behind our representation of bags. As we shall see later, the represen-
tation is also good for converting to SQL.

A primitive table and yield are straightforward to interpret as primitive com-
prehensions. The operation], like in the standard semantics, joins the multisets.
The where operation pushes its boolean guard down to the whr w of a primitive
comprehension. The for operation is interpreted as a nested comprehension. The

12

T n[t bag] = {{ fors(x←M. . .) whr T n[bool] yld T n[t] }}
En[Γ ` bag empty: t bag] ρ = {{}}
En[Γ ` e1] e2: t bag] ρ = En[Γ ` e1: t bag]ρ ∪ En[Γ ` e2: t bag]ρ
En[Γ ` yield e: t bag] ρ = {{ fors () whr T yld En[Γ ` e: t]ρ }}
En[Γ ` table m: t bag] ρ = {{ fors (u←m) whr T yld u }} and u is fresh
En[Γ ` where e1 e: t bag] ρ = where′ (En[Γ ` e1: bool]ρ) (En[Γ ` e: t bag]ρ) where
where′ T xs = xs
where′ F xs = {{}}
where′ t xs = {{ fors (x←m. . .) whr w ∧ t yld y

| fors (x←m. . .) whr w yld y ← xs}}
En[Γ ` for(x←e1) e: t bag] ρ =

{{ fors (x’←m’,. . . x’’←m’’,. . .) whr w′ ∧ w′′ yld y′′ |
fors (x’←m’. . .) whr w′ yld y′ ← En[Γ ` e1: t1 bag]ρ,
fors (x’’←m’’. . .) whr w′′ yld y′′ ← En[Γ ,x:t1 ` e: t bag](ρ×x:y′) }}

I[{{}}] = bag empty
I[xs] =] {{ for(x←table m) . . . where I[w] yield I[y] |

fors(x←m. . .) whr w yld y ← xs}}
(the where clause is omitted if w is T)

SQUR implementation realizes the non-standard evaluation En[−] as another
tagless-final interpreter of SQUR’s expressions.

3.1 Formal properties of NBE

The mere inspection of En[−] shows it to be total and hence well-defined, giving
another denotational semantics of SQUR. Recall, I[−]: T n[s] → Es takes the
non-standard interpretation of a SQUR expression (‘semantics’) and picks an
expression (‘syntax’) with that meaning. Such an operation is typically called
‘reify’; see the tutorial [7] for more discussion. Clearly, I[−] picks an expression of
the same type as the original one. We have been implicit about the environments
however. The following proposition, which follows from a more careful analysis
of En[−] and I[−], recovers the environments.

Proposition 1 (Type Preservation). For all Γ ` e:s and ρ ∈ T n[Γ], it holds
Γ ’ ` I[En[e]ρ], where Γ ’ lists the variables in the domain of ρ and their types.

As an example, consider

x:<l1:int,l2:int,l3:int>, y:int ` x.l1 + x.l2 + x.l3 + y:int
Interpreting it in the environment ρ=< x:<l1:inr u1,l2:inr u2+2,l3=3>, y:4 >
and reifying gives u1:int,u2:int ` u1+(u2+2)+7:int.

Theorem 3 (Soundness of NBE). For all SQUR expressions Γ ` e:s, and
environments ρ and ρ’ of appropriate types, E [I[En[e]ρ]]ρ’ is equal to E [e](E [I[ρ]]ρ’).

The non-standard interpretation is thus consistent with the standard denota-
tional semantics in §2.3. For closed e the theorem states that I[En[e]<>] is equal
(i.e., has the equal denotation) to e. Hence I[−] is the left inverse of En[−]. The
proof is straightforward and is outlined in the Appendix.

13

3.2 Normal Forms and SQL Generation

Definition 1 (Normal form). We call I[En[e]<>] the normal form N [e] of a
closed term e

Proposition 2 (Correctness of normal form). If e is a closed term of the
type s, then: (a) N [e] exists; (b) ` N [e]:s; (c) N [N [e]] = N [e]; (d) E [e] = E [N [e]]

That is, the normalization is total, type-preserving, idempotent, and meaning
preserving. The totality comes from the fact that En[−] and I[−] are total; (b)
is Prop. 1; (d) is a corollary of Thm. 3, and (c) is easy to verify by inspection of
En[−]. The fact that N [table m] is for(x←table m) yield x tells that our normal
forms are eta-long.

We can now complete our program of interpreting every well-typed SQUR
expression of a bag type as a SQL query. First we apply the normalization-by-
evaluation to obtain the normal formN [e], which is designed to be easily mapped
to a flat SQL query. Actually, it is simpler use the result of En[e] directly. Recall,
if e is a closed expression of a bag type, En[e]<> is a multiset of primitive com-
prehensions {{ fors (x←m. . .) whr w yld y }} where m are table constants. A
primitive comprehension is straightforward to convert to a SELECT statement:
the table constants m,. . . become the FROM list of the SELECT statement, w
becomes the WHERE condition and y becomes the SELECT list. If the multiset
of primitive comprehensions has more than one element, the resulting SELECTs
are UNION ALL-ed together.

The approach presented so far handles the same language-integrated query
language as QueΛ and T-LINQ [4], eventually producing the same SQL code
as in those two previous approaches (SQUR in Fig. 1 does not include EXIST
queries, but our implementation of SQUR does).

An example is given in §2, when describing the SQL code eventually obtained
for the composition of the sample queries, Qe and Qd.

4 Ordering

SQL has operations to sort the results of a query or extract a particular range
of rows, as discussed in §1.2. The query in the right-hand column is the example
from §1.2, sorting the filtered list of employees.

defn Qeo:
for(e ← table employee) where e.wage>20
ordering wage e.wage yield e

SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage

whereas the following one returns only the first three rows of the sorted table
starting from the second one.

defn Qel:
for(e ← table employee) where e.wage>20
limit (3,1) ordering wage e.wage yield e

SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage
LIMIT 3 OFFSET 1

To write these queries in SQUR we add the operations ordering and limit, as
illustrated in the left-hand column of the tables. Formally the operations are
defined as

14

Ordering Effects o:[olabel,. . .], l:(n,m)
Ordering Labels owage,. . .
Expressions e +:= ordering wage e1 e | limit (n,m) e | let table x = e in e

Fig. 5. Syntax of ordering and ranging operations

We assume a countable supply of ordering operations ordering l, each with
its own effect label ol; we show only one such operation ordering wage and its
effect label owage; the others are analogous. An implementation of SQUR is
presumed to be able to declare ordering operations and the corresponding labels
(e.g., using generative modules). Following the earlier conventions, expressions
e in ordering l e1 e and limit(n,m) e continue as far right as possible, saving us
parentheses. The ordering is ascending; this is not a limitation since the key is
an arbitrary integer expression, which can always be adjusted for the desired
ordering. The directive limit (n,m) e extracts n elements starting from m from
the sequence obtained by sorting the final bag result; the type system ensures
the presence of ordering defining the sorting keys. We also added let table, the
let-expression specialized for bags, to be used shortly.

In SQL, ORDER BY and LIMIT . . . OFFSET are to be applied at the end,
to the results of the query – at the top-level, so to speak. When reusing previ-
ously written queries as part of new ones, the originally ‘top-level’ forms quickly
become buried in subexpressions. Here is an example of a query composition,
reusing Qeo:

defn Qeo2:
for (e ← Qeo) for (d ← table department)
where e.deptID = d.deptID ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

(assume Qeo in the above expression is substituted with the corresponding
query). Naively doing such composition in SQL results in

SELECT E.name, D.name, E.wage FROM (SELECT E.∗ FROM employee as E WHERE
E.wage > 20 ORDER BY E.wage) AS E, department as D

WHERE E.deptID = D.deptID ORDER BY D.deptID

with ORDER BY in a subquery – which is either slow and wasteful, or even not
allowed at all, as we saw in §1.2.

To allow compositionality we do not impose syntactic restrictions on ordering
and limit: they may in principle appear anywhere within a query. We do however
wish to preserve the intent of SQL of treating these operations as directives, to be
applied to the end-result of a query. Thus, ordering and limiting are effects. Even
if ordering and limit may be buried and duplicated, they have an effect, which
is noticed, accumulated, and applied to the query results. In the type system
the effects appear as the annotation on the bag type, as shown in the extended
type system in Fig. 6. We have refined the (For) rule, whose justification will
become clear from the dynamic semantics explained below. The ordering effect
annotation o:[label,. . .] is parameterized by the list of ordering labels. The limit
annotation l:(n,m) is indexed by the subranging parameters. They are statically

15

known integers and do not require dependent types. They can be simply realized
using OCaml modules.

Γ ` e1: int Γ ` e: t bagˆε ε ⊆ {o:[lb,. . .]}
Ordering

Γ ` ordering wage e1 e : t bagˆ{o:[owage,lb,. . .]}
Γ ` e: t bagˆε ε = {o:[lb,. . .]}

Limit
Γ ` limit (n,m) e : t bagˆ(ε ∪ {l :(n,m)})
Γ ` e1: t1 bagˆε1 ε1 ⊆ {o:[lb,. . .]} Γ ,x:t1 ` e2: t2 bagˆε

For
Γ ` for(x←e1) e2 : t2 bagˆε

` e1 : t1 bagˆε1 Γ ,y:t1 tbl ` e2: t2 bagˆε
Let

Γ ` let table y=e1 in e2 : t2 bagˆε

Fig. 6. Type system with ordering operations

The type system reflects several arbitrary choices, as we explain later. For
example, in the (Ordering) rule, ordering wage e1 e adds the corresponding or-
dering label owage before other ordering effect labels associated with e. As exten-
sively discussed back in §1.2, ORDER BY in subexpressions, unless accompanied
by LIMIT, makes no sense and we (along with several real database systems)
ignore it, which is reflected in the denotational semantics below.

The extended normalization-by-evaluation normalizes Qeo2 into

defn Qn
eo2:

for (e ← table employee)
for (d ← table department)
where e.deptID = d.deptID && e.wage>20
ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

SELECT E.name, D.name, E.wage
FROM employee as E, department as D
WHERE E.deptID = D.deptID AND

E.wage > 20
ORDER BY D.deptID

eliminating the nested ORDER BY (as well as the subquery). The result is easily
convertible to flat SQL, shown on the right.

If we attempt to write Qeo2 with the subranged Qel in place of Qeo, it
will not type check: whereas Qeo has the effect annotation {o:[owage]}, Qel has
{l:(3,1), o:[owage]}. The (For) typing rule for for(x←e1) e2 does not permit the
subranging l:(n,m) effect annotation on e1. That is, ordering with the limit can-
not be eliminated from a subquery, resulting in the performance hit. One has to
use let-table, to make the performance implications explicit:

defn Qeol2:
let table t = Qel in
for (e ← table t) for (d ← table department)
where e.deptID = d.deptID ordering dept d.deptID
yield <name=e.name, dep=d.name, wage=e.wage>

which translates to SQL with common table expressions

WITH t8 AS (SELECT E.∗ FROM employee as E
WHERE E.wage > 20 ORDER BY E.wage LIMIT 3 OFFSET 1)

SELECT t9.name, t7.name, t9.wage FROM department AS t7, t8 AS t9
WHERE t9.deptID = t7.deptID ORDER BY t7.deptID

16

The denotational semantics of SQUR extended with ordering and subranging
is subtle. It is rather surprising how little has changed: only the interpretation
of for is updated, and only slightly.

T [t bagˆφ] = {{ T [t] }}
T [t bagˆ{o:[lb,. . .]}] = {{ T [t] × o:(N × . . .) }}
T [t bagˆ{o:[lb,. . .],l:(n,m)}] = {{ T [t] × o:(N × . . .) × l:(N × N) }}
E[Γ ` for(x←e1) e: t bagˆε] ρ =⋃

{{ E[Γ ,x:t1 ` e: t bagˆε] (ρ× x : x′) | x′ × o: ←E[Γ ` e1: t1 bagˆε’]ρ }}
E[Γ ` ordering lb e1 e: t bagˆ{o:[lb]}] ρ =

{{ x × o:[E[e1]ρ] | x ← E[Γ ` e: t bagˆφ]ρ }}
E[Γ ` ordering lb e1 e: t bagˆε] ρ =

{{ x × o:[E[e1]ρ,lb’,. . .] | x × o:[lb’,. . .] ← E[Γ ` e: t bagˆε1]ρ }}
where ε1={o:[lb’,. . .]} and ε={o:[lb,lb’,. . .]}

E[Γ ` limit (n,m) e: t bagˆ{ε U l:(n,m)}] ρ =
{{ x × l:(n,m) | x ← E[Γ ` e: t bagˆε]ρ }}

E[Γ ` let table y=e1 in e: t bagˆε] ρ =
E[Γ ,y:t1 tbl ` e: t bagˆε] (ρ × y:M[` e1: t1 bagˆε1])

M[` e: t bagˆφ] = E[` e: t bagˆφ]<>
M[` e: t bagˆε] =

subrange (n,m) ◦ sort keys {{ x | x × o:keys × l:(n,m) ← E[` e: t bagˆε]<> }}
(no subranging if the l annotation is absent)

Fig. 7. Denotational semantics of SQUR with ordering and limit

As before, an expression of the t bagˆε type is interpreted as a multiset,
whose elements are (typically records) T [t]. If the effect annotation ε includes
ordering o:[label,. . .], we add to T [t] a new field o, a tuple of sorting keys (which
SQUR takes, without loss of generality, to be integers). If the l:(n,m) annotation
is also present, we add yet another field, l, with the pair of integers n and m.
The type system ensures that the field has the same value across all elements
of a multiset (and so it could be factored out, as our OCaml implementation
actually does). The interpretation of for is changed to ignore the extra fields in
the comprehended multiset (the l field should be absent to start with, according
to the type system). The type system ensures that in e1] e2, both expressions
have the same effect annotations: the same subranging and the same sorting
keys. Therefore, taking, as before, the multiset union of E [e1]ρ and E [e2]ρ is
meaningful. It is easy to verify that type soundness (Thm. 1) is preserved.

We now have to distinguish the denotation of an expression from the deno-
tation of the whole program. The latter is computed by the semantic function
M[−] that maps a closed term of a bag type to a sequence of elements. For
an expression e without the ordering annotation, M[−] converts the multiset
E [e]<> to a sequence of some non-deterministic order. If the ordering annotation
is present, however, M[−] uses the o:keys field to sort the elements (removing
the field from the result). If the l:(n,m) annotation is also present, the (n,m)
subsequence is extracted afterwards. M[−] hence corresponds to the semantics
of ordering and subranging defined in SQL: sorting and limiting are applied at
the end of query processing.

17

Since UNION ALL has the same denotation as in Core SQUR, it is still
commutative and associative, and the distributivity laws (Thm. 2) still hold:

Theorem 4 (Distributive Equational Laws of UNION ALL).

for(x ← e1] e2) e ≡ (for(x←e1) e)] (for(x←e2) e)
for(x ← e) e1] e2 ≡ (for(x←e) e1)] (for(x←e) e2)
where e e1] e2 ≡ (where e e1)] (where e e2)
ordering lb e (e1] e2) ≡ (ordering lb e e1)] (ordering lb e e2)
limit (n,m) (e1] e2) ≡ (limit (n,m) e1)] (limit (n,m) e2)

That is quite unexpected, if one were to take ordering and limit naively, as sort-
ing and subranging of their argument expressions. One surely would not think
of UNION ALL to be distributive, let alone symmetric. The distributivity across
ordering and limit is particularly outrageous. It is worth stressing again that
ordering and limit are directives. The expression ordering e1 e does not immedi-
ately sort the bag e; neither does limit (1,0) e mean taking the first element of
the bag e (which is meaningless since bags, as multisets, have no definite order).

In defining the semantics of ordering and limit, we had to resolve a number
of essentially arbitrary choices:

– in a nested ordering e1 ordering e2 e, should e1 be the major sort key, or e2?
We chose e1.

– in a nested subranging limit (n1,m1) limit (n2,m2) e, should the outer limit
take effect over the inner, or the inner overriding outer, or somehow be
combined? Or the nesting of limit should be outlawed by the time system?
We chose the latter. Multiple limits are still possible; on has to explicitly use
let table to force subranging and other effects of an intermediary expression.

– should ordering e1 limit (n,m) e be allowed (without the the explicit let table)?
We chose against it, since e1 as the major sort key affects the subranging.

One may argue for different choices: after all, SQL gives no guidance since the
standard only talks about ORDER BY when attached to the top-most SELECT.
The choices are up to us to make. However we – or the reader – choose, our
denotational framework trivially accommodates any choice.

The presented denotational semantics can then be generalized to the normal-
ization-by-evaluation semantics, similar to the approach illustrated in §3. The
only significant change is to add to the triple fors (x←m. . .) whr w yld y two
extra fields, for the ordering keys and subranging, depending on the effect anno-
tations. For the lack of space, we refer to the SQUR implementation for details.
The non-standard interpretation can again be converted to SQL. The example
SQL code at the beginning of this section was the output of such conversion.

5 Related Work

Language-integrated query as a research area was established with the nested
relational calculus (NRC) in [14] and [2]. Specifically, integration of relational
algebra into a typed functional language was pioneered in [3]. Although some

18

versions of NRC [10, Corollary 3.3] can express ordering (called ‘rank assign-
ment’ in that paper), it is what §4 has called the ‘naive’ ordering, whose serious
drawbacks have been explained in §1.2.

Our approach may superficially be seen as an extension of a long line of
work starting from Cooper [6] and Microsoft LINQ, and continuing through
T-LINQ [4] and [13]. None of them considered ordering and subranging. Our
use of effects is notably different from Cooper’s and our integration with the
host language is less tight and more stylized. Compared to T-LINQ, SQUR
has no quotation. As we have already emphasized, SQUR has no functions
and is not an extension of lambda-calculus. Although SQUR is superficially
similar to QueΛ of Suzuki et al., it has no first-class functions, its dynamic
semantics is given denotationally rather than operationally, the soundness of its
type system is proven semantically rather than syntactically. Finally, SQUR
relies on the normalization-by-evaluation (NBE) rather than on repeated, and
hopefully convergent, re-writing.

The language-integrated query systems SML# [12] and Haskell’s Opaleye
[8] and HRR [9] also deal with ordering. They do not present relational data
as local arrays to iterate over. They have rather complicated type system. The
published materials describe no compositional semantics. Mainly, these systems
consider no query normalization and optimizations, relying on subqueries to
achieve compositionality – hence exhibit the problems described in §1.2 and
may generate broken queries.

We owe a great debt to Dybjer and Filinski’s tutorial on normalization-by-
evaluation [7]. The many similarities in our NBE approaches are not accidental.
One notable difference is our use of the tagless-final approach, which let us in-
dex semantic domains by the object types without resorting to dependent types.
Therefore, all our interpreters are patently total and hence easier to see cor-
rect. Also, we do not define any reduction-based semantics or the corresponding
reduction equational theory.

Normalization in embedded languages is thoroughly discussed by Najd et al.
in [11]. However, they consider quite a more complicated problem of so-called
quoted DSLs, where quoted expressions may contain higher-order constructs
such as function applications. The latter are to be eliminated in the course of
normalization, and the subformula property sees to it. The normalization proce-
dure of their QDSL operates on ‘syntax’, a representation of a QDSL expression.
We, on the other hand, deal with ‘semantics’, with a representation of the mean-
ing of a SQUR expression. Since our SQUR does not have functions, there are
no β-redices or other higher-order constructs to eliminate.

6 Conclusions

We have presented the new, denotational approach to language-integrated query
based on the calculus SQUR. We support query composition and reuse, and still
are able to generate efficient flat SQL for interaction with external databases.
The key feature is the normalization-by-evaluation (NBE), facilitated by the

19

denotational semantics, which converts a query to the normal form from which
flat SQL can be easily generated. Unlike the previous syntactic, rewriting-rule–
based approaches, NBE is deterministic and can easily be proven total. Notably,
it can be extended to support such SQL features as ordering and subranging of
the eventual query results. The denotational approach goes hand-in-hand with
the embedding SQUR in the tagless-final style.

In the future work we extend the approach to GROUP BY and aggregation.
It is also interesting to further explicate the equational laws induced by the
semantics of ordering, grouping and subranging, with [5] for inspiration.

Acknowledgments We thank anonymous reviewers for many very helpful com-
ments and suggestions.

References

[1] Atkinson, M.P., Buneman, O.P.: Types and persistence in database programming
languages. ACM Comput. Surv. 19(2), 105–170 (Jun 1987)

[2] Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (Sep 1995)

[3] Buneman, P., Ohori, A.: Polymorphism and type inference in database program-
ming. ACM Transactions on Database Systems 21(1), 30–76 (Mar 1996)

[4] Cheney, J., Lindley, S., Wadler, P.: A practical theory of language-integrated
query. In: ICFP ’13. pp. 403–416. ACM, New York, NY, USA (2013)

[5] Chu, S., Weitz, K., Cheung, A., Suciu, D.: HoTTSQL: Proving query rewrites with
univalent SQL semantics. CoRR abs/1607.04822 (2016), http://arxiv.org/abs/
1607.04822

[6] Cooper, E.: The script-writer’s dream: How to write great sql in your own lan-
guage, and be sure it will succeed. In: DBPL ’09. pp. 36–51. Springer-Verlag,
Berlin, Heidelberg (2009)

[7] Dybjer, P., Filinski, A.: Normalization and partial evaluation. In: Barthe, G., Dy-
bjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000: International Summer School
on Applied Semantics, Advanced Lectures. pp. 137–192. No. 2395 in Lecture Notes
in Computer Science, Springer (2002)

[8] Ellis, T.: Opaleye. https://github.com/tomjaguarpaw/haskell-opaleye, last
visited: Dec. 2014

[9] Hibino, K., Murayama, S., Yasutake, S., Kuroda, S., Yamamoto, K.: Haskell re-
lational record. http://khibino.github.io/haskell-relational-record/, last
visited: May 2017

[10] Libkin, L., Wong, L.: Conservativity of nested relational calculi with internal
generic functions. Information Processing Letters 49(6), 273–280 (22 Mar 1994)

[11] Najd, S., Lindley, S., Svenningsson, J., Wadler, P.: Everything old is new again:
quoted domain-specific languages. In: PEPM. pp. 25–36. ACM (2016)

[12] Ohori, A., Ueno, K.: Making Standard ML a practical database programming
language. In: ICFP ’11. pp. 307–319. ACM, New York, NY, USA (2011)

[13] Suzuki, K., Kiselyov, O., Kameyama, Y.: Finally, safely-extensible and efficient
language-integrated query. In: Proc. PEPM. pp. 37–48. ACM (2016)

[14] Tannen, V., Buneman, P., Wong, L.: Naturally embedded query languages. In:
ICDT ’92. pp. 140–154. Springer-Verlag, London, UK, UK (1992)

20

A Proof of Soundness of NBE

This section outlines the proof of soundness of the non-standard evaluation,
Thm. 3.

The proof is particularly straightforward for flat (base and record types),
considering that record components may have only base types and a flat-type
expression may have only flat-type subexpressions.

Indeed, the environment ρ may have only the following cases of bindings: (1)
integers (or booleans, strings, etc); (2) a fully opaque expression (code), possibly
containing variables; (3) a record whose components are either (1) or (2).

If e is a variable x, consider each of the cases for the corresponding binding
in ρ.

1. I[En[x]<x:n,. . .>] is n. Then E [I[<x:n,. . .>]]ρ’ is <x:n,. . .>. The theorem
holds for any ρ’.

2. I[En[x]<x:inr e’,. . .>] is e’, I[<x:inr e’,. . .>] is <x:e’,. . .>, so the theorem
statement becomes E [e’]ρ’ = E [x](<x:E [e’]ρ’,. . .>), which is obviously true.

3. The case of the binding of x to a record reduces to the previous two.

If e is an addition expression e1 + e2, record construction or projection, we
use the induction hypothesis.

For bag types, the proof is also a simple induction on the structure of the ex-
pression (keeping in mind that the environment ρ has no bindings to expressions
of bag type). Consider a few cases:

For yield e, I[En[yield e]ρ] is yield I[En[e]ρ] and the theorem holds given the
proven flat-type case.

For primitive tables, I[En[table m]ρ] is for(x←table m) yield x, which is the
eta-expanded table m. Hence our normal forms are eta-long.

For UNION ALL expressions, I[En[e1] e2]ρ], the statement of the theorem
follows from the inductive hypothesis and the symmetry and associativity of
multiset union. The only slightly non-trivial case is for-expressions – which is
also easy to see considering again the the symmetry and associativity of multiset
union, manifesting in the multiset comprehension ‘fusion law’:⋃

{{ f y | y ←
⋃
{{ g x | x ← xs }} }} =

⋃
{{ f y | x ← xs, y ← g x }}

