
The Design and Implementation of
BER MetaOCaml

System Description

Oleg Kiselyov

University of Tsukuba, Japan
oleg@okmij.org

Abstract. MetaOCaml is a superset of OCaml extending it with the
data type for program code and operations for constructing and exe-
cuting such typed code values. It has been used for compiling domain-
specific languages and automating tedious and error-prone specializa-
tions of high-performance computational kernels. By statically ensuring
that the generated code compiles and letting us quickly run it, Meta-
OCaml makes writing generators less daunting and more productive.
The current BER MetaOCaml is a complete re-implementation of the
original MetaOCaml by Taha, Calcagno and collaborators. Besides the
new organization, new algorithms, new code, BER MetaOCaml adds a
scope extrusion check superseding environment classifiers. Attempting
to build code values with unbound or mistakenly bound variables (liable
to occur due to mutation or other effects) is now caught early, raising an
exception with good diagnostics. The guarantee that the generated code
always compiles becomes unconditional, no matter what effects were used
in generating the code.
We describe BER MetaOCaml stressing the design decisions that made
the new code modular and maintainable. We explain the implementation
of the scope extrusion check.

1 Introduction

MetaOCaml is a conservative extension of OCaml for “writing programs that
generate programs”. MetaOCaml adds to OCaml the type of code values (denot-
ing “program code”, or future-stage computations), and two basic constructs to
build them: quoting and splicing. The generated code can be printed, stored in
a file – or compiled and linked-back to the running program, thus implementing
run-time code optimization.

MetaOCaml has been successfully used for specializing numeric and dynamic
programming algorithms; building FFT kernels, compilers for an image process-
ing domain-specific language (DSL), OCaml server pages; and generating fam-
ilies of specialized basic linear algebra and Gaussian Elimination routines, and
high-performance stencil computations [1–4].

MetaOCaml is distinguished from Camlp4 and other such macro-processors
by: hygiene (maintaining lexical scope); generating assuredly well-typed code;

2

and the integration with higher-order functions, modules and other abstrac-
tion facilities of ML, hence promoting modularity and reuse of code generators.
A well-typed BER MetaOCaml program produces the code that shall compile
without type errors. We no longer have to puzzle out a compilation error in the
generated code (which is typically large, obfuscated and with unhelpful variable
names). We illustrate these features in §2.

The original MetaOCaml was developed by Walid Taha, Cristiano Calcagno
and collaborators [5] as a dialect of OCaml. Therefore, MetaOCaml took the
full advantage of the OCaml’s back-end code generation, the standard and other
libraries, the top-level, etc. Alas, the divergence between the two languages has
made integrating OCaml’s new features and improvements progressively more
and more difficult. Eventually MetaOCaml could no longer be maintained with-
out a major investment.

BER MetaOCaml [6] is a re-design and the complete re-implementation of
MetaOCaml, with different algorithms and techniques. It aims at the most har-
monious integration with OCaml and lowering the barrier for contribution. The
compatibility with OCaml becomes relatively easy to maintain, bringing bet-
ter tools, better diagnostics, new libraries and new features to code generators.
Contributors of new ways of running the generated code (e.g., translating it to
C or LLVM) no longer need to be familiar with the OCaml internals and keep
recompiling the system. The new goals of modularity and maintainability called
for new code organization and design decisions. BER MetaOCaml also took ad-
vantage of the large experience with MetaOCaml, which prompted the drastic
change of retiring environment classifiers and introducing the scope extrusion
check.

Despite polar design decisions and the different implementation (BER and
the old MetaOCaml share no staging-related code apart from parsing and pretty-
printing), BER MetaOCaml does run the old MetaOCaml user code with little
or no change. The implementation differences between the two systems are sum-
marized in Appendix A of the full paper1. Here is the brief comparison from the
user point of view:

– Whereas the old MetaOCaml is formalized by λilet [10], BER MetaOCaml
implements the classifier-less version of that calculus2. The translation from
λilet to the latter only affects types (which can be inferred); the two calculi
have the same dynamic semantics.

– BER MetaOCaml requires user-defined data types be declared in a separate
file, see §4.

– BER MetaOCaml accepts programs that could not be typed before, see §5.2,
making it easier to use modules to structure generators.

1 http://okmij.org/ftp/meta-programming/ber-design.pdf
2 We drop single-classifier annotations of λi

let and replace a sequence of classifiers with
the natural number denoting its length. Strictly speaking, we also have to replace
the terms open e and close e of λi

let with just e. However, these terms never show up
explicitly in the user-written code, so their disappearance is unnoticeable.

3

– Scope extrusion (see §2.1 for illustration) during code generation was not
detected before. BER MetaOCaml detects it early and raises an exception.

All in all, a type-annotation-free old MetaOCaml program using standard data
types will be accepted by BER MetaOCaml as it was. It will produce the same
result (or raise the scope-extrusion exception).

Although this paper is a system description of BER MetaOCaml, it highlights
the guidance from theory (§5.3 in particular), or the regrettable lack of it. Staging
in the presence of user-defined data types, described in §4, is a thorny problem
that seems to have not been addressed in any of the staged calculi. Implementing
BER MetaOCaml thus has suggested directions for further theoretical research.

Specifically, our contributions are as follows:

– the specific approach of adding staging to OCaml that minimizes the changes
to the base system (significantly, compared to the old MetaOCaml), making
it easier to contribute to and maintain MetaOCaml and to keep it consistent
with new revisions of OCaml (see §3 and App. A);

– constructor restriction, §4: a new trade-off in supporting values of user-
defined data types within the generated code. The restriction markedly sim-
plifies the implementation. The experience with the restriction (first intro-
duced in the January 2013 release) showed its burden to be light, justifying
the trade-off;

– scope-extrusion check, §5: detecting scope extrusion promptly at the genera-
tor run-time, aborting the code generation with an informative error message
pointing to problematic locations in the generator source code. The positive
experience with the check (again first introduced in the January 2013 release)
led to the retirement of environment classifiers in the current version. BER
MetaOCaml guarantees that the successfully generated code is well-typed
and well-scoped. The guarantee is now unconditional: it holds even if the
generator performed arbitrary effects, including delimited control effects.

We start with a brief introduction to MetaOCaml and finish, §6, with related
work. BER MetaOCaml is available from OPAM, among other places [6].

2 The taste of MetaOCaml

This section introduces MetaOCaml and describes its features on very simple
examples. §2.1 continues with a more realistic case, also explaining the need for
control effects when generating code – and the accompanying danger of produc-
ing ill-scoped code.

Our first example is very familiar and simple, letting us focus on the Meta-
OCaml features used in its implementation. It centers on computing the n-th
element of the Fibonacci-like sequence with the user-defined first two elements:

let rec gib n x y = match n with
| 0 → x | 1 → y
| n → let z = x + y in gib (n−1) y z

4

This ordinary OCaml code can be entered into MetaOCaml as it is since Meta-
OCaml is source- (and binary-) compatible with OCaml. If we are to compute
gib n many times for a fixed n, we want to specialize gib to that n, obtaining the
code that will later receive x and y and efficiently compute the n-th element of
the sequence. We re-write gib annotating expressions as computed ‘now’ (when
n is given) or ‘later’ (when x and y are given):

let rec sgib n x y = match n with
| 0 → x | 1 → y
| n → 〈let z = ∼x +∼y in ∼ (sgib (n−1) y 〈z〉)〉
 val sgib : int → int code → int code → int code = <fun>

let sgib4 = 〈fun x y → ∼ (sgib 4 〈x〉 〈y〉)〉 ;;
 val sgib4 : (int → int → int) code = 〈fun x 1 → fun y 2 →

let z 3 = (x 1 + y 2) in let z 4 = (y 2 + z 3) in
let z 5 = (z 3 + z 4) in z 5〉

(!. sgib4) 1 1;;
 − : int = 5

The two annotations, or staging constructs, are brackets 〈e〉 (in code, .<e>.) and
escape ∼e (in code .~e). Brackets 〈e〉 ‘quasi-quote’ the expression e, annotating
it as computed later, or at the future stage. Escape ∼e, which must occur within
brackets, tells that e is computed now, at the present stage, but produces the
code for later. That code is spliced into the containing bracket. The plus +
appearing in brackets is not a symbol: it is the identifier bound to the OCaml
function (infix operator) (+): int →int →int. A present-stage bound identifier
referred to in the future stage is called cross-stage persistent (CSP). CSP is the
third, less noticeable feature of MetaOCaml.

The inferred type of sgib (printed by the MetaOCaml top-level) tells its result
is not an int: rather, it is int code – the type of expressions that compute an int.
Hence, sgib is a code generator. Its type spells out which argument is received
now, and which are later: the future-stage arguments have the code type. The
type of a future-stage code is known now – letting us type-check future stage
expressions and the code that generates them, assuring that the generated code is
well-typed. For example, if we replace (+) in sgib with the floating-point addition
(+ .) or omit an escape, we see a type error with an informative diagnostic.

The expression sgib4 shows how to actually apply sgib to produce the spe-
cialized code and how to obtain the int code values to pass as the last two
arguments of sgib. The code value 〈x〉 represents an open code: the free variable
“x”. We may store such variables in reference cells and pass them as arguments
and function results. MetaOCaml hence lets us manipulate (future-stage) vari-
ables symbolically. We can splice variables into larger future-stage expressions
but we cannot compare or substitute them, learn their name, or examine the
already generated code and take it apart. This pure generativity of MetaOCaml

5

helps maintain hygiene: open code can be manipulated but the lexical scoping
is still preserved3.

The inferred type of sgib4 shows it as a code expression that will, when
compiled, be a function on integers. Code, even of functions, can be printed,
which is what the MetaOCaml top-level did. The prefix operator !. lets us run
sgib4, that is, to compile it and link back to our program. The result can be used
as an ordinary int→int→int function.

Generating code and then running it is specializing a frequently used function
to some data obtained at run-time, e.g., from user input. In our example, !. sgib4
is such a version of gib n x y specialized to n= 4. The sgib4 code is straight-line
and can be efficiently compiled and executed. The generated code can also be
saved into a file. Since the generated code is ordinary OCaml, it can be compiled
with ordinary OCaml compilers, even ocamlopt, and later linked into various
ordinary OCaml applications. Thus, MetaOCaml can be used not only for run-
time specialization, but also for offline generation of specialized library code,
e.g., of BLAS and Linpack libraries.

Since hygiene and lexical scoping is one of the two main topics of the paper
(see §5), we illustrate it on another example – demonstrating the crucial dif-
ference between brackets and Lisp quasi-quotation. The example is a one-line
generator, producing the code shown underneath:

〈fun x → ∼ (let body = 〈x〉 in 〈fun x → ∼body〉)〉
 〈fun x 1 → fun x 2 → x 1〉

Re-written in Lisp, with anti- and un-quotations, it generates the code

‘(lambda (x) ,(let ((body ‘x)) ‘(lambda (x) , body)))
 ‘(lambda (x) (lambda (x) x))

with two indistinguishable instances of x, which denotes a different function.
MetaOCaml maintains the distinction between the variables that, although iden-
tically named, are bound at different places. A variable in MetaOCaml is not
just a symbol. We return to this topic in §5.

We have thus seen the five features that MetaOCaml adds to OCaml: brackets
and escapes, CSP, showing and running code values. We will now see a realistic
example of their use.

2.1 Code motion

This section gives a glimpse of a realistic application of MetaOCaml, generating
high-performance numerical kernels. We demonstrate generating matrix-matrix
multiplication with a loop-invariant code motion, i.e., moving the code not de-
pending on the loop index out of the loop. We will see the need for delimited
control, the actual danger of generating ill-scoped code, and how BER Meta-
OCaml alerts of the danger before it becomes too late. We will hence see the

3 At first blush, the inability to examine the generated code seems to preclude any
optimizations. Nevertheless, generating optimal code is possible [3, 7, 8].

6

scope extrusion check, explained in depth in §5. For the lack of space, the running
example is presented schematically and in a less general form: see the complete
code4 and [8] for the explanation of the overall approach.

To generate a variety of specialized kernels and optimize them easily, we
introduce a minimalist linear-algebra DSL (demonstrating how the abstraction
facilities of OCaml such as modules benefit code generation):

module type LINALG = sig
type tdom
type tdim type tind type tunit
type tmatrix
val (∗) : tdom →tdom →tdom
val mat dim : tmatrix → tdim ∗ tdim
val mat get : tmatrix → tind → tind → tdom
val mat incr : tmatrix → tind → tind → tdom →tunit
val loop : tdim → (tind → tunit) → tunit

end

The abstract type tdom is the type of scalars, with the operation to multiply
them; tdim is the type of vector dimensions (zero-based) and tind is the type
of the index; tunit is the unit type in our DSL. The operation mat get accesses
an element of a matrix, and mat incr increments it. The DSL lets us write the
multiplication of matrix a by matrix b with the result in c (which is assumed
zero at the beginning) in the familiar form5:

module MMUL(S: LINALG) = struct open S
let mmul a b c = loop (fst (mat dim a)) @@ fun i →

loop (fst (mat dim b)) @@ fun k →
loop (snd (mat dim b)) @@ fun j →

mat incr c i j @@ mat get a i k ∗ mat get b k j
end

With different implementations of LINALG, we obtain either functions for matrix-
matrix multiplication (in float, int or other domains), or the code for such func-
tions. For example, the following instance of LINALG produces the familiar
matrix multiplication code

module LAintcode = struct
type tdom = int code type tdim = int code ...
type tmatrix = int array array code
let (∗) = fun x y → 〈∼x ∗ ∼y〉
let mat get a i j = 〈(∼a).(∼ i).(∼ j)〉
let loop n body = 〈for i = 0 to ∼n−1 do ∼(body 〈i〉) done〉

end

4 http://okmij.org/ftp/meta-programming/tutorial/loop_motion.ml
5 The infix operator @@ is a low-precedence application, introduced in OCaml 4.01.

7

We can do better: in MMUL.mmul the expression mat get a i k does not
depend on the index j of the innermost loop, and can be moved out. We extend
our DSL with the operation

module type LINALG GENLET = sig include LINALG
val genlet : tind → (unit → tdom) → tdom end

One may think of genlet k (fun () →e) as memoizing the value of e with key k in
a 1-slot memo table. We re-write mmul and manually introduce this memoization
optimization:

module MMULopt(S: LINALG GENLET) = struct open S
let mmul a b c = loop (fst (mat dim a)) @@ fun i →

loop (fst (mat dim b)) @@ fun k →
loop (snd (mat dim b)) @@ fun j →

mat incr c i j @@ genlet k (fun () → mat get a i k) ∗
genlet j (fun () → mat get b k j)

end

We extend LAintcode by adding genlet, the new realization of tind and the new
implementation of loop. In thus extended LAintcode opt, genlet k (fun () → 〈e〉)
evaluates to a future-stage variable 〈t〉 bound by let t = e in ... inserted at the
beginning of the loop with the index k. LAintcode opt has to rely [9] on delimited
control effects, provided by the library delimcc. MMULopt(LAintcode opt).mmul
then generates the following code

〈fun a 7 b 8 c 9 →
for i 10 = 0 to (Array. length a 7) − 1 do
for i 11 = 0 to (Array. length b 8) − 1 do
let t 14 = a 7.(i 10).(i 11) in
for i 12 = 0 to (Array. length b 8.(0)) − 1 do
let t 13 = b 8.(i 11).(i 12) in
c 9.(i 10).(i 12) ← c 9.(i 10).(i 12) + t 14 ∗ t 13

done done done〉
The expressions to access the elements of a and b are let-bound; a is accessed
outside the innermost loop. The code motion is evident.

The operation genlet is powerful but dangerous. If we by mistake instead of
genlet j (fun () →mat get b k j) in MMULopt.mmul write genlet k (fun () →
mat get b k j), we pull the code generated by mat get b k j out of the innermost
loop as well. The old MetaOCaml then produces:

〈fun a 7 b 8 c 9 →
for i 10 = 0 to (Array. length a 7) − 1 do
for i 11 = 0 to (Array. length b 8) − 1 do
let t 13 = b 8.(i 11).(i 12) in
let t 14 = a 7.(i 10).(i 11) in
for i 12 = 0 to (Array. length b 8.(0)) − 1 do

c 9.(i 10).(i 12) ← c 9.(i 10).(i 12) + t 14 ∗ t 13
done done done〉

8

Although the generated code is simple, it is already hard to see what is wrong
with it: as typical, variables in the generated code have unhelpful names. If we
look carefully at the let-binding t 13, we see that the variable i 12, the index of
the innermost loop, escaped its binding, creating the so-called scope extrusion.
The escaped variable is unbound in the generated code above. More dangerously,
it may be accidentally captured by another binding. The generated code will
then successfully compile; the resulting bug will be very difficult to find. Since
the scope extrusion has not been detected, it is hard to determine what part of
the generator did it by looking only at the final result.

In contrast, BER MetaOCaml detects the scope extrusion with a good diag-
nostic. For example, executing the generator with the mistaken genlet aborts the
execution when b 8.(i 11).(i 12) has just been moved out of the innermost loop,
with the error that identifies the expression containing the escaped variable (the
matrix element access), the name of the variable and where it was supposed to
be bound (in the loop header). No bad code is hence generated. The exception
backtrace further helps find the mistake in the generator6.

We have seen the benefit of effects in code generation, for loop-invariant code
movement. The same technique can also do loop interchange and loop tiling.
We have also seen the danger of generating ill-scoped code and MetaOCaml’s
detecting the scope extrusion as soon as it occurs. The section hopefully has
given the taste of generator abstractions; see the poster [8] for an elaborated
example of using the OCaml module system to state an algorithm in a clear way
and then apply various optimizations.

3 Design of BER MetaOCaml

This section briefly overviews the design of BER MetaOCaml and outlines our
approach to implementing staging. The following two sections will explain in
depth two particularly subtle issues, user-defined types and the scope extrusion
check. Our guiding principle is to make MetaOCaml easier to maintain and use
by making its changes to the OCaml code base smaller and modular.

MetaOCaml has to modify OCaml to extend its syntax with staging anno-
tations and its type checker with the notion of the present and future stages.
Unlike the original MetaOCaml, BER MetaOCaml tries to minimize the modi-
fications and hence makes different design decisions, see below and §4. Whereas
the original MetaOCaml was a fork, BER MetaOCaml is maintained as a set of
patches to OCaml plus a library. Such an organization reflects the separation be-
tween the MetaOCaml ‘kernel’ and ‘user-level’. The kernel (patched OCaml) is
responsible for building and type-checking code values. The user-level processes
closed code values, e.g., prints or runs them. As with the kernel/user-level sepa-
ration in an OS, adding a new way to run code (e.g., to compile to Javascript) is

6 The real linear-algebra DSL will unlikely offer genlet to the end-user. Rather, genlet
will be incorporated into mat get, where it could compare loop indices, determine
which one corresponds to an innerer loop, and insert let appropriately. The scope
extrusion may well happen however during the development of the DSL.

9

like writing a regular library, which requires no patching or recompilation of the
MetaOCaml system. The separation lessens the maintenance burden and makes
it easier to contribute to MetaOCaml.

Here is an example of how BER MetaOCaml minimizes changes to OCaml.
For the most part, type checking is invariant of the stage (bracketing) level,
with a notable exception [10]. Identifiers bound by future-stage binding forms
should be annotated with their stage level. The original MetaOCaml added a
field val level to the value description record describing an identifier in the type
checker. This change has lead to the cascade of patches at every place a new
identifier is added to the type environment. A new OCaml version typically
modifies the type checker quite heavily. Integrating all these modifications into
MetaOCaml, accounting for the new field, is a hard job. It is avoidable however:
we may associate identifiers with levels differently, by adding a new map to the
environment that tells the level of each future-stage identifier. Any identifier
not in the domain of that map is deemed present-stage. This alternative helped
BER MetaOCaml significantly reduce the amount of changes to the OCaml type
checker and make MetaOCaml more maintainable7.

BER MetaOCaml follows the general staging implementation approach by
Taha et al.[5]. After type checking, the code with brackets and escapes is post-
processed to translate brackets and escapes into expressions that produce code
values8. These expressions are built from primitive code generators, which pro-
duce a representation of code values; in MetaOCaml, it is OCaml’s abstract
syntax tree, called Parsetree. Other possible code representations (e.g., the inter-
mediate language or the typed AST) are more difficult to compose. The post-
processing of the type-checked code by and large implements the rules in [5,
Figure 3]. (The translation of binding forms is new and described in §5.) For
example, <succ 1> is translated to the pure OCaml expression (slightly abbre-
viated) build apply [Pexp ident ”succ”; Pexp constant (Const int 1)] which will
construct, at run-time, a Pexp apply node of the Parsetree. Here, Pexp ident and
Pexp constant are constructors of Parsetree.

With staging annotations eliminated after the translation, the original OCaml
back-end (compiling to the intermediate language, optimizing, and generating
the target code) can be used as it is. To run the generated code, we follow the
pattern in the OCaml top-level, which also needs to compile and execute the
(user-entered) code. Having given an overview of BER MetaOCaml, we describe
in depth two of its features, in which BER MetaOCaml significantly differs from
the original one.

7 The first version of BER MetaOCaml modified 35 files in the OCaml distributions,
which is 23 fewer files compared to the original MetaOCaml. The patch to the
distribution was 59KB in size, reduced to 48KB in the current version.

8 Doing such a translation before type checking is tantalizing because it can be done
as a pre-processing step and requires no changes to OCaml. Alas, we will not be able
to support let-polymorphism within brackets; also, the value restriction will preclude
polymorphic code values like 〈[]〉.

10

4 Staging user-defined data types

We now illustrate the first of the two distinct features of BER MetaOCaml: the
different handling of values of user-defined data types within brackets.

Algebraic data types and records are one of the salient features of OCaml,
which, alas, have not been considered in staged calculi. The theory therefore
gives no guidance on staging the code with constructors of user defined data
types, such as the following:

type foo = Foo | Bar of int
〈function Bar → Foo〉

The generated program, which can be stored in a file, is function Bar →Foo.
Compiling this file will fail since Foo and Bar are not defined. The problem is how
to put a data type declaration into the generated code, which is syntactically an
expression and hence cannot contain declarations.

The old MetaOCaml dealt with the problem by modifying the AST rep-
resenting the generated code and adding a field for declarations (actually, the
entire type environment) [5, §6.1]. Such a change sent ripples of modifications
throughout the type checker, and was one of the main reasons for the divergence
from OCaml, which contributed to MetaOCaml’s demise.

We observe that there is no problem compiling the code such as true, raise
Not found, Some [1] and {Complex.re = 1.0; im = 2.0} – even though labels like
re and data constructors like Some are likewise undefined within the compilation
unit. However, the data types bool, option, list, Complex.t are either Pervasive or
defined in the (separately compiled) standard library. External type declarations
like those of Complex.t are found in the compiled interface complex.cmi, which
can be looked up when the generated code is compiled. This observation leads to
the constructor restriction: “all data constructors and record labels used within
brackets must come from the types that are declared in separately compiled
modules”. The code at the beginning of the section is rejected by BER Meta-
OCaml. The type declaration foo must be moved into an interface file, separately
compiled, and be available somewhere within the OCaml library search path –
as if it were the standard library type.

Thanks to the constructor restriction, BER MetaOCaml evades the thorny
problem of user-defined data types and eliminates the AST modifications by
the original MetaOCaml, bringing BER MetaOCaml much closer to OCaml and
making it significantly more maintainable.

We are researching the possibility to cleanly lift the constructor restriction.
On the other hand, from the experience with BER MetaOCaml (for example,
project [8] and the MetaOCaml tutorial at CUFP 2013) the restriction does not
seem to be bothersome or hard to satisfy.

5 Detecting scope extrusion

MetaOCaml lets us manipulate open code. This section describes the complexi-
ties and trade-offs in making sure all free variables in such code will eventually

11

be bound, by their intended binders. BER MetaOCaml reverses the choice of
its predecessors and trades an incomplete type-level check for a comprehensive
and more informative dynamic scope-extrusion check. A well-typed BER Meta-
OCaml program may attempt, when executed, to run an open code or construct
ill-scoped code – the code with a free variable that ‘escaped’ its binder and
hence will remain unbound or, worse, bound accidentally. BER MetaOCaml
detects such attempts early, aborting the execution of the generator with an
informative error message. If the code is successfully generated, it is guaranteed
to be well-typed and well-scoped – no matter what effects have been used in its
generation.

5.1 Scope-extrusion check in action

Manipulating open code is overshadowed by two dangers. First, the operation
to run the code may be applied to the code still under construction:

〈fun x y → ∼ (let z = !. 〈x+ 1〉 in 〈z〉)〉 (1)
The old MetaOCaml rejects this code with the type error:9

〈fun x y → ∼ (let z = .! 〈x+ 1〉 in 〈z〉)〉
ˆˆˆˆˆˆˆ

.! error : α not generalizable in (α, int) code

BER MetaOCaml type checks this generator but its evaluation aborts with the
run-time exception:

Exception: Failure
”The code built at Characters 29−32:
〈fun x y → ∼ (let z = !. 〈x+ 1〉 in 〈z〉)〉

ˆˆˆ
is not closed : identifier x 1 bound at Characters 6−7:
〈fun x y → ∼ (let z = !. 〈x+ 1〉 in 〈z〉)〉

ˆ
is free ”.

The error message is more informative, explicitly telling the name of the free
variable and pointing out, in the generator source code, the binder that should
have bound it.

The second, far more common danger comes from effects: a piece of code
with a free variable may be stored within the scope of its future-stage binder, to
be retrieved from outside:

let r = ref 〈0〉 in
let = 〈fun x → ∼ (r : = 〈x+ 1〉; 〈x〉)〉 in
〈fun y → ∼ (! r)〉 ;;

(2)

(A free variable can also be smuggled out of its binder by raising an excep-
tion containing open code, or through control effects, shown in §2.1). The old
MetaOCaml accepts this generator and lets it run to completion, producing

9 In the old MetaOCaml, the operation to run the code was a special form spelled .!.
In BER MetaOCaml, it is the regular function and spelled !., following the OCaml
lexical convention for prefix operators.

12

〈fun y 2 →(x 1 + 1)〉, which can be further spliced-in. It is only when we at-
tempt to execute the final code we get a run-time exception Unbound value x 1.
If we save the code in a file for offline compilation, the error will be discovered
only when we later compile this file.

Although BER MetaOCaml also accepts generator (2), it does not let it
run to completion. The generator now produces nothing: it aborts with the
informative exception:

Exception: Failure
”Scope extrusion detected at Characters 96−111:

〈fun y → ∼ (! r)〉 ;;
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

for code built at Characters 67−70:
let = 〈fun x → ∼ (r : = 〈x+ 1〉; 〈x〉)〉 in

ˆˆˆ
for the identifier x 5 bound at Characters 52−53:

let = 〈fun x → ∼ (r : = 〈x+ 1〉; 〈x〉)〉 in
ˆ”.

5.2 The trade-offs of environment classifiers

Previous versions of MetaOCaml employed so-called environment classifiers [11]
to prevent the first, quite rare, danger at compile-time: example (1) was rejected
by the type checker. Environment classifiers do not help in detecting scope extru-
sion errors. BER MetaOCaml retired environment classifiers and introduced the
dynamic scope extrusion check. The problem with example (1) now reported
when running the generator rather than when type-checking it. The problem
with example (2) is now reported, early and informatively.

Removing the type-level feature and introducing the dynamic check is the sig-
nificant departure of BER MetaOCaml from the original system. We summarize
this static-dynamic trade-off as follows.

accepting more good programs BER MetaOCaml accepts programs that
did not type check previously, for example, 〈fun x →!. x〉. With environ-
ment classifiers, type-checking this code requires impredicative polymor-
phism. More practically relevant, the operation to run the code was a special
form in the old MetaOCaml, with its special typing rules (akin to runST in
Haskell). It was not first-class. In BER MetaOCaml, (!.) is the ordinary
function. Removing environment classifiers simplified the type system. Pre-
viously, a code value 〈1〉 had the type (α,int) code where α is the classifier.
When defining a new data type, we had to parameterize it by the classifier
if the data type may contain code values. This extra type parameter caused
not only cosmetic problems: it notably hindered the use of module system to
structure generators. For example, LAintcode in §2.1 could not be an imple-
mentation of the signature LINALG. To accommodate code types and their
classifiers, all abstract types in LINALG should have an extra type param-
eter, even though LINALG may have implementations without code values.
When writing signatures we had to anticipate their implementations.

13

accepting more bad programs The old MetaOCaml rejected example (1)
before running the generator. BER MetaOCaml detects the problem only
at run-time. Extensive experience with MetaOCaml showed that the prob-
lematic code like (1) is exceedingly rare. Because of the special typing rules
of .!, this operator was essentially usable only at the top level; one rarely
sees it in subexpressions. Furthermore, by its very design an environment
classifier represents just a staging level rather than an individual variable.
Therefore, the type checker can tell that the code to run was open but it
cannot tell the name of its free variable. Although BER MetaOCaml excep-
tion is raised at run-time, the error message refers to the free variable by its
name, pointing out its binder.

detecting previously undetected error Environment classifiers do not help
in detecting scope extrusion. A well-typed generator could produce ill-scoped
code. In contrast, in BER MetaOCaml the generator stops as soon as the ill-
scoped piece of code is about to be used in any way, spliced, run, or shown. It
throws an exception with a fairly detailed and helpful error message, pointing
out the variable that got away and the location of the extrusion, in terms of
the source code of the generator. Since the error is an exception, the exception
stack backtrace further describes exactly which part of the generator caused
that variable leak. Previously, we would discover the problem, in the best
case, only when compiling the generated code. It could be quite a challenge
in figuring out which part of the generator is to blame.

implementation complexity On the whole, environment classifiers are easier
to implement. Checking for scope extrusion is not as straightforward as it
may seem, as described in the next section. It requires more code, which
is however isolated in one MetaOCaml-specific module, mainly, outside the
type checker.

run-time cost The scope extrusion check adds run-time overhead to code gen-
eration. As the next section mentions, micro-benchmarks and experience
showed the overhead to be negligible.

The fact that the old MetaOCaml let a well-typed, effectful generator produce
ill-scoped code must not be confused with an implementation bug. It was not a
coding error. No practical approaches to statically prevent scope extrusion were
known at the time. Even now, there are only hopeful candidates relying on fancy
types. Environment classifiers are a remarkable achievement: they are relatively
simple to implement, they fit within OCaml type checking and inference, and
they statically preclude a class of scoping problems, illustrated by example (1).
At the time of writing the original MetaOCaml, it was unclear which of the
two scoping problems, example (1) or (2), turns out more common in practice.
The decision to retire the classifiers was made in light of all the accumulated
experience with MetaOCaml.

5.3 Implementing the scope-extrusion check

Detection of scope extrusion may appear straightforward: traverse the result
of a generator looking for unbound identifiers. Instead of traversing, we may

14

annotate each code value with a list of free variables therein; code generation
combinators will combine annotations as they combine code values. The code to
be run must be annotated with no free variables – reflecting the requirement only
closed code be run. That requirement is necessary but not sufficient however.
Detecting the scope extrusion by checking the result of the entire generator is
too late: it is hard to determine which part of the generator caused the extrusion.
Furthermore, scope extrusion does not necessarily lead to an unbound variable:
the escaped variable may be accidentally captured by a stray binder. We need
early detection of scope extrusion; first we need a precise criterion for it.

The staging theory lets us define scope extrusion and identify it early. The
most suitable is not the λU -staged calculus by Taha et al. [5, Fig.1] with brackets
and escapes but the ‘single-stage target language’ of code-generation combinators
[5, Fig.2], which we call λAST . The latter underlies MetaOCaml and is proven
to simulate the λU [5, Corollary 1]. The insight comes from translating the
characteristic example 〈fun x → ∼(body 〈x〉)〉 (where body is a variable bound
somewhere in the environment) to code combinators, and evaluating it by the
rules of λAST . The result, to be called efun, is presented in a sugared form
compared to [5]:

build fun simple ”x” (fun x → body (Var x))

where Var (and Lam below) are self-explanatory data constructors of the code
representation data type, AST. Our sugared translation is a higher-order ab-
stract syntax (HOAS) representation of the original future-stage function: the
future-stage variable and the binder are translated to the present-stage variable
and the binder, but of a code type. The big-step evaluation relation of λAST has
the form N;e v where e is an expression, v is its value and N is a sequence of
names ν (which are called symbols in [5] and denoted α). We obtain from [5,
Fig.2] that N;efun Lam(ν,v) provided N,ν; (fun x →body (Var x)) ν v and
ν is chosen to be not in N. During the evaluation of body (Var ν), Var ν is the
code of the free variable, whose name however appears in the name environment
N,ν. The body may store Var ν in a mutable cell. If it is retrieved after efun is
evaluated, ν would no longer appear in the name environment current at that
point. That is scope extrusion.

The final insight – which leads to the implementation and accommodates
delimited control – is that the name environment N is the dynamic environment;
ν created during the evaluation of build fun simple is in the dynamic scope of the
latter. In other words, build fun simple dynamically binds the name of its free
variable during the evaluation of its body.

Definition At any point during the evaluation, an occurrence of an open-
code value with a free variable whose name is not dynamically bound is called
scope extrusion. 10

10 Normally, dynamic scope cannot be reentered. Therefore, a scope extrusion that
occurs at one point in the evaluation will persist through the end. Delimited con-
trol however can reenter once exited dynamic scope. Therefore, our definition could
potentially raise false alarm. We have not observed such cases in practice.

15

This definition clarifies our intuitions. It lets us detect scope extrusion with-
out waiting for the result of the generation. It also has a straightforward imple-
mentation, without representing N explicitly. The function build fun simple (the
actual name of the code-generating combinator) creates a fresh variable name
and dynamically binds it. Each code value carries the list (heap actually, for ease
of merging) of its free variables. Every code-generating combinator verifies that
every free variable of the argument code value is currently dynamically bound.
A scope-extrusion exception is thrown otherwise. App. B gives further details.

Microbenchmarks (generating code with up to 120 free variables) and expe-
rience shows that the scope-extrusion check imposes a linear (in the number of
free variables) and negligible cost.

We have described a dynamic, generation-time test, for scope extrusion. A
variable that got away is detected as soon as its code is used in any way (spliced,
printed, run). The check generates very helpful error messages with precise lo-
cation information. The location refers to the generator code (rather than the
generated code). The test works even in presence of delimited control.

6 Related work

Building code by quasi-quotation is the hallmark of Lisp (see [12] for overview).
Any effects are permitted in code generation but the result is not even as-
sured well-formed. Scheme macros support hygiene to some extent (see [13]
for overview) but the generator is written in a restricted language of syntax
transformers, which permits no effects.

Metaprogramming in Haskell is quite similar to that in Lisp. The original
Template Haskell (TH) [14] provides anti- and un-quotation, generates declara-
tions as well as expressions, and permits arbitrary IO effects in the generator. On
the flip side, TH is unhygienic. The constructed code may well be ill-typed, and
has to be type checked when spliced into the main program (in compile-time
code generation) or run, using GHC API. Alas, type errors reported at that
stage come with poor diagnostics and refer to the generated code rather than
the generator. Furthermore, mistakenly bound variables escape detection. Re-
cently, Haskell gained so-called typed template Haskell expressions TExp. Like
MetaOCaml, they construct only expressions (rather than, say, declarations)
and are typed checked as being constructed, hence ensuring the generated code
is well-typed. TExp offer no run operation; to prevent scope extrusion, any effects
during code generation are disallowed.

Code generation is part of partial evaluation (PE); hence a partial evaluator
that handles effectful code and performs effects at specialization time has to
contend with a possible scope extrusion. Since the user of PE has no direct con-
trol over the code generation or specialization, scope extrusion can be prevented
by the careful design of PE [15]. Explicit staging annotations let the program-
mer directly control specialization, and take blame for scope extrusion. BER
MetaOCaml places the blame early (before the code generation is finished) and
precisely, within the source code of the generator.

16

Scala-Virtualized [16] successfully demonstrates an alternative to quasi-quotation:
code-generating combinators. Normally, using them directly is inconvenient. The
pervasive overloading of Scala however makes code generators look like ordinary
expressions. For example, 1 + 2 may mean either the addition of two numbers
or building the code for it, depending on the type of that expression. Scala-
Virtualized takes the overloading to extreme: everything is an (overloaded)
method call, including conditionals, loops, pattern-matching, record declara-
tions, type annotations and other special forms. DSL expressions may look like
ordinary Scala code but produce various code representations, which can then be
optimized and compiled to target code. Lightweight Modular Staging (LMS) [17]
further provides code representations used in the Scala compiler itself. A DSL
writer then gets for free the compiler optimizations like common-subexpression
elimination, loop fusion, etc. The many DSLs built with LMS proved the ap-
proach successful.

Code-generating combinators however cannot easily express polymorphic let
(see §3) and often polymorphic code. LMS was not used for DSL with polymor-
phism. In contrast, polymorphic let is common in the generated OCaml code.
With regards to hygiene and scope extrusion, LMS takes the same pragmatic
approach as Lisp.

7 Conclusions and further plans

We have presented BER MetaOCaml, a superset of OCaml for writing, conve-
niently and with ease of mind, programs that generate programs. BER Meta-
OCaml continues the tradition of the original MetaOCaml by Taha, Calcagno
and collaborators, remaining largely compatible with it. There are many design
and implementation differences under the hood. They are motivated by the de-
sire to make it easier to maintain and contribute to MetaOCaml, to make it
more convenient to use and to catch more errors, and earlier. The motivations
are somewhat contradictory, and we had to make choices and test them through
experience. We strove to report errors as informatively as possible.

BER MetaOCaml poses questions for the staging theory, of accounting for
user-defined data types, objects, modules and GADTs. On the development
agenda are adding more ways to ‘run’ code values, by translating them to C,
Fortran, LLVM, Verilog and others. MetaOCaml can then be used for generating
libraries of specialized C, etc. code.

Active development, new modular structure, new features of MetaOCaml
will hopefully attract more users and contributors, and incite future research
into type-safe meta-programming.

Acknowledgments. I am very grateful to Walid Taha for introducing me to
MetaOCaml, for his encouragement, and a great number of stimulating con-
versations. I thank Cristiano Calcagno, Jacques Carette, Jun Inoue, Yukiyoshi
Kameyama and Chung-chieh Shan for many helpful discussions and encour-
agement. Many helpful comments by the anonymous reviewers are gratefully
acknowledged.

17

References

[1] Swadi, K., Taha, W., Kiselyov, O., Pašalić, E.: A monadic approach for avoiding
code duplication when staging memoized functions. In: PEPM. (2006) 160–169

[2] Carette, J., Kiselyov, O.: Multi-stage programming with functors and monads:
Eliminating abstraction overhead from generic code. Science of Computer Pro-
gramming 76 (2011) 349–375

[3] Kiselyov, O., Taha, W.: Relating FFTW and split-radix. In: ICESS. Number 3605
in LNCS (2005) 488–493

[4] Lengauer, C., Taha, W., eds.: MetaOCaml Workshop 2004. In Lengauer, C., Taha,
W., eds.: Special Issue on the 1st MetaOCaml Workshop (2004). Volume 62(1) of
Science of Computer Programming. (2006)

[5] Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages
using ASTs, gensym, and reflection. In: GPCE. Number 2830 in LNCS (2003) 57–
76

[6] Kiselyov, O.: BER MetaOCaml N101. http://okmij.org/ftp/ML/MetaOCaml.

html (2013)
[7] Kiselyov, O., Swadi, K.N., Taha, W.: A methodology for generating verified com-

binatorial circuits. In: EMSOFT. (2004) 249–258
[8] Kiselyov, O.: Modular, convenient, assured domain-specific optimizations: Can

generative programming deliver? Poster at APLAS, http://okmij.org/ftp/

meta-programming/Shonan1.html (2012)
[9] Kameyama, Y., Kiselyov, O., Shan, C.c.: Shifting the stage: Staging with delimited

control. Journal of Functional Programming 21 (2011) 617–662
[10] Calcagno, C., Moggi, E., Taha, W.: ML-like inference for classifiers. In: ESOP.

Number 2986 in LNCS (2004) 79–93
[11] Taha, W., Nielsen, M.F.: Environment classifiers. In: POPL. (2003) 26–37
[12] Bawden, A.: Quasiquotation in Lisp. In: PEPM. Number NS-99-1 in Note, BRICS

(1999) 4–12
[13] Herman, D.: A Theory of Typed Hygienic Macros. PhD thesis, Northeastern

University, Boston, MA (2010)
[14] Sheard, T., Peyton Jones, S.L.: Template meta-programming for Haskell. In

Chakravarty, M.M.T., ed.: Haskell Workshop. (2002) 1–16
[15] Thiemann, P., Dussart, D.: Partial evaluation for higher-order languages with

state. http://www.informatik.uni-freiburg.de/~thiemann/papers/mlpe.ps.

gz (1999)
[16] Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-Virtualized:

linguistic reuse for deep embeddings. Higher-Order and Symbolic Computation
(2013)

[17] Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. Commun. ACM 55 (2012) 121–130

A BER MetaOCaml and the old MetaOCaml

This section details the differences of BER MetaOCaml (the current version
N101) from the original MetaOCaml (version 3.09.1 alpha 030).

The constructor restriction (§4), the scope extrusion check and the retirement
of environment classifiers (§5) have been covered already. The removal of envi-
ronment classifiers makes the operation to run code an ordinary function with

18

the ordinary type, named run, alias (!.). It is defined in the module Runcode,
outside the MetaOCaml kernel. The old syntax .! is obsoleted. The main Meta-
OCaml kernel module, trx.ml, has been completely re-written, with the scope
extrusion check and new algorithms for other operations. For example, translat-
ing the Typedtree, representing the type-checked code, to replace brackets and
escapes with code combinators now maintains sharing as much as possible. If
the Typedtree has no brackets, it is returned as it was. Previously, it was copied.
The implementation of cross-stage persistence has also changed, improving the
printing of CSP values.

BER MetaOCaml added the test for the well-formedness of recursive let:
〈let rec f = f in f〉 and 〈let rec [] = [] in []〉 are now prohibited. They were
allowed in all previous versions of MetaOCaml; therefore, a well-typed generator
could produce a well-typed code which nevertheless fails to compile.

BER MetaOCaml builds code values faster, especially for (non-binding) func-
tions. The speed of the generation has not been a problem though. BER Meta-
OCaml supports applications with labeled arguments and records with polymor-
phic fields.

The separation into the ‘kernel’ and the ‘user-level’ has been described in
§3. BER MetaOCaml has introduced the ‘system interface’, the API for running
code, with the special type closed code and the operations

val close code : α code → α closed code
val open code : α closed code → α code

The latter is total, the former does a scope extrusion check. There may be many
ways to ’run’ closed code. Currently, MetaOCaml provides

val run bytecode : α closed code → α

to run the closed code by byte-code compiling it and then executing. More such
functions are possible. The function Runcode.run : αcode → α and its alias, the
prefix operation (!.), are the composition of close code and run bytecode. BER
MetaOCaml is built as a custom top-level, using the standard tool ocamlmktop.

BER MetaOCaml source code is now extensively commented. It comes with
a comprehensive regression test suite along with a number of moderate-size tests
and benchmarks.

BER MetaOCaml is not only source-compatible with OCaml 4.01 – it is also
binary compatible. Any 4.01-built OCaml library and plugin can be used with
BER MetaOCaml in their binary form. The building of BER MetaOCaml no
longer involves bootstrapping and is hence much faster.

B Implementation of the scope-extrusion check in detail

We describe the implementation of the scope-extrusion check in detail, showing
the actual code.

As we saw in §5, the key insight underlying the scope-extrusion check is
the dynamic binding of the name of a future-stage variable. A free variable

19

has ‘escaped’ if its name is no longer dynamically bound. To accommodate
delimited control, we represent the name of a future-stage variable as a pair
of a string with a unique suffix annotated with the source code location in-
formation, and a so-called stackmark. A stackmark API is truly minimalist:
with stack mark (fun mark →body) creates a unique stackmark and dynami-
cally binds it during the evaluation of body. There is only one operation on
stackmark, to check if it is valid, that is, still dynamically bound. Therefore, a
stackmark is realized as a thunk unit →bool. If delimited control is not used,
the stackmark API is implemented using a reference cell (containing bool if the
stackmark is valid) – so-called ‘shallow binding’.

let with stack mark simple = fun body →
let mark = ref true in
try
let r = body (fun () → ! mark) in
mark := false; (∗ invalidate the mark ∗)
r

with e → mark := false; raise e

Delimited control should install a different implementation, in which a stackmark
is a prompt. Open code is represented as the OCaml AST (realizing the future-
stage code)

type code repr = Code of string loc heap ∗ Parsetree . expression

paired with a list of free variables. For the sake of merge efficiency, we use a heap
rather than a list.

The function build fun simple and other binding-form generators use with stack mark simple
to enter a new stackmark region, the binding region, for the the execution of the
generator of their body. When the body is generated, we check that it contains
only valid stackmarks. In OCaml, future-stage bindings are introduced by pat-
terns in let, fun, match, ‘try’ and ‘for’ forms. Furthermore, general functions can
have complex binding patterns. They are handled similarly.

Every code generator function checks to see that the stackmarks in the incor-
porated fragments are all valid, that is, correspond to currently alive variables.
These code building functions merge the free variable lists (heaps actually) from
the incorporated fragments.

