
Relating FFTW and Split-Radix?

Oleg Kiselyov1 and Walid Taha2

1 Monterey, CA 93943. (oleg@okmij.org)
2 Department of Computer Science, Rice University. (taha@rice.edu)

Abstract. Recent work showed that staging and abstract interpretation can be
used to derive correct families of combinatorial circuits, and illustrated this tech-
nique with an in-depth analysis of the Fast Fourier Transform (FFT) for sizes2n.
While the quality of the generated code was promising, it used more floating-
point operations than the well-known FFTW codelets and split-radix algorithm.
This paper shows that staging and abstract interpretation can in fact be used to
produce circuits with the same number of floating-point operations as each of
split-radix and FFTW. In addition, choosing between two standard implemen-
tations of complex multiplication produces results that match each of the two
algorithms. Thus, we provide a constructive method for deriving the two distinct
algorithms.

1 Introduction

Hardware description languages are primarily concerned with resource use. But ex-
cept for very high-end applications, verifying the correctness of hardware systems can
be prohibitively expensive. In contrast, software languages are primarily concerned
with issues of expressivity, safety, clarity and maintainability. Software languages pro-
vide abstraction mechanisms such as higher-order functions, polymorphism, and gen-
eral recursion. Such abstraction mechanisms can make designs more maintainable and
reusable. They can also keep programs close to the mathematical definitions of the
algorithms they implement, which helps ensure correctness. Hardware description lan-
guages such as VHDL [7] and Verilog [14] provide only limited support for such ab-
straction mechanisms. The growing interest in reconfigurable hardware invites us to
consider the integration of the hardware and software worlds, and to consider how ver-
ification techniques from one world can be usefully applied in the other. Currently,
programming reconfigurable hardware is hard [1]: First, software developers are typi-
cally not trained to design circuits. Second, specifying circuits by hand can be tedious,
error prone, and difficult to maintain. The challenge in integrating both hardware and
software worlds can be summarized by a key question:

How can we get the raw performance of hardware without giving up the ex-
pressivity and clarity of software?

Program generation [4, 3] provides a seed for an answer to this question: it gives us the
full power of a high-level language to generate descriptions of hardware (or any other

? Supported by NSF ITR-0113569 “Putting Multi-stage Annotations to Work” and Texas ATP
003604-0032-2003 “Advanced Languages Techniques for Device Drivers.”

kind of resource-bounded computation). Each generator represents afamily of circuits.
The practical benefit is a high-level of flexibility and reuse. The research challenge lies
in finding analysis and verification techniques that can check and reason about this full
family of circuits just by looking at the generator, and without having to generate all
possible circuits. Resource-aware Programming (RAP) languages [12, 5] are designed
to address these problems by providing:

1. A highly expressive untyped substrate supporting features such as dynamic data-
structures, modules, objects, and higher-order functions.

2. Constructs that allow the programmer to express thestage distinctionbetween com-
putation on the development platform and computation on the deployment plat-
form.

3. Advanced static type systems to ensure that computations intended for execution
on resource-bounded platforms are both type-safe and resource-boundedwithout
generating all possible programs.

Developing a program generator in a RAP language proceeds as follows:

1. Implement the input-output behavior in an expressive, type-safe language such as
OCaml [6]. For FFT, this step is just implementing the Cooley-Tukey recurrence.

2. Verify the correctness of the input-output behavior of this program. Because we
used an expressive language, this step reduces to ensuring the faithful implementa-
tion of the textbook algorithm and the correct transformation of the program into a
monadic style. The monadic transformation is well-defined and mechanizable [8].

3. Determine which parts of the computation can be done on the development plat-
form, and which must be left to the deployment platform (cf. [11]).

4. Add staging annotations. In this step, staging constructs (hygienic quasi-quotations)
ensure that this is done in a semantically transparent manner. Staging a program
turns it into a program generator. A two-level type system understands that we are
using quasi-quotations to generate programs (cf. [13]) and can guarantee that there
are no inconsistent uses of first- and second-stage inputs. A RAP type system [12,
5] goes further and can ensure that second-stage computations only use features and
resources that are available on the target platform. The source code of the resulting
generatoris often a concise, minor variation on the result of the first step.

5. Use abstract interpretation techniques [2] to improvegenerated code, by shifting
more computations from the generated code to the generator.

1.1 Contributions

The use of abstract interpretation in the RAP process (Step 5 in the above) was only re-
cently proposed and investigated [5]. It provides a safe, systematic means for augment-
ing the generator with knowledge of domain-specific optimizations, and is a key dif-
ference between RAP and previous approaches to program generation including those
used in the widely popular FFTW [3]. Despite the merits of this approach (see [5]), the
number of arithmetic operations in RAP generators for FFTW circuits only approached
those in implementations generated by FFTW.

This paper shows that the technique of [5] can in fact be used to produce circuits
with the same number of floating-point operations as in FFTW. In addition, choosing
a different standard implementation of complex multiplication gives us circuits with

2

the same number of floating-point operations as in split-radix FFT, another optimal
FFT algorithm [9]. Thus, we provide a new, constructive method to deriving the two
different classes of algorithms.

2 Matching FFTW and Split-radix

Previous work [5] uses staging and abstract interpretation to construct a concise genera-
tor of combinatorial FFT circuits. The starting point is the textbook decimation-in-time
FFTF (N,x)k of theN -point complex-valued samplexj

F (1, x)0 = x0

F (N,x)k = F (N
2 , E(x))k + F (N

2 , O(x))k · wk
N

F (N,x)k+ N
2

= F (N
2 , E(x))k − F (N

2 , O(x))k · wk
N

where
E(x)j = x2j

O(x)j = x2j+1

wherewk
N = e−i2πk/N is theN th root of unity.E andO split the inputx into even

and odd parts, respectively. The transform is first applied to both halves, recursively,
and the result is combined to yield the two halves of the transform sequence. Given
the sample sizeN , the generator code literally follows this recursive algorithm. But
instead of performing multiplications and additions, staging constructs [11] are used to
generate a circuit that performs these computations. Observing that circuits generated
this way are not always efficient, abstract interpretation is used to improve the quality
of the generated code. In essence, abstract interpretation is used to enrich the generator
with knowledge about several specific identities of real numbers, namely:

r · 0 = 0
r + 0 = r
r · 1 = r

r + (−1 · r′) = r − r′

f · r + f · r′ = f · (r + r′)

sin(0) = 0
cos(0) = 1
sin(π

4) = cos(π
4)

sin(t + π
2) = cos(t)

cos(t + π
2) = −sin(t)

(1)

With these optimizations, the quality of the generated code in terms of number of
addition and multiplication operations came very close to that of FFTW codelets [3].
But the resulting circuits had more floating point operations than in the corresponding
FFTW codelets for sample sizes larger than 8. Whether it is possible to reach the same
numbers as FFTW or other optimal algorithms remained open. This paper reports on
three modifications to the abstract interpretation step that yield code with the same
number as operations as FFTW:

1. Exploiting identities of complex roots of unity rather than their floating-point rep-
resentations,

2. Switching from decimation in time (DiT) to decimation in frequency (DiF),
3. Exploiting the pattern of additions and subtractions in the algorithm.

FFT deals with complex-valued operations. Analysis of the algorithm shows that
factors known at generation time are not arbitrary. In particular, they are never zero, and
are always roots of unity (ei2πj/n). If instead of representing such constants as floating

3

points we represent them as rational numbersj
n , we can implement the identities on

these valuesexactly. In particular, we are able to exploit the following identity:

ei2πj/n · ei2πj′/n′
= ei2π(j

n + j′
n′)

When roots of unity are represented as a pair of floating-point numbers, such equiva-
lences do not hold except for trivial cases.

The decimation-in-frequency definition of FFT is as follows:

F (1, x)0 = x0

F (N,x)2k = F (N
2 , E(x))k

F (N,x)2k+1 = F (N
2 , O(x))k

where
E(x)j = xj + xj+ N

2
,

O(x)j = (xj − xj+ N
2
) · wj

N

We have already noted that all complex multiplications in the FFT algorithm multiply a
root of unity with a linear combination of input values. As a result, complex additions
and complex subtractions in FFT always have the formw1 · c±w2 ·d wherew1 andw2

are roots of unity. Such patterns can be computed in two different ways. The first is to do
the multiplications byw1·c andw2·d first, and use the result for the final addition and the
subtraction. The second approach is to re-write the expression asw1(c ± w2/w1 · d).
The second approach is useful when the multiplication either byw1 or by w2/w1 is
trivial. The trivial multiplication is the one by±1,±i.

These are all the optimizations needed to match FFTW operation count.

2.1 Split-Radix FFT

Split-radix FFT is a particular FFT algorithm that aims to compute FFT with the least
number of multiplications. In the general case, complex multiplication can be computed
with four real multiplications and two real additions

(a + ib) · (c + id) = (ac− bd) + i(ad + bc) (2)

or, with three multiplications and five addition/subtractions

(a + ib) · (c + id) = (t1 − t2) + i(t1 + t3) where

 t1 = a(c + d)
t2 = d(b + a)
t3 = c(b− a)

(3)

The benefit of that particular formula among others with the same operation count is
that when the factora + ib is known at generation time, two of the required addi-
tions/subtractions, namely,b + a andb − a, can be computed at that time, leaving the
other three additions and three multiplications to the run-time of the generated code.

Choosing equation (2) gives us the code that matches FFTW in operation count,
whereas choosing equation (3) gives us the code that matches split-radix.

2.2 Experiments

The following table summarizes our measurements of the effect of abstract interpreta-
tion for FFT. The first column gives the size of the FFT input vector. The second column

4

gives the number of floating-point multiplications/additions in the code resulting from
direct staging. The column “RAP DiT” reproduces previous results [5]. The column,
“RAP DiF 1” demonstrates the improvement of the more precise abstract interpretation
described here. The next column shows the number of multiplications/additions in code
generated by FFTW for the various problem sizes3. The column “RAP DiF 2” is “RAP
DiF 1” but with complex multiplication with three real multiplies and five real addi-
tions, two of which are done at code generation time. The last column is the data for a
split-radix algorithm with the complex input [9, Table II].

Size Direct staging RAP DiT RAP DiF 1 FFTW [3] RAP DiF 2 Split Radix

4 32/32 0/16 0/16 0/16 0/16 0/16
8 96/96 4/52 4/52 4/52 4/52 4/52

16 256/256 28/150 24/144 24/144 20/148 20/148
32 640/640 108/398 84/372 84/372 68/388 68/388
64 1536/1536 332/998 248/912 248/912 196/964 196/964

128 3584/3584 908/2406 660/2164 ≈ 752/2208 516/2308 516/2308
256 8192/81922316/5638 1656/5008≈ 2016/5184 1284/53801284/5380

We have used our FFT generator to generate all the circuit descriptions summa-
rized by above table. To check the correctness of these implementations, we have trans-
lated them into C programs and checked their results and performance against FFTW.
The following table shows the performance of the algorithms above as measured by
the FFTW benchmark v3.1 on a Pentium IV 3GHz computer. The numbers show re-
ported MFLOPS relative to FFTW for double-precision, complex, in-place, forward
FFT. All code was compiled with GCC 3.2.2. The performance numbers show that
on a Pentium IV, the floating-point multiplications are about just as fast as floating-
point additions, and on modern super-scalar CPUs, the performance depends on many
other factors (such as caching, pipelines stalls, etc.) rather than merely the floating-
point performance. On DSP, FPGA and other similar circuits/processors, floating-point
performance is usually the bottleneck.

Size 4 8 16 32 64 128 256
RAP DiF 1 335% 162% 97% 96.1% 83.1% 77.7% 68.8%
RAP DiF 2 323% 162% 102% 88.0% 79.2% 78.6% 69.6%
FFTW 100% 100% 100% 100% 100% 100% 100%

3 Conclusions

With systematic improvements to the domain-specific optimizations used, we found that
staging and abstract interpretation can generate FFT circuits that match both FFTW and
the split-radix algorithm in terms of operation count. Furthermore, to generate circuits
that match each of the two algorithms, all that is needed was to chose between two
different definitions of complex multiplication.

3 The numbers for FFTW are obtained from its codelets. FFTW does not have codelets for
sample sizes 128 and 256. For those and larger sizes, FFTW uses the composition of smaller
FFTW transforms. For those sample sizes, the operation counts in the table are estimates based
on the counts for smaller sizes and on the Cooley-Tukey recurrences for the power-of-2 FFT
algorithm.

5

Unlike FFTW, we know precisely where savings are coming from, and which par-
ticular equivalences contribute to which improvements in the code. We do not search for
optimal code using extensive low-level optimizations at the level of real-valued terms.
Rather, we use a small number of optimizations at the level of complex-numbers. Com-
plex numbers arethe domain-specific type for this application. We do not attempt to
apply optimizations after generation, but rather, during generation. As such, our ex-
perience provides further evidence that abstract interpretation is a promising tool for
expressing domain-specific optimizations in a program generation system.

Acknowledgements:We would like to thank Anthony Castanares, Emir Pašalíc, and
Abd Elhamid Taha for comments on this manuscript.

References

1. W. Boehm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and W. Najjar. Mapping
a single assignment programming language to reconfigurable systems. InSupercomputing,
number 21, pages 117–130, 2002.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In4th ACM Symposium on
Principles of Programming Languages, pages 238–252. ACM, 1977.

3. Matteo Frigo. A Fast Fourier Transform compiler. InProceedings of the Conference on
Programming Language Design and Implementation, pages 169–180, 1999.

4. C. S. Burrus I. W. Selesnick. Automatic generation of prime length FFT programs. InIEEE
Transactions on Signal Processing, pages 14–24, Jan 1996.

5. Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology for generating verified com-
binatorial circuits. Inthe International Workshop on Embedded Software (EMSOFT ’04),
Lecture Notes in Computer Science, Pisa, Italy, 2004. Springer-Verlag. To appear.

6. Xavier Leroy. Objective Caml, 2000. Available fromhttp://caml.inria.fr/ocaml/.
7. R. Lipsett, E. Marschner, and M. Shaded. VHDL - The Language. InIEEE Design and Test

of Computers, pages 28–41, April 1986.
8. Eugenio Moggi. Notions of computation and monads.Information and Computation, 93(1),

1991.
9. M.T.Heideman and C.S.Burrus. On the number of multiplications necessary to compute a

length-2n DFT. IEEE Trans. ASSP, ASSP-34(1):91–95, February 1986.
10. Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR 97291-

1000,USA. Available online fromftp://cse.ogi.edu/pub/tech-reports/README.html.
11. Walid Taha.Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon

Graduate Institute of Science and Technology, 1999. Available from [10].
12. Walid Taha, Stephan Ellner, and Hongwei Xi. Generating Imperative, Heap-Bounded Pro-

grams in a Functional Setting. InProceedings of the Third International Conference on
Embedded Software, Philadelphia, PA, October 2003.

13. Walid Taha and Michael Florentin Nielsen. Environment classifiers. InThe Symposium on
Principles of Programming Languages (POPL ’03), New Orleans, 2003.

14. Donald E. Thomas and Philip R. Moorby.The Verilog Hardware Description Language.
Kluwer Academic Publishers, 3rd edition, 1996.

6

