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Abstract
Many functional programs — state machines [Krishnamurthi
2006], top-down and bottom-up parsers [Hinze and Pater-
son 2003; Hutton and Meijer 1996], evaluators [Abelson et al.
1984], GUI initialization graphs [Syme 2006], &c. — are conve-
niently expressed as groups of mutually recursive bindings.
One therefore expects program generators, such as those
written in MetaOCaml, to be able to build programs with
mutual recursion.
Unfortunately, currently MetaOCaml can only build re-

cursive groups whose size is hard-coded in the generating
program. The general case requires something other than
quotation, and seemingly weakens static guarantees on the
resulting code.We describe the challenges and propose a new
language construct for assuredly generating binding groups
of arbitrary size – illustrating with a collection of examples
for mutual, n-ary, heterogeneous, value and polymorphic
recursion.

CCS Concepts • Software and its engineering → Re-
cursion; Functional languages; Source code generation;

Keywords Recursion, fixed points, multi-stage program-
ming, metaprogramming
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1 Introduction
MetaOCaml (whose current implementation is known as
BER MetaOCaml [Kiselyov 2014]) extends OCaml with sup-
port for typed program generation. It makes three additions:
α code is the type of unevaluated code fragments, brackets
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.<e>. construct a code fragment by quoting an expression,
and splices .~e insert a code fragment into a larger one.
For example, here is a function t1 that builds an int code

fragment by inserting its int code argument within a brack-
eted expression:

let t1 x = .<.~x ∗ succ .~x>.
{ val t1 : int code→ int code = <fun>

and here is a call to t1with a code fragment of the appropriate
type:

let p12 = .< 1 + 2 >.
let c1 = t1 p12
{ val c1 : int code = .<(1 + 2) ∗ succ (1 + 2)>.

Combined with higher-order functions, effects, modules
and other features of the host OCaml language, these con-
structs support safe and flexible program generation, permit-
ting typed manipulation of open code while ensuring that
the generated code is well-scoped and well-typed.

However, support for generating recursive programs is cur-
rently limited: there is no support for generating mutually-
recursive definitions whose size is not hard-coded in the
generating program [Taha 1999]. For example, the following
state machine:

sstart t u

A

B

A

B

B

A

is naturally expressed as a mutually-recursive group of bind-
ings:

let rec s = function A :: r → s r | B :: r → t r | []→ true
and t = function A :: r → s r | B :: r→ u r | []→ false
and u = function A :: r → t r | B :: r→ u r | []→ false

where each function s, t, and u realizes a recognizer, taking
a list of A and B symbols and returning a boolean. However,
the program that builds such a group from a description of an
arbitrary state machine cannot be expressed in MetaOCaml.
The limited support for generating mutual recursion is a

consequence of expression-based quotation: brackets enclose
expressions, and splices insert expressions into expressions —
but a group of bindings is not an expression. There is a second
difficulty: generating recursive definitions with ‘backward’
and ‘forward’ references seemingly requires unrestricted,
Lisp-like gensym, which defeats MetaOCaml’s static guar-
antees. It is unclear how to ensure all gensym-ed variables
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are eventually bound to the intended expressions, and how
to ensure that generated code is well-typed.
Related metaprogramming systems such as LMS [Rompf

2016] and Template Haskell [Sheard and Jones 2002] which
are capable of generating recursive definitions indeed use
gensym and ‘compiler magic’ (such as intensional analysis
of closures in LMS and dependency analysis in GHC to de-
termine mutually recursive groups). None of them therefore
catch the left-unbound variables until the code is fully gener-
ated and compiled – at which point the error in the generator
becomes very difficult to find (as illustrated in [Ofenbeck
et al. 2016]).

In practice, MetaOCaml programmers fall back on a vari-
ety of workarounds, simulating mutual recursion using ordi-
nary recursion [Kiselyov 2013] or nested recursion [Inoue
2014], encoding recursion using higher-order state (“Landin’s
knot”) [Yallop 2016] or hard-coding templates for a few fixed
numbers of binding-group sizes [Yallop 2017]. None of the
workarounds are satisfactory: they do not cover all use cases,
are awkward to use, or generate inefficient programs that
rely on references or auxiliary data structures.

This paper solves these challenges. Specifically, it describes:
• a low-level primitive for recursive binding insertion
(Section 3), building on earlier designs for insertion of
ordinary let bindings (Section 2)

• a high-level combinator built on top of the low-level
primitive (Section 4) that supports the generation of
a wide variety of recursive patterns — mutual, n-ary,
heterogeneous, value and polymorphic recursion.

2 Let-Insertion
The code generated for c1 above contains duplicate expres-
sions, which ideally should be computed only once. We can
avoid the duplicated computation by changing t1 to generate
a let expression:

let t2 x = .<let y = .~x in y ∗ succ y>.
let c2 = t2 p12
{ val c2 : int code = .<let y1 = 1 + 2 in y1 ∗ (succ y1)>.

However, in general let expressions cannot be inserted lo-
cally. For example, in the following program, ft1 takes a code
template t as argument, using it when building the body of
the generated function:

let ft1 t x = .<fun u → .~(t x) + .~(t .<.~x + u>.)>.
{ val ft1 : (int code→ int code)→ int code→ (int → int) code

Now the let expression generated by t2 is not positioned
optimally:

let c3 = ft1 t2 p12;;
{ val c3 : (int→ int) code = .<fun u2 →

(let y4 = 1 + 2 in y4 ∗ (succ y4)) +
(let y3 = (1 + 2) + u2 in y3 ∗ (succ y3))>.

since we do not wish to compute 1+ 2 every time the function
generated by c3 is applied. The challenge is inserting let
bindings into a wider context rather than into the immediate
code fragment under construction.

Recent versions of BER MetaOCaml have a built-in genlet
primitive: if e is a code value, then genlet e arranges to gen-
erate, at an appropriate place, a let expression binding e to a
variable, returning the code value with just that variable. (If
e is already an atomic expression, genlet e returns e as it is).

For example, in the following program p12l is bound to a
code expression 1+ 2 that is to be let-bound according to the
context. When p12l is printed – that is, used in the top-level
context – the let is inserted immediately:

let p12l = genlet p12
{ val p12l : int code = .<let l5 = 1 + 2 in l5>.

If we pass p12l to t1, the let is inserted outside the template’s
code:

let c1l = t1 p12l
{ val c1l : int code = .<let l5 = 1 + 2 in l5 ∗ succ l5>.

Finally, in the complex ft1 example, the let-binding happens
outside the function, as desired:

let ft1 x = .<fun u→ .~(t1 x) + .~(t1 (genlet .<.~x + u>.))>.
let c3l = ft1 p12l;;
{ val c3l : (int→ int) code =
.<let l5 = 1 + 2 in
fun u10 → let l11 = l5 + u10 in l5∗succ l5 + l11∗succ l11>.

Let-insertion and memoization Let-insertion is often
used with memoization, as we illustrate with a simplified
dynamic-programming algorithm [Kameyama et al. 2011].
The fibnr function computes the nth element of the Fibonacci
sequence whose first two elements are given as arguments x
and y:

let fibnr plus x y self n =
if n= 0 then x else
if n= 1 then y else
plus (self (n−1)) (self (n−2))

The code is written in open-recursive style, and abstracted
over the addition operation. Tying the knot with the standard
call-by-value fixpoint combinator let rec fix f x = f (fix f) x
we compute, for example, the 5th element of the standard
sequence as fix (fibnr (+ ) 1 1) 5.

If, instead of passing the standard addition function + for
fibnr’s plus argument, we pass a code-generating implemen-
tation of plus then fibnr also becomes a code generator, here
building code that computes the 5th element, given the first
two:

let splus x y = .<.~x + .~y>. in
.<fun x y → .~(fix (fibnr splus .<x>. .<y>.) 5)>.
{ − : (int → int→ int) code =
.<fun x1 y2 → (((y2+ x1)+ y2)+ (y2+ x1))+ ((y2+ x1)+ y2)>.
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The duplicated expressions in the generated code reveal why
fibnr is exponentially slow.
A memoizing fixpoint combinator inserts a let-binding

for the result of each call, and maintains a mapping from
previous arguments to the let-bound variables [Swadi et al.
2006]

let mfix (f : (α → β code)→ (α → β code)) (x : α ) : β code =
let memo = ref [] in
let rec loop n = try List.assoc n !memo

with Not_found→

let v = genlet (f loop n) in
memo := (n,v) :: !memo; v

in loop x

letting us compute the n-th element fast and generate fast
code:

.<fun x y → .~(mfix (fibnr splus .<x>. .<y>.) 5)>.
{ − : (int→ int→ int) code =
.< fun x5 y6 →

let l7 = y6 + x5 in let l8 = l7 + y6 in
let l9 = l8 + l7 in let l10 = l9 + l8 in l10>.

Without genlet however, we get the same poor code as with
the ordinary fix: memoization alone speeds up the code gen-
eration without affecting the efficiency of the generated code.
The crucial role of let-insertion in these applications has been
extensively discussed by Swadi et al. [2006].

3 Inserting Recursive Let
As we have seen, the specialization of recursive functions
calls for generating definitions. More complicated recursive
patterns require generating recursive definitions. The sim-
plest example is specializing the Ackermann function

let rec ack m n =
if m = 0 then n+ 1 else
if n = 0 then ack (m−1) 1 else
ack (m−1) (ack m (n−1))

for a given value of m, a challenge originally posed by Neil
Jones. Turning ack into a generator of specialized code is
easy in the open-recursion style, by merely annotating the
code keeping in mind that n is future-stage:

let tack self m n =
if m = 0 then .<.~n+ 1>. else
.<if .~n = 0 then .~(self (m−1)) 1 else
.~(self (m−1)) (.~(self m) (.~n−1))>.
{ val tack : (int→(int→int) code)→ int→int code→int code

All that is left is to set the desired value of m and apply the
mfix — which promptly diverges:

mfix (fun self m → .<fun n→ .~(tack self m .<n>.)>.) 2

Looking at the original ack shows the reason: ack m depends
not only on ack (m−1) but also on ack m itself.

Generating recursive definitions was deemed for a long
time a difficult problem. One day, a two-liner solution
emerged, from the insight that a recursive definition

let rec g = e in body

may be re-written as

let g = let rec g = e in g in body

which immediately gives us genletrec:

let genletrec : ((α→β) code→ α code→ β code)→
(α→β) code =

fun f→ genlet .<let rec g x = .~(f .<g>. .<x>.) in g>.

The new memoizing fixpoint combinator becomes

let mrfix : ((α → (β→γ ) code)→ (α → β code→γ code)) →
(α → (β→γ ) code) =

fun f x→
let memo = ref ([],[]) in
let rec loop n =
try List.assoc n (fst !memo @ snd !memo)
with Not_found →

let v = genletrec (fun g y→

let old = snd !memo in
memo := (fst !memo, (n,g) :: old);
let v = (f loop n y) in
memo := (fst !memo, old);
v) in

memo := ((n,v) :: fst !memo, snd !memo); v
in loop x

Recursive definitions have to be the definitions of functions:
this fact is reflected in mrfix’s (and genletrec’s) code and
type. The mrfix code has another peculiarity: splitting of
the memo table into the ‘global’ and ‘local’ parts. We let the
reader contemplate its significance (until we return to this
point in Section 4).

Finally we are able to specialize the Ackermann function
to a particular value of m (which is two, in the code below):

mrfix tack 2
{ − : (int → int) code =
.< let l13 = let rec g11 x12 = x12 + 1 in g11 in

let l14 = let rec g9 x10 =
if x10 = 0 then l13 1 else l13 (g9 (x10 − 1))
in g9 in

let l15 = let rec g7 x8 =
if x8 = 0 then l14 1 else l14 (g7 (x8 − 1))
in g7

in l15>.

One clearly sees recursive definitions that were not present
in the original ack.
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4 Generating Mutually-Recursive
Functions

In many practical cases of generating recursive definitions
one wants to produce mutually recursive definitions, such
as the state machine shown in Section 1. To illustrate the
challenges brought by mutual recursion, we take a simpler
running example, contrived to be in the shape of the earlier
Ackermann function. The example is the ‘classical’ even-
odd pair, but taking two non-negative integers m and n and
returning a boolean, telling if the summ+ n has even or odd
parity, resp.

let rec even m n = if n>0 then odd m (n−1) else
if m>0 then odd (m−1) n else
true

and odd m n = if n>0 then even m (n−1) else
if m>0 then even (m−1) n else
false

At first, mutual recursion seems to pose no problem: after
all, a group of mutually recursive functions may always be
converted to the ordinary recursive function by adding an
extra argument: the index of a particular recursive clause in
the group1:

type evod = Even | Odd

let rec evodf self idx m n =
match idx with
| Even → if n>0 then self Odd m (n−1) else

if m>0 then self Odd (m−1) n else
true

| Odd → if n>0 then self Even m (n−1) else
if m>0 then self Even (m−1) n else
false

{ val evodf : (evod → int→ int → bool) →
evod→ int→ int→ bool

To find out if the sum of 10 and 42 has even parity one writes
fix evodf Even 10+ 42. The straightforward staging gives

let rec sevodf self idx m n =
match idx with
| Even →

.<if .~n>0 then .~(self Odd m) (.~n−1) else

.~(if m>0 then .<.~(self Odd (m−1)) .~n>. else
.<true>.)>.

| Odd → . . .
{ val sevodf : (evod→ int→ (int→ bool) code)→

evod→ int→ int code→ bool code

which looks very much like tack from Section 3. We could
thus apply mrfix from that section with trivial adaptations

1Since the functions even and odd have the same types, the index here is
the ordinary data type evod. The general case calls for generalized algebraic
data types (GADTs), as Section 5.3 shows.

and obtain the code for even m n specialized to a particular
value of m, say, 0 (which is just the ordinary even function):

mrfix (fun self (idx,m) x→
sevodf (fun idx m→ self (idx,m)) idx m x)

(Even,0)
{ − : (int → bool) code = .<
let lv6 =
let rec g1 =
let lv5 =
let rec g3 x4 = if x4>0 then g1 (x4−1) else false
in g3 in

fun x2 → if x2>0 then lv5 (x2−1) else true in
g1 in
lv6>.

The odd function (appearing under the generated name g3)
is nested inside even (or, g1) rather than being ‘parallel’ with
it. It means odd is not accessible from the outside; if we
also want to compute odd parity, we have to duplicate the
code. There is a deeper problem than mere code duplication:
specializing even m n tom= 1 (that is, applying the tied-knot
sevodf to (Even,1)) generates no code. An exception is raised
instead, telling us that MetaOCaml detected scope extrusion:
an attempt to use a variable outside the scope of its binding.
Indeed, we have attempted to produce something like the
following (identifiers are renamed for clarity):

let lod0 = (∗ odd 0 n ∗)
let rec od0 n =
let lev0 = (∗ even 0 n ∗)
let rec ev0 n = if n>0 then od0 (n−1) else true in ev0 in
if n>0 then lev0 (n−1) else false in od0 in

let lev1 = (∗ even 1 n ∗)
let rec ev1 n =
let lod1 = (∗ odd 1 n ∗)
let rec od1 n = if n>0 then ev1 (n−1) else lev0 n in od1 in
if n>0 then lod1 (n−1) else lod0 n in ev1
in lev1

Here, the function ev1, the specialization of even m n
to m= 1 calls od0 and od1. The latter calls ev1 and
fun n→ even 0 n, whose code was already generated and
memoized, under the name lev0. Unfortunately, the scope of
lev0 does not extend beyond the scope of od0’s definition,
and hence mentioning lev0 within od1 is a scope extrusion.
We would like to generate the mutually recursive def-

inition let rec even = . . . and odd = . . . that defines both
even and odd in the same scope. Alas, this is impossible using
only brackets and escapes: code values represent OCaml ex-
pressions, but the set of bindings is not an expression. There
is also a bigger, semantic challenge. While generating the
code for the i-th recursive clause in a group we may refer
to clauses with both smaller and larger indices. It seems we
have to resort to Lisp-like gensym, explicitly creating a name
and only later binding it. However, what static assurances
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do we have that all generated names will be bound, and to
their intended clauses? How do we maintain the MetaOCaml
guarantee that the fully generated code is always well-typed?

Finally, what should the interface for the generator of mu-
tually recursive bindings be in the first place? After quite a
bit of thought, it turns out that genletrec’s interface would
suffice. For the sake of better error detection, one would gen-
eralize it slightly. We add a second function, genletrec_locus,
which marks the location where a group of recursive defi-
nitions should be inserted; the generated locus_t value rep-
resenting the location can be passed as first argument of
genletrec:
type locus_t
val genletrec_locus :
(locus_t → α code)→ α code

val genletrec :
locus_t → ((α→β) code → α code→ β code)→ (α→β) code

The earlier genlet (and, hence genletrec) inserted the re-
quested definition in the widest possible context (while en-
suring the absence of unbound variables in the generated
code). With the new interface the insertion point (and hence
the scope of the inserted bindings) is explicitly marked using
genletrec_locus and each call to genletrec indicates which
group of recursive bindings should contain the generated
definition2. Correspondingly, in a call
genletrec locus (fun g x→ . . . )

the identifier for the binding (bound to g) scopes beyond
genletrec’s body (but within the scope denoted by locus).
The new genletrec let us write mrfix essentially just like

the simpler mfix, without the splitting of the memo table
into global and local parts3: now, the definitions have the
same scope.
let mrfix :

((α → (β→γ ) code)→ (α → β code→γ code)) →
(α → (β→γ ) code) =

fun f x→
genletrec_locus @@ fun locus→
let memo = ref [] in
let rec loop n =
try List.assoc n !memo
with Not_found→

genletrec locus (fun g y→

memo := (n,g) :: !memo;
f loop n y)

in loop x

2It hence becomes the programmer’s responsibility to place genletrec_locus
correctly. We are yet to explore and resolve the trade-off between automati-
cally floating genlet and genletrec whose scope is to be set manually.
3Previously, genletrec relied on the trick let g = let rec g = e in g in body,
which binds two different gs, one within and one outside the scope of the
local let rec. Therefore, the memo table had two parts. The local part tracks
the identifiers that are valid only while we are generating the let rec body;
the global part, to which we only add, collects the externally visible gs.

With this new mrfix but the same sevodf from Section 4 we
are able to generate the specialized even 1 n code, with four
mutually recursive definitions.

Finite State Automata, reprise Recognizers of finite state
automata are produced by the following generic, textbook
generator4:

type token = A | B
type state = S | T | U
type (α ,σ ) automaton =
{ finals: σ list;
trans: (σ ∗ (α ∗ σ ) list) list}

let makeau :
(token, α ) automaton→

(α → (token list → bool) code) →
α → token list code→ bool code =

fun {finals; trans} self state stream →

let accept = List.mem state finals in
let next token = List.assoc token (List.assoc state trans) in
.< match .~stream with

| A :: r → .~(self (next A)) r
| B :: r→ .~(self (next B)) r
| []→ accept >.

In particular, the automaton in Section 1 is represented by
the following description

let au1 =
{finals = [S];
trans = [(S, [(A, S); (B, T)]);

(T, [(A, S); (B, U)]);
(U, [(A, T); (B, U)]);]}

Then mrfix (makeau au1) S generates:

let rec x1 y = match y with
| A::r → x1 r
| B::r→ x5 r
| [] → true

and x5 y = match y with
| A::r → x1 r
| B::r→ x9 r
| [] → false

and x9 y = match y with
| A::r → x5 r
| B::r→ x9 r
| [] → false

in x1

of the type token list→ bool.

4The generator makeau is indeed polymorphic over the type of the state;
the dependence on the alphabet shows in thematch statement. Incidentally,
MetaOCaml also has a facility to generate pattern-match clauses of statically
unknown length and content. With its help, we can make makeau fully
general.
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5 Further Extensions
We sketch some extensions to the mrfix combinator of Sec-
tion 4.

5.1 Arbitrary Bodies in let rec Expressions
The mrfix combinator has the following type:

val mrfix : ((α → (β→γ ) code) → (α → β code→γ code)) →
α → (β→γ ) code

There are two arguments: the first is a function that builds
recursive definitions; the second (of type α ) is an index that
selects the identifier associated with one of the definitions
to appear in the body of the generated let rec expression.
For example, in the code generated for the Ackermann func-
tion by the call mrfix tack 2 in Section 3, the body of the
generated expression is l15, the identifier associated with the
definition generated by tack 2. And in the code generated
for the finite state automaton in Section 4 the body of the
generated expression is x1, the name of the function that
corresponds to the start symbol.
However, it is sometimes convenient to generate let rec

expressions with bodies that are more complex than single
identifiers. The following function,mrfixk, generalizesmrfix
to additionally support generation of arbitrary bodies:
val mrfixk : ((α → (β→γ ) code) → (α → β code→γ code)) →

((α → (β→γ ) code) → γ code)→ γ code

Rather than an index, the second argument is now a func-
tion that calls its argument to insert recursive definitions and
builds a body of type γ code. For example, here is the code
that builds a recursive group representing the state machine
from previous examples, whose body is a tuple returning all
the recognizer functions:

mrfixk (makeau au1) (fun f→ .< (.~(f S), .~(f U), .~(f T)) >.)

The generated code is the same as the code generated by
mrfix, except for the more complex body:

let rec x1 y = match y with A::r → x1 r
| B::r→ x5 r
| []→ true

and x5 y = match y with A::r→ x1 r
| B::r→ x9 r
| []→ false

and x9 y = match y with A::r→ x5 r
| B::r→ x9 r
| []→ false

in (x1, x9, x5)

5.2 A Syntax Extension
Third-order functions such as mrfixk are not always easy to
understand and use. The following small syntax extension
improves readability in many cases:
let%staged rec f p p' = e in e'
{ mrfixk (fun f p p' → e) (fun f→ e')

Here %staged is an attribute that indicates the need for
a rewrite by a plug-in program that expands the syntax as
shown above.

Then ack can be written as follows
let%staged rec ack m n =
if m = 0 then .<.~n+ 1>. else
.<if .~n = 0 then .~(ack (m−1)) 1 else
.~(ack (m−1)) (.~(ack m) (.~n−1))>.
in ack 2

As this example shows, the syntax extension avoids the
need for explicitly higher-order code and for open recursion;
the identifier ack serves as the self argument in the expanded
syntax, and so the calls to ack appear as standard recursion.

5.3 Heterogeneously-Typed Recursive Groups
In the examples up to this point the bindings in each recur-
sive group have all been of a single type. In practice, however,
it is common for let rec to bind definitions of different types.
Supporting this general case requires several changes to the
type of the fixpoint combinator to make it more polymorphic.
The central idea is to generalize the index types used to

select recursive bindings from regular algebraic data types
to GADTs.5 For example, the following GADT supports gen-
erating mutually-recursive bindings for functions of types
int→ bool and float → bool

type α eo = Even : (int → bool) eo
| Odd : (float→ bool) eo

The type of themrfixk function is generalized accordingly:
the type α → (β → γ ) code of functions that map indexes
to variables becomes ∀α .α τ → α code, where the higher-
kinded type variable τ stands for an arbitrary parameterized
index type, such as eo. Here is the fully generalized type:

val mrfixk : ∀γ∀τ .(∀β .(∀α .α τ → α code)→ (β τ → β code)) →
((∀α .α τ → α code)→ γ code)→ γ code

Since the higher-rank and higher-kinded polymorphism
found in this type cannot be expressed directly in OCaml, our
implementation uses standard encodings based on OCaml’s
polymorphic record fields and functors.

5.4 Polymorphic Recursion
The extensions needed to support heterogeneous recursion
(Section 5.3) are also sufficient to support polymorphic re-
cursion. For example, here is a nested data type ntree of
perfectly balanced trees and a polymorphic function swivel
that interchanges left and right elements of ntree values:
5This (progressively fancier and fancier) indexing is closely related to the
generalized arity in Plotkin and Power’s formulation of algebraic effects
[Plotkin and Power 2003]. Like them, we represent a tuple as a set of indices
plus the function that maps each index to a value. The index set does not
have to have a fixed finite cardinality. Adding more structure to the set
of indices lets us, like it let Plotkin and Power, represent more interesting
collections.
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type α ntree = EmptyN
| TreeN of α ∗ (α ∗ α ) ntree

let rec swivel : α . (α → α ) → α ntree→ α ntree =
fun f t→match t with
| EmptyN → EmptyN
| TreeN (v,t)→ TreeN (f v, swivel (fun (x, y)→ (f y, f x)) t)

This is polymorphic-recursive because the recursive call uses
swivel at a different type than the type of the definition: the
passed function f acts on pairs α ∗ α , not values of type α .

Generating polymorphic-recursive definitions like swivel
involves indexing by a polymorphic type. Here is a suitable
index for generating swivel:
type swivel = { swivel: α . (α → α )→ α ntree → α ntree }
type _ index = Swivel : swivel index

At each use of the index the polymorphic record field
can be instantiated afresh, making it possible to call the
generated function recursively at any instance of the type
(α → α ) → α ntree→ α ntree.
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Status
The described genletrec is prototyped6 in full using plain
MetaOCaml as well as MetaOCaml with delimited control
effects, such as those provided by Multicore OCaml [Dolan
et al. 2015] or the delimcc library [Kiselyov 2012]. We are
working at supporting it above-the-board in a forthcoming
release of MetaOCaml.
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