
SXSLT: Manipulation Language for XML

Oleg Kiselyov

Fleet Numerical Meteorology and

Oceanography Center

Monterey, CA

Shriram Krishnamurthi

Brown University

Fifth International Symposium on

Practical Aspects of Declarative Languages:

PADL 2003. January 14, 2003. New Orleans,

LA, U.S.A.

http://ssax.sourceforge.net/

1

This talk {– SXSLT: Manipulation Language for XML
–} is a joint work with Shriram Krishnamurthi of Brown
University.

The title of the talk invites the question: aren’t there
already enough XML manipulation languages? For one,
there is XSLT, which is a Web Consortium Recommen-
dation. There are several other tools. There are a
number of books about XSLT and these tools.

1-1

The trouble with XSLT

”The XSLT designers created a language

that, while rich in domain-specific functional-

ity, lacked much of the basic functionality nec-

essary to make it genuinely suited for its in-

tended purpose. While the designers probably

left ’generic’ functionality out of the spec on

the grounds that XSLT was never intended to

be a general-purpose programming language,

they failed to realize that even simple doc-

ument transformations often require a little

nuts-and-bolts programming. Leaving out the

nuts and bolts made XSLT a half-broken lan-

guage.”

Moertel, T.: XSLT, Perl, Haskell, & a word

on language design. Posted on kuro5hin.org

on January 15, 2002.

2

The trouble with XSLT is that it is half-baked (or half-
broken). In any case it is only half-usable. XSLT is never
meant to be a general-purpose language. Moreover, as
the author of this article wrote: ”The really bad thing is
that the designers of XSLT made the language free of
side effects but then failed to include fundamental sup-
port for basic functional programming idioms. Without
such support, many trivial tasks become hell.”

2-1

Languages for handling XML

Adam Bosworth:

”I noticed two new categories of books: books

about programming with Java and XML and

books about XSLT. In both cases, whole

forests are dying to compensate for the XML

community’s one great failure – the lack of a

decent programming model for manipulating

XML.”

...

”We need a language that can natively sup-

port XML as a data type and yet can grace-

fully integrate with the world of objects and

can take advantage of the self-describing na-

ture of XML by supporting querying of its own

variables. This language as used by humans

will look like a programming language, not an

XML grammar. This is the language we will

use to convert from one XML format to an-

other.”
3

Speaking about books. Adam Bosworth, a vice presi-
dent for engineering of the leading Web Services ven-
dor BEA Systems Inc., took a stroll through his local
bookstore, saw those books about XSLT, and wrote:
”whole forests are dying to compensate for the XML
community’s one great failure – the lack of a decent
programming model for manipulating XML. We need
a language that can natively support XML as a data
type and yet can gracefully integrate with the world of
objects and can take advantage of the self-describing
nature of XML...” Adam Bosworth then described gen-
eral requirements for such a language, and pointed out
the most glaring drawback of XSLT – its XML syntax.
It turns out, he wrote, that there are things that XML
isn’t well suited for, and expression languages that hu-
mans can read and write easily is one of them.

3-1

Languages for handling XML...

”I contend that until we have a language that

natively understands the data structures inher-

ent in XML and enables optimized algorithms

for processing it, we will not have real XML

programming.”

Adam Bosworth: Programming Paradox.

XML Magazine, February 2002.

4

His article finishes with the phrase: ”I contend that
until we have a language that natively understands the
data structures inherent in XML and enables optimized
algorithms for processing it, we will not have real XML
programming.”

I contend that we do have such a language that na-
tively supports XML data structures and their efficient
manipulations and transformations – and also reflection.
SXSLT fits all Adam Bosworth’s requirements. SXSLT
is a library extension of Scheme, which is a dialect of
Lisp. Lisp, incidentally, was specifically designed for pro-
cessing of semi-structured data. The 40+-year history
of the language proved that it and its syntax are quite
suitable for describing both data and code.

4-1

A simple XSLT example

Problem: "& text $" =⇒ "\& text \$"
<xsl:stylesheet>

<xsl:template name="doSubstitutions">
<xsl:param name="input" select="."/>
<xsl:param name="output">

<xsl:call-template name="substitute">
<xsl:with-param name="input" select="$input"/>
<xsl:with-param name="target">&</xsl:with-param>
<xsl:with-param name="replacement">\&</xsl:with-param>

</xsl:call-template>
</xsl:param>
<xsl:call-template name="doSubstitutions2">

<xsl:with-param name="input" select="$output"/>
</xsl:call-template>

</xsl:template>

<xsl:template name="doSubstitutions2">
<xsl:param name="input" select="."/>
<xsl:param name="output">

<xsl:call-template name="substitute">
<xsl:with-param name="input" select="$input"/>
<xsl:with-param name="target">$</xsl:with-param>
<xsl:with-param name="replacement">\$</xsl:with-param>

</xsl:call-template>
</xsl:param>
<xsl:value-of select="$output"/>

</xsl:template>
</xsl:stylesheet>

5

Before we proceed further let’s take a simple example
of SXSLT.

We will use the example from the kuroshin article cited
earlier. Its goal was a function (or an XSLT template)
to escape bad characters during an XML-to-LaTeX con-
version. For example, given character data like this "&
text $" the function should return this "\& text \$" with
ampersand and dollar signs properly quoted. The article
gives this XSLT solution. I had to use a smaller font to
fit the code on one slide. It’s not the complete code: we
need an external template named substitute to perform
the individual string-for-string substitutions. {First, the
template named doSubstitutions escapes ampersands in
the input text and then calls doSubstitutions2 on the re-
sult. Second, doSubstitutions2 escapes dollar signs in
its input text and returns its results. The article dis-
cusses this and related solution in detail.}

5-1

A simple SXSLT example

(define doc ’(p "& text $"))

(define main-ss

‘((p . ,(lambda (tag . elems)

(list elems nl nl)))

(*text* . ,(lambda (tag str)

(if (string? str)

((make-char-quotator

’((#\& . "\\&") (#\$. "\\$")))
str)

str)))))

(SRV:send-reply (pre-post-order doc main-ss))

Result: \& text \$

6

Here is the same example in SXSLT. Here {define doc...}
is a sample document, in a parsed form. Both XSLT
and SXSLT operate on an abstract syntax tree of an
XML document. We run SXSLT by invoking a function
pre-post-order and passing it a parsed XML tree and
a stylesheet. The function send-reply writes out the
transformed tree.

The function make-char-quotator makes a specialized
substitutor. We can easily and concisely specify the list
of characters to quote, and their replacements. The
XSLT code shown before achieves the similar effect, at
the cost of great verbosity and obscurity.

This paper and these slides were authored in SXML and
converted by a similar process into LATEX and then into
PDF. The fact you can see ampersand, dollar, and back-
slash characters here at all shows that our quotation
works.

I’d like to point out now that the SXSLT stylesheet is
an ordinary Scheme data structure, an associative list of
tags and the corresponding handlers. The handlers are
ordinary Scheme functions, which can invoke arbitrary
Scheme procedures.

6-1

Outline

• Motivation and comparisons

– Authoritative quotes

– A simple SXSLT example

– XSLT drawbacks and XSLT/SXSLT

comparisons

• SXML: an XML AST

• An elaborate example

• Ease of use

7

So, SXSLT is a practical, higher-order, concise, expres-
sive and readable declarative XML transformation lan-
guage. {The language is a head-first rewriting system
over abstract XML syntax trees, implemented as a li-
brary extension of Scheme.}
Now that we have seen a simple SXSLT example, let us
talk about what XSLT cannot do but we can – and also
what XSLT can do, and we can do too, often better.

7-1

Drawbacks of XSLT

• Poor syntax

• Missing nuts-and-bolts

• Low order

• Closed system

8

The articles by Moertel and Bosworth have identified
the following significant drawbacks of XSLT, which are
overcome in SXSLT.

Poor syntax First, large XSLT programs are so ver-
bose that they become unreadable. We have seen
that. Fewer and fewer people consider XML to
be an acceptable notation for a programming lan-
guage.

Missing nuts-and-bolts We have seen that too.

Low order XSLT templates are not first class. A trans-
formed document or its part cannot easily be re-
transformed.

Closed system Finally, XSLT is designed as a closed
system.

8-1

Common features of XSLT and SXSLT

• Infoset transformation

• Node dispatch

• Multiple effective rulesets

• Re-traversals

• Tree fold model

9

Let us point out what XSLT can do, and so can we,
often better.

XSLT and SXSLT both assume that the source XML
document has been parsed into a tree form, which repre-
sents the XML Infoset. They both transform the tree as
instructed by a stylesheet. The result should be pretty-
printed afterwards.

Both XSLT and SXSLT let the user specify transform-
ers for particular tree nodes. Both languages permit
wildcard rules and a context-sensitive dispatch. But our
dispatch is far simpler: SXSLT is a head-first re-writing
system. We do not burden the user with computing pri-
orities of node handlers – and yet we achieve the same
power as XSLT.

Both XSLT and SXSLT permit repeated traversals of
the source document with the same or a different ef-
fective stylesheet. Our transformations are again sim-
pler because we have no modes. In addition, we can
re-traverse the result tree itself – something XSLT in
version 1.0 cannot do. {Our pre-post-order combina-
tor is akin to apply-templates. But apply-templates is a
statement, whereas pre-post-order is a regular function
that returns the transformed tree. The result can be
easily manipulated –or transformed again.} In SXSLT,
transformation templates are first class, which expands
the expressiveness to a large degree, without any need
for additional syntactic sugar.

9-1

Both XSLT and SXSLT implement the tree fold model.
Only SXSLT however implements the genuine higher-
order{, also known as CPS,} tree fold, which is the most
general traversal combinator. {Our preorder traversal
mode is an optimization for partial traversals}.
The paper gives a more detailed comparison. The pa-
per also discusses similarities and differences between
SXSLT and Scheme macros.

Outline

• Motivation and comparisons

• SXML: an XML AST

• Elaborate Example

• Ease of use

Omitted from the talk: parsing, SXPath

10

This is the outline for the rest of the talk. First we
will introduce SXML, which is an abstract syntax of
an XML document. SXML underlies all our query and
transformation tools.

We then expound SXML transformations on a simple
and yet representative and practical example. We will
give third-party evidence that SXSLT is indeed practical,
is easy to use, and has been used.

In this talk we will not mention XML parsing and SXML
queries. The paper gives the necessary references.

10-1

XML and SXML

<RESERVATION

xmlns:HTML=’http://www.w3.org/TR/REC-html40’>

<NAME HTML:CLASS="largeSansSerif">

Layman, A</NAME>

<SEAT CLASS=’Y’

HTML:CLASS="largeMonotype">33B</SEAT>

<HTML:A HREF=’/cgi-bin/ResStatus’>

Check Status</HTML:A>

<DEPARTURE>1997-05-24T07:55:00+1

</DEPARTURE></RESERVATION>

(*TOP* (*NAMESPACES*

(H "http://www.w3.org/TR/REC-html40"))

(RESERVATION

(NAME (@ (H:CLASS "largeSansSerif"))

"Layman, A")

(SEAT (@ (H:CLASS "largeMonotype")

(CLASS "Y")) "33B")

(H:A (@ (HREF "/cgi-bin/ResStatus"))

"Check Status")

(DEPARTURE "1997-05-24T07:55:00+1")))

11

As we said, at the core of our tools is SXML, which is
an abstract syntax tree of an XML document. SXML is
also a concrete representation of the XML Information
set in the form of S-expressions. {SXML fully supports
XML Namespaces, processing instructions, parsed and
unparsed entities.}
This example eliminates the need for any further expla-
nations. We see an XML document and the correspond-
ing SXML representation. Please note the difference in
the font size. The XML document on the slide is ac-
tually taken from the XML Namespaces Recommenda-
tion. You can see how SXML represents attributes {(@
...)} and namespaces. {In SXML, all names are fully re-
solved. Because namespace (Universal Resource Iden-
tifiers) URIs are often too long, it’s possible to tell the
parser to use shorter namespace shortcuts, in this exam-
ple, H. Note that these shortcuts have nothing to do with
the XML prefixes in the original document {HTML:CLASS,
etc.}. The XML prefixes are controlled by the author
of the document; the shortcuts {H:CLASS} are controlled
by the developer of an XML application. Furthermore,
shortcuts and namespace URIs are in a 1-to-1 corre-
spondence. This is not the case for XML prefixes.}
Our XML parser and pretty-printing tools convert be-
tween SXML {this} and the angular-bracket-format of
XML documents {that}.
{The paper defines SXML formally.}

11-1

Patterns of SXML transformations

XML - SXML -*- SXML - xML, DB, File

In particular:

XML → SXML → SXML → xML, LaTeX, DB

SXML → SXML → xML, DTD, LaTeX

12

The general pattern of SXML transformations can be
written like this {first phrase}. We can apply it in both
directions.

We can start with XML, parse it in SXML and do var-
ious transformations and queries. We store the result
as a new XML or HTML or LaTeX document, or put
the data into a database. This approach resembles the
ordinary XSLT processing.

On the other hand, we can start with SXML. That
SXML can be generated from a database query, re-
trieved from a file, or entered by hand in Emacs. We can
transform it several times – sometimes in a rather intri-
cate ways – and generate a markup or a TeX document.
Incidentally this approach lets us author web pages,
XML documents, or papers – in SXML. The SXML
specification, for example, was authored in SXML, and
later converted into a LaTeX document and a web page,
given different stylesheets. The present paper in the
proceedings and the slides you are seeing were also au-
thored in SXML.

Let us see a detailed example of one such transforma-
tion.

12-1

Sample SXML document

(define doc

’(html (head (title "Document"))

(body

(section "First Section"

(p "This is the intro section.")

(p "Paragraph &c"))

(section "Second Section"

(section "A sub-section"

(p "This is section 2.1."

(br)

(a (@ (href "another doc.html"))

"link")))

(section "Another sub-section"

(p "This is section 2.2.")))

(section "Last major section"

(p "This is the third section")))))

13

The paper shows several advanced transformations in-
cluding translation of SXML into LaTeX, context-
sensitive and recursive reorganizations of the document.
In this talk, we will use the most familiar topic of Web
authoring.

Suppose we are given a markup for an HTML docu-
ment, which contains sections and subsections. {I’d
like to draw your attention to the ampersand character
{here} and to the space in the name of the document
here. Obviously these characters must be encoded in
the output HTML document.}

13-1

Desired HTML document

• 1. First Section

• 2. Second Section
– 2.1. A sub-section
– 2.2. Another sub-section

• 3. Last major section

1. First Section

This is the intro section.

Paragraph &c

2. Second Section

2.1. A sub-section
This is section 2.1.
link

2.2. Another sub-section
This is section 2.2.

3. Last major section

This is the third section
14

We need to hierarchically number the sections and sub-
sections. We should output the HTML document like
this, with numbered sections. We should use the appro-
priate HTML tags (H2, H3, ...) to set off the title of
the sections and subsections.

In addition, we want to generate a hierarchical table of
contents and place it at the beginning.

This example epitomizes common XML processing
tasks. The example is due to Jim Bender, who used
a similar transformation for compiling an XML Schema
into ASN.1 specifications.

14-1

The main stylesheet

(SRV:send-reply (pre-post-order doc main-ss))

(define main-ss

‘((body *preorder*

. ,(lambda (tag . elems)

(let ((numbered-sections

(number-sections ’() elems)))

...

)))

...

,@universal-conversion-rules)))

15

{You can get the full code of this example from the
SSAX SourceForge project.}
The following expression executes the transformation of
the source document into a target SXML tree: a tree of
HTML fragments. The function {SRV:send-reply} then
writes out that tree on the standard output. The tree
transformation is performed by a traversal combinator
pre-post-order with the help of the following stylesheet.

{The approach taken in this example is not meant to be
the most efficient. Rather, it is aimed to be illustrative
of various SXSLT facilities and idioms. In particular,
we demonstrate: higher-order tags, pre-order and post-
order transformations, re-writing of SXML elements in
regular and special ways, context-sensitive applications
of re-writing rules. Finally, we illustrate SXSLT reflec-
tion: an ability of a rule to query its own stylesheet.}
The general SXML-to-HTML conversion is taken
care by the *default* and *text* rules in ’universal-
conversion-rules’. These rules are written once and for
all and do not need to be changed at all. The universal
rules check text strings for dangerous characters such as
angular brackets and the ampersand and encode them.
The *default* rule turns an SXML element into the ap-
propriate HTML element. These transformations will
be uniformly applied to all nodes of the source SXML
tree. We only need to add rules for the SXML elements
that have to be treated in a special way.

The body of the document, a collection of sections, has
to be processed specially. First we recursively number
the sections...

15-1

Recursive numbering of sections

((section title (section title el...) ...)

(section title (section title el...) ...) ...)

=>

((*section (1) title (*section (1 1) title...) el ...)

(*section (2) title (*section (1 2) title...) el ...) ...)

(define (number-sections ancestors sections)

(map

(lambda (el i)

(pre-post-order el

‘((section *preorder* .

,(lambda (tag title . elems)

(let ((my-number (cons i ancestors)))

(cons* ’*section my-number title

(number-sections my-number elems)))))

(*default* *preorder* . ,(lambda x x))

(*text* . ,(lambda (tag str) str)))))

sections (list-numbering sections)))

16

By recursive numbering of sections we mean: given a
list of sections, return the list of *sections as shown on
the slide here.

The numbering (the first element of a *section) is a
list of section numbers in reverse order: the numeric
label of the current section followed by the labels of its
ancestors.

A section of the source document may contain either
(sub)sections, or other SXML nodes such as strings or
paragraphs {... here}. The numbering transformation
should not affect the latter nodes.

The function ’number-sections’ illustrates a typical
XSLT-like processing. We transform an SXML tree
by invoking the traversal combinator pre-post-order and
passing it the source tree and a stylesheet. The
stylesheet {here} has only three rules. The *text* rule is
the identity rule. {It passes the character data from the
source SXML tree to the result SXML tree as they are.}
The *default* rule is also an identity rule. A *preorder*
label by the rule tells pre-post-order to return a non-
section branch as it is, without recursing into it. A
section rule tells what to do when we encounter a sec-
tion: we make a (*section ...) element out of the title
and the numbered children of the section in question.

We should point out that the traversal combinator pre-
post-order is an ordinary Scheme function, and can be
mapped. The stylesheet handlers are likewise ordinary
Scheme functions, which can invoke other Scheme func-
tions, including pre-post-order itself.

16-1

Building a hierarchical table of contents

((*section (1) title1 non-section-el ...)

(*section (2) title2

(*section (1 2) title21 el...) el...)...)

=>

((li "1." title1)

(li "2." title2 (ul (li "2.1." title21) ...)) ...)

(define (make-toc-entries nsections)

(pre-post-order nsections

‘((*section .

,(lambda (tag numbering title . elems)

(let ((elems (filter pair? elems)))

‘(li ,(numbers->string numbering)

". " ,title

,(and (pair? elems)

(list ’ul elems))))))

(*default* . ,(lambda ’()))

(*text* . ,(lambda (tag str) str)))))

17

It is more lucid to build the TOC in a separate pass,
by traversing the previously numbered sections. In this
pass, we turn *section elements into TOC entries, and
rewrite everything else to nothing. To be more precise,
we do the following transformation {on the slide}.
Again, we execute pre-post-order with a three-rule
stylesheet. As before, the character data are not af-
fected: see the *text* rule. The *default* rule is differ-
ent now: it transforms a non-section branch to nothing
at all. {To be more precise, an SXML element other
than *section is turned into an empty list, which will be
disregarded later.}
The stylesheet almost literally looks like the above re-
writing example. We should note that the stylesheet
rules are applied to all elements of the tree, recursively.
We indeed process the arbitrary nesting of *sections
without much ado. We do not need to write something
like <apply-templates/>. Unlike XSLT, but like tree fold,
the pre-post-order combinator traverses the tree in post-
order by default. That is, the handler for the *section
rule (lambda (tag numbering title . elems) ...) re-
ceives, as elems, the list of the transformed children
of the *section in question, which are the list of TOC
elements for internal subsections – or the list of nothing.

{We use an auxiliary function numbers->string to convert
the list of numerical labels such as (1 2 3) into a string
label ”3.2.1”}

17-1

Insertion of TOC and re-traversal

(define main-ss

‘((body *preorder* .

,(lambda (tag . elems)

(let* ((nsections

(number-sections ’() elems))

(toc

(make-toc-entries nsections)))

; re-apply the main-ss

(pre-post-order

‘(body (ul ,toc) ,nsections)

(append ‘((body .

,(cdr (assq ’*default* main-ss))))

main-ss))))))

...

,@universal-conversion-rules))

18

Let us go back to the main stylesheet. First we re-
cursively number the sections and replace them with
*sections. We saw how to do that. We then pass the
renumbered sections to make-toc-entries and get the
list of TOC entries.

We insert the TOC elements before the numbered sec-
tions, and re-apply the stylesheet. Actually, we re-
apply a slightly modified stylesheet: the element body
no longer needs to be processed specially. We can in-
deed re-apply a stylesheet with some dynamic modifi-
cations. XSLT can accomplish something similar, with
the help of modes. SXSLT gives far simpler tools to
dynamically ’modify’ the effective ruleset. There are, of
course, no mutations. SXSLT is purely declarative. We
merely re-invoke pre-post-order and pass it main-ss with
the modified rules prepended.

The ’overridden’ rule for the body element has the same
handler as that of the *default* rule. To find the latter,
we query the stylesheet {main-ss} itself! Indeed, the
stylesheet is a simple data structure, an associative list,
and can be queried as such. This example demonstrates
reflexive abilities of SXSLT. A stylesheet can analyze
itself.

18-1

Making Sections

(*section (1 2 3) "title321" elem ...)

=>

((h4 "3.2.1. " "title321") elem ...)

(define main-ss

‘((body *preorder* ...)

(*section *preorder* .

,(lambda (tag numbering title . elems)

(let ((header-tag

(list-ref ’(h1 h2 h3 h4 h5 h6)

(length numbering))))

(pre-post-order

‘((,header-tag

,(numbers->string numbering)

". " ,title)

,@ elems)

main-ss))))

...

,@universal-conversion-rules))

19

On the re-application pass, the traversal combinator
treats body as any other element. The combinator pro-
cesses its children first, and now notices *section ele-
ments. We transform a *section as shown on the slide,
and re-apply the main stylesheet. {Our auxiliary func-
tion numbers->string helps us to convert the list of labels
to a string. We use the length of the list (that is, the
depth of the section in question) to choose the HTML
tag for the section: h2, h3, h4, etc.}
We should point out that *section elements are pro-
cessed twice, with two different stylesheets. First we
scan *sections and turn them into TOC entries. Later
we turn the same *sections into HTML headers.

The elements section and body of the source document
act as higher-level SXML elements. They are recur-
sively re-written into more primitive SXML elements un-
til they are finally turned into HTML text fragments.
Essentially, we compute the fixpoint of the re-writing
stylesheet. We do not iterate on the whole document
however, only on the branches that need iterating. The
whole approach is rather similar to that of Scheme
macros. {Scheme macros do not have default rules how-
ever. R5RS macros cannot transform in post-order and
cannot explicitly re-invoke the macro-expander.}

19-1

Context-sensitive transformations

(define doc

’(...

(a (@ (href "another doc.html"))

"link"))) ...

(define main-ss

‘((body *preorder* ...)

(*section *preorder* ...)

(href

((*text* .

,(lambda (tag str)

(if (string? str)

((make-char-quotator

’((#\space . "%20"))) str) str))))

. ,(lambda (attr-key . value)

((enattr attr-key) value)))

)

,@universal-conversion-rules))

20

We have one more thing to take care of. The source
document had an anchor element {quoted here, on the
slide} with the name of a local file in the href attribute.
In the output HTML document, that name will become
a URL. File names may contain spaces – but URLs may
not. Therefore, we need to encode the space charac-
ter. We should URL-encode the space character only in
the context of the href node, and nowhere else. The
white space elsewhere in the document must remain
the white space. Hence we need a special rule for href,
with its own handler for character data. This *text*
handler is local: it acts only in scope of the href node.
The local text handler looks for the space character and
URL-encodes it. We have just shown a context-sensitive
application of re-writing rules. It still appears clear and
intuitive.

20-1

Ease of Use

http://www.netfort.gr.jp/˜kiyoka/sxmlcnv/index ja.html

Powered by SmartDoc

ENGLISH JAPANESE

Sxmlcnv
$Date: 2002/12/27 13:10:09 $
Kiyoka Nishiyama
http://www.netfort.gr.jp/~kiyoka/sxmlcnv

email: Kiyoka Nishiyama

SxmlcnvHO)

SxmlcnvOUj<=UH&’"G9#
GNU General Public License (GPL2)NbHG[[5lF$^9#
XMLHSXMLrj_Q99k=UH&’"G9#

C’

GaucheN4FN!=rHCFWm0i^VkJI-easHrn.G-^9#

SXMLHO)

SXMLOXML InfosetNloG"XMLN}DpsLr;Jo:KS0G-RG-kh&K
7?U)<^CHG9#
\=UH&’"GOssaxH$&=UH&’"rHQ7F"XMLrQ<97F$^9#

?r9k?aNbN)

DM*KOSmartDoc H$& XMLI-easHU)<^CHrbCHq-d9/G-J$+H
M(F"3lrnkK$?j^7?#

5sWk

3NZ<8O SxmlvncrHCFn.7F$^9#

3NZ<8,5sWkH7FG,G7g&#

scm=<9(UTF-8)
8.7?SmartDoc=<9(UTF-8)

=<93<I
21

SXSLT is easy to use. Independent developers can easily
learn it and use it for their projects. I’d like to show a few
pieces of evidence for such a claim. I’d like to emphasize
that we had no participation and even no knowledge of
the projects and their authors.

The web page with this URL is one example. The slide
is a partial snapshot of that page. It is in Japanese
(although it is now translated into English). The author
wrote {here} that he wanted to easily write XML for a
SmartDoc system. He came across SXML, apparently
found it useful, and even wrote a tool to perform the
desired conversion to SmartDoc.

This link, under sample, points to the source code for
the page, which looks as follows...

21-1

Ease of Use ...

http://www.netfort.gr.jp/˜kiyoka/sxmlcnv/index.scm

(define (M:link keyword url)
‘(a (@ (href ,url)) ,keyword))

(define (W:sxml)
(M:link "SXML" "http://okmij.org/ftp/Scheme/SXML.html"))

(define (W:xml)
(M:link "XML" "http://www.w3.org/XML/"))

(define (L:body)
‘(body

(center
(a (@ (href "mailto:kiyoka@netfort.gr.jp"))

"email: Kiyoka Nishiyama"))

(section
(@ (title "Sxmlcnv ...))
,(title-en "What is Sxmlcnv?")
(p
(@ (locale "ja"))
(ul
(li "Sxmlcnv ...")
(li ,(W:GPL) " ...")
(li ,(W:xml) "..." ,(W:sxml) "...")))

22

Given the examples we saw before, I believe this should
look familiar... I don’t have a good unicode font so I
replaced non-ASCII characters with dots.

22-1

Ease of Use ...

http://homepage1.nifty.com/blankspace/scheme/nsx.html

neat sxml

S-expressed XML

#dI3b+73b XML P+jG9.
3N XML CFNO?0GO^lF^91I, 98J8O,"kh&JbNGJ$Bj, G<?
hj?0N},?$3HCF k="j^9hM.
D^jG<?,?0KdblF$kNGsoKI_K/$, H$&3HG9.

sG, S 0JM+i+kH, D8?0CFYb8csCF/[KJksG9hM.
^"J<D8?0,"k+H$&NO1cJ!wGF-9Hrh}7d9$H+ lisp _ ?/
+C3@1@HP~r_9C?H-K(i<DjrCj9kN,q7$H+$m$m "k_
?$G9. ^"=lO7g&,J$.

=lJi, S 0G1yNbFr-R7F, =lr,WK~8F XML K8+9kh&K7 FaJ
O S 0N}rasFJs97h&h, H$&/[OHFb+3@HWol^9.
=8NjANE}Ommdj},"j=&G9,, J<GO SXML H$&NrHo7 F
bi$^9.
SXML OOleg Kiselyov 5sN site GRp5lF$kbNG9.
3NMN site KO3<I5sWk,t3"j^9.
XML N parser tool H+, bYJCjG~\G9.
AJ_Kkawai 5s N site GO e- Oleg 5sND<kr Gauche GH(kh&K9k}!,
"j^9.

SXML O, 49Ol+K!+:, cr+lP90o+kG7g&.
J<O XML H$&+ XHTML G91I,

sxml xml
(html
 (head (title "sxml"))
 (body
 (@ (bgcolor "blue")
 (text "white"))
 (center (b "Hello."))))

<html>
 <head><title>sxml</title></head>
 <body bgcolor="blue" text="white">
 <center> Hello.</center>
 </body>
</html>

8N SXML rQ99kH &N XML KJkH$&3HG9.
WGO list N car, bFO cdr, 0-O @ K3/ cdr, H$&68G9.
D8?0,5$,@1, 3<ILbo:G-^9M.
SXML +i XML r8.9k3<Ib Oleg 5sN site K"j^91I, k=mm# (J3
HdCF$keK, 1cKQ97?$@1Gbt3NXtr load 7JH1^ ;s.
H$&3HG, +,N},NU#b^aF, SXML +i XML rG/3<Ir scheme Gq$F
_^ 7?.

(define (sxml->xml sxml)

23

Here is another page. It says that in XML, tags bury
the content. SXML comes to rescue. The web page
goes to explain how to convert SXML into the format
reminiscent of James Clark’s Jade. The author then
describes higher-order SXML tags and a tree fold.

All these examples {here} were done by the author of
that page, without any assistance from me. In fact, I
don’t even know his name.

You may conclude that either SXML transformations
are indeed so easy to use that they transcend linguis-
tic boundaries. Or I am able to communicate ideas in
Japanese. Whichever conclusion you reach, I’ll take it.

23-1

Conclusions

SXSLT is a domain-specific declarative layer

over a general-purpose functional language

Base-language features:

• mature syntax

• first-class and higher-order transformers

and traversal combinators

• extensibility

• ”nuts-and-bolts.”

24

We have presented a practical XML transformation lan-
guage that is free from the drawbacks of XSLT. {This
language, SXSLT, is more expressive than XSLT and is
also simpler and more coherent.} The language is im-
plemented as a library in a pure functional subset of
Scheme.

The base language, Scheme, gives us mature syntax,
first-class and higher-order transformers and traversal
combinators, extensibility, and ”nuts-and-bolts.”

24-1

Conclusions...

Domain-specific features:

• abstract XML syntax trees

• pre- and post-order traversals

• transformation environments (stylesheets)

• name-based dispatch to re-writing trans-

formers

• wildcard transformation rules

• local scoping of re-writing rules

R5RS dictum: rather than add features,

remove weaknesses and restrictions

http://ssax.sourceforge.net/

25

The domain-specific layer implements right abstractions
and patterns of XML transformations: (i) abstract XML
syntax trees, (ii) pre- and post-order traversals of ab-
stract syntax trees, (iii) transformation environments
(stylesheets), (iv) dispatch to re-writing transformers
based on node names, (v) wildcard transformation rules,
(vi) local scoping of re-writing rules.

We believe the combination of these features is unique
and powerful. We must stress that the features are not
heaped up indiscriminately, but are induced by a com-
pact core of tree traversal combinators and first class
transformers.

In the design of SXSLT, we strove to follow the R5RS
dictum: Programming languages should be designed not
by piling feature on top of feature, but by removing
the weaknesses and restrictions that make additional
features appear necessary.

The software mentioned in this talk is in public domain.
It is a SourceForge project. You are very welcome to
use it. If you have any question, please post it on the
project mailing list, or send it to me.

25-1

