
XML, XPath, XSLT

implementations as

SXML, SXPath, and SXSLT

Oleg Kiselyov

Fleet Numerical Meteorology and

Oceanography Center

Monterey, CA

Kirill Lisovsky

MISA University

Moscow

International Lisp Conference: ILC 2002.

October 27-31, 2002. San Francisco, CA.

http://ssax.sourceforge.net/

1

This talk {– XML, XPath, XSLT implementations as
SXML, SXPath, and SXSLT –} is by Kirill Lisovsky of
MISA University, Moscow, and by myself. We will talk
about practical examples and our and other people ex-
perience with SXML tools. The emphasis of this talk is
not on How but on What and Why. The paper and the
project web site give all the technical details.

1-1

XML Programming

DATA

xML

CODE

Perl, Java, ...

PHP, ASP
JSP ...
XSLT/XPath

2

{Extra slide}
The scope of this talk is XML programming, Perhaps I
need to define what I mean.

For one thing, XML programming means authoring of
markup documents. Often, we write in one markup
language – XML – and transform into another: HTML,
TeX or PDF. These transformations are frequently writ-
ten in a language XSLT, which the W3 Consortium has
designed for that purpose.

Besides transformations, we are often interested in se-
lections: selections of some interesting parts from a
large XML document according to certain criteria. If
an XML document is considered a database, these se-
lection operations are queries. There is a special W3C
language for that: XPath.

Incidentally, XSLT has XML syntax, with angular brack-
ets and such. In other words, XSLT is a programming
language with XML syntax. XPath does NOT have
XML syntax.

We can also use a general-purpose programming lan-
guage for creating XML documents and taking them
apart. Sometimes, we have to, because XSLT is em-
phatically not a general-purpose programming language.
Such languages {Perl, Java, C++ – on the slide} can
work on the text of an XML document – in other words,
concrete syntax. Or we can deal with a so-called docu-
ment object model, which is an abstract data type for
an XML document.

2-1

Languages for handling XML

Adam Bosworth:

”I noticed two new categories of books: books

about programming with Java and XML and

books about XSLT. In both cases, whole

forests are dying to compensate for the XML

community’s one great failure – the lack of a

decent programming model for manipulating

XML.”

...

”We need a language that can natively sup-

port XML as a data type and yet can grace-

fully integrate with the world of objects and

can take advantage of the self-describing na-

ture of XML by supporting querying of its own

variables. This language as used by humans

will look like a programming language, not an

XML grammar. This is the language we will

use to convert from one XML format to an-

other.”
3

Adam Bosworth is a vice president for engineering of
the leading Web Services vendor BEA Systems Inc., the
maker of a WebLogic web application server. In Febru-
ary 2002 he wrote an article in the XML Magazine, in
which he outlined the problem with XML processing:
”whole forests are dying to compensate for the XML
community’s one great failure – the lack of a decent
programming model for manipulating XML. We need
a language that can natively support XML as a data
type and yet can gracefully integrate with the world of
objects and can take advantage of the self-describing
nature of XML...” Adam Bosworth then went to say
that XSLT is usable only because of a compromise that
allowed non-XML expressions in the grammar of XML
Path Language. XPaths simply were unreadable other-
wise. It turns out, he wrote, that there are things that
XML isn’t well suited for, and expression languages that
humans can read and write easily is one of them.

3-1

Languages for handling XML...

”I contend that until we have a language that

natively understands the data structures inher-

ent in XML and enables optimized algorithms

for processing it, we will not have real XML

programming.”

Adam Bosworth: Programming Paradox.

XML Magazine, February 2002.

4

His article finishes with the phrase: ”I contend that
until we have a language that natively understands the
data structures inherent in XML and enables optimized
algorithms for processing it, we will not have real XML
programming.”

I contend that we do have such a language that na-
tively supports XML data structures and their efficient
manipulations and transformations – and also reflection.
The language was specifically designed for processing of
semi-structured data. The title of the founding 1960
paper ’Recursive Functions of Symbolic Expressions’
makes this point clear. The 40+-year history of the
language proved that it and its syntax are quite suitable
for describing both data and code.

4-1

Symbolic expressions

S-expression data

S-expression is:

• a text string, a number, or a symbol

• a sequence of S-expressions in parentheses

(*TOP* (*NAMESPACES*

(H "http://www.w3.org/TR/REC-html40"))

(RESERVATION

(NAME (@ (H:CLASS "largeSansSerif"))

"Layman, A")

(SEAT (@ (H:CLASS "largeMonotype")

(CLASS "Y")) "33B")

(H:A (@ (HREF "/cgi-bin/ResStatus"))

"Check Status")

(DEPARTURE "1997-05-24T07:55:00+1")))

5

{Another extra introductory slide}
We will be talking a lot about S-expressions. What
are S-expressions? An S-expression is defined as a text
string, a number, or a symbol. Or as a sequence of
S-expressions in parentheses. Clearly, this is a recursive
data type.

On this slide, this {”largeMonotype”} is an s-expression:
it is a text string. This {H:CLASS} is another one: a
symbol. Here {(H:CLASS "largeMonotype")} is the se-
quence of primitive S-expressions, in parentheses. This
{(NAME (@ (H:CLASS "largeSansSerif")) "Layman, A")} is
another sequence of smaller S-expressions enclosed in
parentheses. One of its components – a child expres-
sion – is a parenthesized expression itself. This whole
thing {(*TOP* ...)} is the S-expression by itself.

5-1

S-expression code

((node-join

(node-closure (node-typeof? ’RESERVATION))

(node-reduce

(select-kids (node-typeof? ’SEAT))

(filter

(node-join

(select-kids (node-typeof? ’@))

(select-kids

(node-equal? ’(CLASS "Y")))))))

sxml-tree)

Scheme programming language:

http://www.schemers.org

6

{Another extra introductory slide}
The S-expression on the previous slide represented data.
The S-expression on this slide stands for code. This is
a program, in a language called Scheme. Scheme and
other languages of the Lisp family have S-expression
syntax.

Scheme – which will be mentioned often – is a general
purpose mature programming language. Incidentally, it
is quite often used in elite education, including high-
school education. This web page, schemers.org, is a
treasure trove of resources, including various free and
commercial implementations. Scheme implementations
run on anything you can imagine, including Palm Pilot
and Sharp Zaurus.

6-1

Generative markup

print +(header(-cookie => $cookie),

start html("Missing cookies"),

h1("Missing cookies"),

p("This site requires a cookie to be set."),

startform, submit("OK"), endform,

end html);

Randal Schwartz, ”Basic Cookie Manage-

ment”, Web Techniques Column 61 (May

2001)

7

Thus S-expressions can represent data and code. One
aspect of this code-data dualism of S-expressions is S-
expression-based data being generated by S-expression-
based code. This seems to be a fundamental principle,
because it shows up in unexpected places, for example,
in Perl CGI programming.

This code generates HTML. HTML is also an S-
expression. Indeed, a markup document is either a piece
of text, or something with tags around, or the sequence
of the above. That something with the tags around can
itself be either a piece of text, something with the tags
around, or the sequence of the above.

This code that generates HTML markup looks like an
S-expression itself, only with parentheses in different
places. This code only looks like an S-expression, but
is not truly an S-expression. It’s somewhat verbose for
one thing. Mainly, the code can’t be easily queried and
manipulated as data.

7-1

Use the real S-expressions throughout?

DATA

xML

CODE

Perl, Java, ...

PHP, ASP
JSP ...
XSLT/XPath

8

But in reality we have this divide. On one end, we have
a great number of legacy markup documents. These
are data, in a verbose S-expression format. Some pro-
cessing tools, XSLT, share the same verbose format.
However a critical component of these tools, XPath, is
not in the XML format itself – and we saw why. Also,
XSLT is emphatically not a general purpose program-
ming language.

On the other end, we have programming languages for
processing XML. As we saw, the code that makes an S-
expression data often looks like an S-expression. Alas,
this S-expression code is often too verbose. Further-
more, this code cannot easily be handled as data in the
same language.

Finally, there is a mixed mode. Markup data are written
in a markup language; query and transformation code is
written in another, programming language. PHP, ASP,
JSP and other Server pages are the examples of this
mixed-mode processing. {if there is a chance, show an
excerpt from any JSP or PHP page}. This approach is
rather popular: however poorly, it separates authoring
of content from writing the code. The result of such
mixed authoring is an unwieldy jumble of two languages.
The mixed approach does not fill this divide – it merely
covers it. The linguistic gap still remains underneath –
which makes for an excellent trap.

We would like to use genuine S-expression throughout
– both for data and for processing code. I don’t need

8-1

to explain the advantages in this audience. Kirill and I
however regularly encounter a different kind of audience.
We do have to explain the S-expression way to sceptical
colleagues.

Selling S-expressions

Challenges:

• Interoperability with legacy systems and

legacy programmers

• Play by the W3C rules

• Reuse the existing expertise and skills

• Do something better

9

Mainly, we have to explain our S-expression approach to
sceptical managers. First the managers want to know
if we can play with the rest of the team. Can we parse
and create valid markup documents? Can we use al-
ready developed XSLT stylesheets and other markup
documents? How steep is the learning curve for this
new technology? Finally, what can we do better? Can
we do something that was too unwieldy, too difficult
to write or too difficult to maintain with the traditional
tools?

9-1

W3C-compliant XML processing in Scheme

• Motivation

• SXML

– XML AST

– Inter-conversions

• XML and SXML queries: (S)XPath

– SXPath as an XPath processor

– Powerful SXML queries

• XML and SXML transformations

– Interoperability with XSLT

– Advanced SXML features

– Web services as SXML transformations

10

To earn the acceptance within the XML community, we
should show that we can play by their rules. We can take
and produce their data. We can run the same queries
and transformations – and many more. Therefore, the
emphasis of this talk is on two points: W3C-compliance
and powerful extensions.

This is the outline for the rest of the talk. First we
will introduce SXML, which is an abstract syntax of an
XML document. SXML is also a concrete representa-
tion of the XML Infoset in the form of S-expressions.
All our query and transformation tools work on SXML
data structures. Speaking of W3C-compliance, SXML
fully supports XML Namespaces, processing instruc-
tions, parsed and unparsed entities. Our XML parser
and pretty-printing tools convert between SXML and
the angular-bracket-format of XML documents.

We will discuss SXML queries: XPath and SXPath. SX-
Path can do everything XPath can – because an SXPath
interpreter is a compliant XPath processor. SXPath
tools can also do more.

Finally, we will talk about SXML transformations –
about interoperability with XSLT and powerful exten-
sions.

10-1

XML and SXML

<RESERVATION

xmlns:HTML=’http://www.w3.org/TR/REC-html40’>

<NAME HTML:CLASS="largeSansSerif">

Layman, A</NAME>

<SEAT CLASS=’Y’

HTML:CLASS="largeMonotype">33B</SEAT>

<HTML:A HREF=’/cgi-bin/ResStatus’>

Check Status</HTML:A>

<DEPARTURE>1997-05-24T07:55:00+1

</DEPARTURE></RESERVATION>

(*TOP* (*NAMESPACES*

(H "http://www.w3.org/TR/REC-html40"))

(RESERVATION

(NAME (@ (H:CLASS "largeSansSerif"))

"Layman, A")

(SEAT (@ (H:CLASS "largeMonotype")

(CLASS "Y")) "33B")

(H:A (@ (HREF "/cgi-bin/ResStatus"))

"Check Status")

(DEPARTURE "1997-05-24T07:55:00+1")))

11

As we said, at the core of our tools is SXML, which is
an abstract syntax tree of an XML document. SXML is
also a concrete representation of the XML Information
set in the form of S-expressions.

This example eliminates the need for any further expla-
nations. We see an XML document and the correspond-
ing SXML representation. The XML document on the
slide is actually taken from the XML Namespaces Rec-
ommendation. You can see how SXML represents at-
tributes {(@ ...)} and namespaces. In SXML, all names
are fully resolved. {Because namespace (Universal Re-
source Identifiers) URIs are often too long, it’s possible
to tell the parser to use shorter namespace shortcuts, in
this example, H. Note that these shortcuts have nothing
to do with the XML prefixes in the original document
{HTML:CLASS, etc.}. The XML prefixes are controlled by
the author of the document; the shortcuts {H:CLASS} are
controlled by the developer of an XML application. Fur-
thermore, shortcuts and namespace URIs are in a 1-to-1
correspondence. This is not the case for XML prefixes.}

11-1

XML Queries

<RESERVATION

xmlns:HTML=’http://www.w3.org/TR/REC-html40’>

<NAME HTML:CLASS="largeSansSerif">

Layman, A</NAME>

<SEAT CLASS=’Y’

HTML:CLASS="largeMonotype">33B</SEAT>

<HTML:A HREF=’/cgi-bin/ResStatus’>

Check Status</HTML:A>

<DEPARTURE>1997-05-24T07:55:00+1

</DEPARTURE></RESERVATION>

Query

//RESERVATION/SEAT[@CLASS=’Y’]

12

Let us turn to XML queries. Here’s the sample XML
document from the previous slide: a reservation man-
ifest. Suppose we want to query this manifest to find
out all seat assignments of the class Y. The following
XPath expression, when executed, will give us the an-
swer. XPath is a simple W3C XML query language,
which is used in XSLT, XPointer, and XLink. This
XPath expression {//RESERVATION/SEAT} locates all the
SEAT elements within the reservation manifest, and this
expression in brackets filters only those that have the at-
tribute CLASS with the value of Y.

12-1

(S)XPath abbreviated

XPath abbreviated

//RESERVATION/SEAT[@CLASS=’Y’]

SXPath abbreviated

(// RESERVATION (SEAT (@ (equal? (CLASS "Y")))))

13

XPath is a basic query language of XML, which is used
to access an abstract XML data structure. Queries
over SXML documents are likewise expressed in SX-
Path. Just as SXML is closely related to XML, so is
SXPath to XPath. {XPath addresses an abstract XPath
data structure; SXPath queries SXML, which is a con-
crete representation of the XPath data structure.} As
you see, the format of SXPath is rather similar to that
of XPath, modulo path delimiters and parentheses.

13-1

Full form (S)XPath

XPath

/descendant-or-self::node()

/child::RESERVATION

/child::SEAT[attribute::CLASS=’Y’]

SXPath

((node-join

(node-closure (node-typeof? ’RESERVATION))

(node-reduce

(select-kids (node-typeof? ’SEAT))

(filter

(node-join

(select-kids (node-typeof? ’@))

(select-kids

(node-equal? ’(CLASS "Y")))))))

sxml-tree)

14

XPath also has a full form, like this {at the top of the
slide}. Not surprisingly, SXPath has a full form, too,
like this {the second part of the slide}. The abbreviated
form of XPath is defined as a shorthand notation for the
full form. Likewise, the abbreviated SXPath expression
we saw before is mechanically translated into this full
form.

Both expressions – this {full-form XPath} and this {full-
form SXPath} have to be evaluated to give any result.
In the case of the full SXPath, the evaluator is Scheme
itself. Indeed, the full SXPath notation is a composi-
tion of ordinary Scheme functions: predicates, filters,
selectors and combinators. The full SXPath is a li-
brary of such functions. This expression is a Scheme
application, which yields the answer to the query. As
a matter of fact, we can see two applications here:
this one {(node-join ...)} gives us a procedure, which,
applied to the SXML tree, will run the query and re-
turn the list of matching nodes. In database-speak, this
whole expression combines the step of preparation of
a query {(node-join ...)} with that of execution of a
query {((node-join ...) sxml-tree)}.

14-1

(S)XPath abbreviated

XPath abbreviated

((txpath

"//RESERVATION/SEAT[@CLASS=’Y’]")

sxml-tree)

SXPath abbreviated

((sxpath

’(// RESERVATION

(SEAT (@ (equal? (CLASS "Y")))))

sxml-tree)

15

We saw that abbreviated XPath and SXPath are rather
similar. Can we mechanically translate one to the other?
Yes, we can. Here is an example of executing the SEAT
query with our tools. We can either use the XPath ex-
pression as it is, written as a text string, or we can use
the corresponding S-expression. Here txpath is a XPath
interpreter (compiler, actually), and sxpath is an inter-
preter for the abbreviated SXPath. Both interpreters run
on the top of the full SXPath, which can be considered
bytecode, or SXPath virtual machine, so to speak. If we
use this form {txpath}, our tool is a compliant XPath
processor. It can handle all location paths defined in
the XPath Recommendation, complete with preceding-
sibling, ancestor, following-sibling axes and other fun
stuff. So we indeed play by the rules and indeed can
re-use the existing XPath writing skills.

{Again, this expression {(txpath ...)} prepares the query,
and this outermost application executes the query.}
But why do we need the abbreviated SXPath {(sxpath
’(...))}? Well, we can do more. Instead of quote,
here, there can be a quasiquote. The sxpath interpreter
permits arbitrary Scheme procedures used as selection
and filtering predicates. So the full power of Scheme is
available during the selection, if we need it. For exam-
ple,

15-1

Complex SXPath

Selecting passengers with confirmed reserva-

tions

((sxpath

‘(// (RESERVATION (

,(lambda (res-node)

(run-check-status

; URL of the confirmation script

(car ((sxpath ’(H:A @ HREF *text*))

res-node))

((select-kids

(node-typeof?

’(NAME SEAT DEPARTURE)))

res-node)))

)) NAME *text*)) document)

16

SXPath expressions can be more complex: for example,
given a booking record we can select the names of the
passengers with confirmed reservations as follows {on
this slide}. This part {// RESERVATION} retrieves all reser-
vations. This custom predicate { (lambda ...)} filters
out unconfirmed reservations. This part {NAME *text*}
selects the names of the passengers from the reser-
vations that remain after the filtering. This lambda-
expression is a custom predicate: given a reservation
node, the predicate will return #t or #f depending on
the reservation status. Recall that a reservation element
had a link to a status-check CGI script. Here, {(sxpath
’(H:A @ HREF *text))} we fetch the script URL from the
HREF attribute of an anchor element. This expression
{(select kids ...)} obtains the passenger’s name, seat,
and the departure time. The function run-check-status
runs a HTTP transaction with the checker URL and
these parameters. As you see, our custom predicate
uses ordinary Scheme functions {car} and invokes the
sxpath interpreter recursively. We also take advantage
of the full SXPath library functions here {(select-kids
...)}.
This example illustrates the degree of integration of the
SXML query language into Scheme. There is no lin-
guistic barrier any more.

16-1

Integration of (S)XPath into Scheme

• Full compliance with the XPath Recom-

mendation

• (S)XPath can be used in any Scheme func-

tion

• Any Scheme function can be used in

SXPath

• No linguistic barrier

17

The ability to use Scheme functions as SXPath pred-
icates, and to use SXPath selectors in Scheme func-
tions makes SXPath a truly extensible language. A user
can compose SXML queries following the XPath Rec-
ommendation – and at the same time rely on the full
power of Scheme for custom selectors.

17-1

W3C-compliant XML processing in Scheme

• Motivation

• SXML

– XML AST

– Inter-conversions

• XML and SXML queries: (S)XPath

– SXPath as an XPath processor

– Powerful SXML queries

• XML and SXML transformations

– Interoperability with XSLT

– Advanced SXML features

– Web services as SXML transformations

18

Let us now turn to XML and SXML transformations.
We will use the most familiar examples of Web site
authoring. Again, we will talk about reusing existing
stylesheets and existing skills of writing them. We will
show that the migration from XSLT to Scheme-based
tools is beneficial, and relatively smooth.

18-1

Patterns of SXML transformations

XML - SXML -*- SXML - xML, DB, File

In particular:

XML → SXML → SXML → xML, LaTeX, DB

SXML → SXML → xML, DTD, LaTeX

19

The general pattern of SXML transformations can be
written like this {first phrase}. We can apply it in both
directions.

We can start with XML, parse it in SXML and do var-
ious transformations and queries. We store the result
as a new XML or HTML or LaTeX document, or put
the data into a database. This approach resembles the
ordinary XSLT processing. And our tools can indeed do
the standard XSLT – and more.

On the other hand, we can start with SXML. That
SXML can be generated from a database query, re-
trieved from a file, or entered by hand in Emacs. We can
transform it several times – sometimes in a rather intri-
cate ways – and generate a markup or a TeX document.
Incidentally this approach lets us author web pages,
XML documents, or papers – in SXML. The SXML
specification, for example, was authored in SXML, and
later converted into a LaTeX document and a web page,
given different stylesheets. The present paper in the
proceedings and the slides you are seeing were also au-
thored in SXML.

Let us see, how we can do all this and still play by the
rules.

19-1

SXML for web site construction

Yahoo! Pick of the Day for May 30

http://www.censusscope.org/

 Home
 About
 Help
 Contact

If you want to get occasional
emails when we add new
data or features, give us your
name and email address:

Name:

E-mail:

Submit
Reset

CensusScope is a product of
the Social Science Data
Analysis Network.

CensusScope: Your Portal to Census 2000 Data

CensusScope is an easy-to-use tool for investigating U.S. demographic trends,
brought to you by the Social Science Data Analysis Network (SSDAN) at the
University of Michigan. With eye-catching graphics and exportable trend data,
CensusScope is designed for generalists and specialists.

NEW! SEGREGATION DATA FOR METROS AND CITIES

Segregation Exposure and Dissimilarity Measures for 1246 individual US cities
with population exceeding 25,000 and for all metropolitan areas, based on single
and multiple race populations as identified in Census 2000.

NEW! CENSUS 2000 LONG-FORM DATA

Using long-form data from the 2000 Census, we have created trend charts and
tables for states, counties, and metro areas on:

Educational Attainment
Language

We also have US only data and charts on:

Ancestry & Ethnicity
Employment, Occupation, and Industry
Migration & Immigration
Housing Characteristics

These will soon be available for every state, county, and metropolitan area. To get a
peek at the raw data on these and other topics, here are the Census Bureau’s
spreadsheets:

2000 United States data
1990 United States data
Data for each state (link to Census Bureau)

CHARTS & TRENDS

For States, Metro Areas, and Counties.
Census 2000 and Trend Data going back to 1990, 1980 and sometimes even
further, on a growing list of topics, including population growth, population

20

Web site construction offers a good illustration of both

points, compatibility and advance features. Here’s one

example: a nice social science site, with maps and charts

based on US census data. This site was The Yahoo!

Pick of the Day for May 30, 2002.

20-1

SXML for web site construction...

”Today’s Yahoo! Pick (http://picks. ya-

hoo.com) was constructed using PLT Scheme

and Oleg Kiselyov’s SXML->HTML. (Charts and

maps were made with other tools, but Scheme

was used to turn these raw materials into a

web site.) The ease of development has been

extraordinary.”

Bill Abresch: for those keeping score...

A message on the PLT-Scheme mailing list.

May 30, 2002.

21

On the same day, one of the developers of the Cen-
susScope site posted the following message on the PLT
Scheme mailing list. The message had a catchy title:
for those keeping score...

I especially appreciate the last phrase of the message:
”The ease of development has been extraordinary.” I
have never met Bill Abresch, nor communicated with
him. He figured out how to use the SXML tools all by
himself – to his advantage, it seems.

21-1

SXML for web site construction...

http://ir.misis.ru/english/about/general.htm

ABOUT ACADEMICS RESEARCH INTERNATIONAL EVENTS HOME PAGE

General

Rector’s
preface

Mission and
priorities

History

Awards

Facts

Location
and map

Campus life

Administration

Important
links

Search

Contact

us

Moscow State Institute of Steel and
Alloys

Technological University

 Education for foreigners

MISA is the leading institution of Higher Education,
training engineers and researchers in:

metallurgy and material science;
metal production and treatment;
composite, powder, super- and semi-conducting materials;
developing advanced materials and technologies;
raw material effectiveness and ecology;
certification and quality management of materials;
economics and management;
information technologies and computer-aided countrol system.

4 Leninsky prospekt, 119991 Moscow, Russia
tel. 7 095 237 22 22
fax 7 095 237 80 07

22

Here is another example. It is a rather official site, of
a large educational institution: approximately 15 thou-
sand students in Moscow alone. This institute is one of
the top ten technical universities in the whole Russia.
As you see, the web site follows the design that fortu-
nately becomes the norm for serious sites: the site is
accessible, clear and easy to navigate. Alas, colors in
navigation bars didn’t come out on this slide.

22-1

SXML for web site construction...

http://ir.misis.ru/english/about/general.htm

Page source

...

<P>

<CENTER>

4 Leninsky prospekt, 119991 Moscow, Russia

tel. 7 095 237 22 22

fax 7 095 237 80 07

</CENTER>

</div></TD></TR></TABLE>

</BODY></HTML>

<!-- Generated by Beaver

$Id: beaver.scm,v 2.52 2001/04/12 07:32:35 kl Exp kl $ -->

23

If we take a look at the source HTML, we will see a tell-

tale sign at the end of the page. This audience doesn’t

need any explanation what the file suffix .scm stands

for. You can also see that we’ve been using our tools

for quite a while {emphasize the date}.

23-1

Building the MISA site

<PAGE NAME="Rector’s preface"

LPATH="about preface">

<img src="image/rector1.jpg" width="131"

height="200" align="right"

hspace="15" vspace="10" alt="" />

<p>

Based on fundamental sciences, Russian

Higher Education of training

Engineers in metallurgy and material

science is given recognition

throughout the world.

</p>

...

</PAGE>

24

Let me stay on this example for a bit longer. It makes
a good illustration of our playing in a team. Previously,
the MISA site was an ad hoc conglomerate of various
HTML fragments, written and maintained by a number
of people in different departments. Often these people
aren’t programmers. But they do know HTML.

Eventually it came time when a common look-and-feel
had to be introduced. An official site should look con-
sistent and reputable. Furthermore, it should be easy
to present the content in different formats, for exam-
ple, a brochure or a CDROM. The old content – and
its authors – should also be re-used as much as possi-
ble. As the first step, all the old content was turned
to XHTML. XHTML is rather close to HTML, so the
change wasn’t much of a burden. This slide shows the
source for a typical simple page. Local web designers
are free to use any XHTML tags (which are all in low-
ercase, as in here {img}). In addition, the designers use
a small number of integration tags, in uppercase – like
this {PAGE}.

24-1

Weaving the MISA site

<stx:load href="misa.scm"/>

<stx:import href="misa.stx"

prefix="misa" type="stx"/>

<xsl:import href="misa.xsl"/>

<xsl:template match="PAGE">

...

<table cellpadding=’10’ width=’100%’><tr valign=’top’>

<!-- Sub-menu -->

<td valign=’baseline’ bgcolor=’#006699’ width=’10%’><table cellspacing=’10’>

<misa:v-menu/>

<misa:search-and-mail hidden="no"/>

</table>

<misa:info-files/>

<div align=’justify’>

<xsl:apply-templates/>

</div> ...

25

The weaving of such fragments into the site was done
in XSLT. Well, more than just XSLT. On this slide is
the master stylesheet. Some of the imported files, like
this one, misa.xsl, are truly XSLT. They were already
developed by professional designers, and we had to use
them. Some other stylesheets were more than XSLT.
For example, this template {<xsl:template} : it looks
like ordinary XSLT, with <xsl:apply-templates/>, etc.
You can also see custom tags such as <misa:v-menu/>
or <misa:info-files/>. They stand for Scheme func-
tions, which are imported in here {<stx:import...}. This
statement, {<stx:load...}, loads a number of Scheme
utility functions. All this pure XSLT {misa.xsl} and the
Scheme-extended one are translated into a Scheme code
with SXML traversal combinators. XPath expressions of
the XSLT stylesheets are translated into SXPath expres-
sions, in the manner we saw earlier.

Note, this master template is merely XHTML with cus-
tom tags. The experience showed that it is far more
natural for a web designer to use HTML-like markup
tags (with the interface he himself defined) rather than
heavyweight xsl:call-template etc. constructs of XSLT.
When authoring documents, declarative approach is
preferable. To a web designer, the content, the pre-
sentation, and special actions are just the markup. To
a developer, the content, the presentation, and the ac-
tions are uniformly Scheme expressions. We can me-
chanically translate between these two views.

25-1

{Actually some of the ”content providers” were not (and
still not!) familiar with HTML, but know ... LaTeX! So,
for them a basic set of LaTeX-like markup was prepared
(ITEMIZE, and so on), which made such users quite
happily.}
{The same XML information is used for Web site gen-
eration (since early 2001) and for customized HTML
presentation distributed as an official MISA advertise-
ment CD (since this summer).}
{The MISA HTML pages are static. STX can also be
used for dynamic web pages – Scheme Server Pages
– with a PLT Scheme web server, for example. Like
JSP, Scheme Server pages provide custom tag libraries.
Unlike, JSP, Scheme server pages are purely declarative.
They do not mix markup and programming languages.
There is no impedance mismatch in Scheme Server Page
programming.}
More details on STX may be found in a ”STX position
paper” http://pair.com/lisovsky/STX/

Advanced SXML transformations

• (tag "text") ==> <tag>text</tag>

• (section "text") ==>

(div (@ (align "center")) (p "text")) ==>

<div align="center"><p>text</p></div>

• <bar>text1</bar>

(foo "text") ==> ...

<quux>text2</quux>

26

We showed how we can do ordinary XSLT transforma-
tions and author sites from source XML documents or
templates. We can indeed re-use legacy markup doc-
uments and stylesheets. Can we do something more
advanced? Yes, we can.

The simplest case of XML authoring in SXML is con-
verting an S-expression like this {(tag ”text”)} into the
corresponding markup element. Lots of people do that.
Simple? Yes. But there is a complication: some char-
acters in ”text” must be escaped during the transla-
tion. For example, greater- and less-than-signs and the
ampersand. Surprisingly, this simple escaping is excru-
ciatingly difficult in pure XSLT, for example. The set
of characters to escape and the escaping rules may de-
pend on the context – on the tag and its ancestors.
For example, CDATA sections in XML and verbatim
blocks in TeX have special escaping rules. In SXML,
such context-sensitive translation is trivial – we merely
need to instantiate a local text handler.

So-called higher-order tags increase the sophistica-
tion level of the transformation. We re-write one
S-expression {(section ...)} into a more complex S-
expression etc. until we reach primitive SXML elements
– which are then transformed into XML. This successive
re-writing is reminiscent of macro-expansion in Lisp and
Scheme.

In the most advanced case, there doesn’t appear to be
any correspondence between a source SXML code and

26-1

the resulting XML document. {The paper in the pro-
ceedings gives one real-life example. The source SXML
code holds a number of entities and their relationships
in a normalized relational form. The output XML docu-
ment represents the same entities in a unnormalized,
hierarchical relationships. The corresponding SXML
transformation is tantamount to denormalization: the
conversion from a relational to a hierarchical database,
so to speak. Because the source SXML document was
normalized, it was notably more compact and easier to
write.}

An example of a complex markup

(html:begin

(Header

(title "SXML") (Revision "2.5")

(long-title "SXML")

(Links (prev "xml.html") (next "web.html")))

(body

(navbar)

(page-title)

(TOC)

(Section 2 "Introduction")

(p ...)

(Section 2 "Notation")

(p ...)

...

27

The present slide gives another example of the non-
obvious relationship between XML and SXML. This is
an excerpt from the SXML specification, which is it-
self authored in SXML. For example, Header is just the
collection of meta-data. Some of its child expressions,
such as title, are expanded into the corresponding ele-
ments of the HTML HEAD. Some other elements, such
as Revision, are not expanded at all. They are used in
other parts of the document. I’d like to point out two
elements: navbar and TOC. Obviously, they are not
translated into navbar and TOC in angular brackets.
Rather, (navbar) expands into a navigational bar, using
the information from here {(Links ...)}. When gener-
ating the body of the page, the Section element here
is converted into a header on the web page. The han-
dler for the TOC element {here} re-traverses the whole
document with a different stylesheet. That stylesheet
expands a Section elements into a line of the table of
contents, and everything else to nothing. In contrast to
TeX, we don’t need to re-run tex to get the references
and citations right. XSLT can also traverse the source
document with different stylesheets – with the help of
modes. I submit that SXSLT accomplishes the same
goal with far more simplicity and grace.

27-1

Retrieving Weather Advisories
http://www.metnet.navy.mil/cgi-bin/oleg/get-advisories

Aircraft Weather Advisories Page 1

Aircraft Weather Advisory
(SIGMET/AIRMET) Query
Retrieving advisories to aircraft of significant weather phenomena

parameter lat-n must be of a typenumber

Step 1. Specify advisories to retrieve
Type Class Id

SIGMET CONVECTIVE

AIRMET ALL

OUTLOOK ALL

You have to specify at least one search parameter. All character strings
are case-insensitive.

Step 2. Optionally select the area of interest
Latitude between 30 and 35x deg

Longitudebetween and deg

Lat/Lon are specified in degrees, e.g. -30.75 ; negative numbers refer
to Southern latitudes and Western longitudes correspondingly.
Longitudes may wrap around .

Step 3. Optionally select the modification time

Reported since: minutes ago

Step 4. Check the Metcast server to query

Metcast server to query: http://zowie.metnet.navy.mil/cgi-bin/oleg/server

Step 5. Submit the form

Retrieve Show MBL

Refer to the Metcast Site for more information.

http://zowie.metnet.navy.mil/cgi-bin/oleg/get-advisories 12:04:06 22/10/02

28

Let us consider the final example in more detail. It
shows a rather unusual use of SXML and SXML trans-
formations – not only for generating web forms but also
for processing of the submission result.

This slide shows one of the front ends to the Met-
cast server. This web page lets a user retrieve air-
craft weather advisories. For example, SIGMET advi-
sories, which are advisories for all aircrafts of significant
weather phenomena, such as thunderstorms, tornados,
significant wind shear, clear air turbulence, etc. It is
useful to check for SIGMETs before going on a trip.
If you see a SIGMET along the way, you may want to
take an extra book. {A SIGMET advisory indicates that
the plane will be re-routed or diverted. The page con-
nects to our developmental Metcast server – which may
be used for illustration or development but may not be
used for operation support. We have other servers for
the latter purpose. Using them requires special arrange-
ments.}
On this form you choose the type of an advisory to
retrieve, optionally set the area of interest as a bounding
lat/lon box, specify other parameters. The snapshot of
the browser window on the slide shows that the user
mistakenly typed a wrong character in the latitude field.
When he submitted the form, he got back the page with
the original form, all his input, plus the error message
here, at the top.

28-1

Generating Web forms

(define Form

‘(html:begin "Aircraft Weather Advisories"

(body (@ (BGCOLOR "#88eebb") ...)

(h1 "Aircraft Weather Advisory (SIGMET/AIRMET) Query")

(p "Retrieving advisories to aircraft of significant weather phenomena")

(div (note-short))

(search-form ""

(step mandatory "Step 1. Specify advisories to retrieve")

...

(step optional "Step 2. Optionally select the area of interest")

(table (@ (cellpadding "0") (cellspacing "0") (border "0"))

(tr

(th "Latitude ")

(td " between ")

(td (ffield-input-text lat-s number 6))

(td " and ")

(td (ffield-input-text lat-n number 6))

(td "deg"))

...

29

Here’s an excerpt from the source code for the get-
advisories page, edited for brevity. The full source code
is freely available on the web.

The query web form is coded in SXML. We see obvious
tags such as table, paragraph, etc. We also see not un-
ordinary tags, for example, step. They are higher-order
tags mentioned earlier. I’d like to point out this ele-
ment: {(ffield-input-text lat-s number 6)}. It stands for
the input field of a web form, for northern and southern
latitudes. We see the name of the field and its size, {6}.
The script transforms this SXML into HTML, filling in
form fields with default values. We get the web form we
saw on the previous slide. When you submit the form,
the script uses this very same SXML code – but a dif-
ferent stylesheet – to convert the QUERY STRING into
bindings for form variables, validating the user input in
the process. Notice that {(ffield-input-text lat-s num-
ber 6)} had a type: number. The conversion stylesheet
indeed tries to convert what you’ve entered into a num-
ber. The stylesheet throws an exception if it fails. CGI
processing is therefore a tree transformation, too. The
set of form variables is finally re-written into an SXML-
RPC request (called an MBL request).

29-1

Retrieving Weather Advisories: MBL
Aircraft Weather Advisories Page 1

Aircraft Weather Advisory
(SIGMET/AIRMET) Query
Retrieving advisories to aircraft of significant weather phenomena

The MBL expression for your request
(webq (bounding-box 35 -180.0 30 180.0)

(products
(AC-advisory

((SIGMET CONVECTIVE))
(mime-type "text/plain"))))

Step 1. Specify advisories to retrieve
Type Class Id

SIGMET CONVECTIVE

AIRMET ALL

OUTLOOK ALL

You have to specify at least one search parameter. All character strings
are case-insensitive.

Step 2. Optionally select the area of interest
Latitude between 30 and 35 deg

Longitudebetween and deg

Lat/Lon are specified in degrees, e.g. -30.75 ; negative numbers refer
to Southern latitudes and Western longitudes correspondingly.
Longitudes may wrap around .

Step 3. Optionally select the modification time

Reported since: minutes ago

Step 4. Check the Metcast server to query

Metcast server to query: http://zowie.metnet.navy.mil/cgi-bin/oleg/server

Step 5. Submit the form

Retrieve Show MBL

http://zowie.metnet.navy.mil/cgi-bin/oleg/get-advisories 12:35:03 22/10/02

30

The get-advisories page is an example is a three-tier
Web service. A client connects to a get-advisories CGI
script, the second tier. The client fills out a form, per-
haps corrects noted errors, and finally submits it. The
get-advisories script executes a ”remote procedure call”
to a Metcast server, receives an XML document – and
sends it to a client or do additional processing. It should
be emphasized that SXML is being used on all stages:
to specify the form, to represent user’s input, and to ex-
press the ”remote procedure call”. Moreover, the same
small library of SXML transformers can be used over
and over again – for very different purposes.

The get-advisories Web form has a special button to
show the generated MBL request for a particular user
input. If we press that button, we will see the result
shown on this slide. At the server side, the MBL request
is further re-written into a SQL query. The result of
the query is re-written into SXML, which is converted
into XML and sent to the client. We could have sent
the SIGMET advisory in its SXML form; however some
clients insist on a syntax-heavy XML.

30-1

Retrieved advisory

<!DOCTYPE Advisories SYSTEM ’OMF.dtd’>

<Advisories TStamp=’1035315601’>

<SIGMET class=’CONVECTIVE’ id=’43C’ TStamp=’1035309300’>

<VALID TRange=’1035309300, 1035316500’>VALID UNTIL 1955Z</VALID>

<AFFECTING>LA TX AND CSTL WTRS

</AFFECTING>

<EXTENT Shape=’AREA’ LatLons=’30.395 -93.822

28.307 -93.110 27.220 -95.582 30.431 -95.894 30.395 -93.822 ’>FROM 40WNW LCH-110S LCH-100SSE PSX-40NW IAH-40WNW LCH

</EXTENT>

<HAZARD Type=’TS’ Dir=’260 13’ Tops-max=’42000’>

AREA TS MOV FROM 26025KT. TOPS TO FL420.</HAZARD>

<REMARKS>SEE INTL SIGMET SERIES BRAVO FOR ADJ TS ACT.</REMARKS>

</SIGMET>

</Advisories>

31

If we execute the MBL by pressing a button on the
web form, we will get the following XML in the reply.
There was one convective SIGMET within the area of
interest, 30 through 35 degrees of northern latitude.
The SIGMET warned about area of thunderstorms, up
to the flight level 420. The thunderstorm moves from
the west at 13 m/sec (25 knots). This set of numbers
{LatLons=...} describes the enclosing polygon for the
affected area. We have several graphical clients that
use that information to draw the area on the map.

31-1

Conclusions

SXML and SXML tools:

• play in a team

• offer backwards compatibility: investment

protection

• support legacy data migration

• rely on a mature programming language

• erase the linguistic barrier: content inte-

gration, maintainability, better productiv-

ity

http://ssax.sourceforge.net/

32

In conclusion, we tell our managers that our tools ac-
cept and generate valid XML and HTML, regardless of
what the tools use internally. We play in a team, along-
side other XML authors and developers. Our SXSLT
and SXPath tools are backwards compatible with XSLT
and XPath and thus protect the investment in those
tools and the skills. Our tools are based on a mature
programming language, with excellent educational re-
sources. We also provide a relatively smooth migration
path from legacy data and programs to the ones based
on SXML. Moving to the S-expression-based formats
and tools is worthwhile. We won’t have a linguistic bar-
rier any more. As the result, markup processing code
becomes easier to maintain and easier to write.

Due to a unique combination of the expressive power
of the Scheme language and compatibility with W3C
Recommendations, such an approach provides the most
sophisticated XML processing techniques along with a
good protection of investments in XML/XSLT solu-
tions.

The software mentioned in this talk is in public domain.
It is a SourceForge project. You are very welcome to
use it. If you have any question, please post it on the
project mailing list, or send it to me.

32-1

Final Conclusion

Embrace and Extend XML

• S-expressions alongside and instead of

XML

• Promote KQML instead of SOAP

• XSLT →
Lisp-extended XSLT →
Lisp instead of XSLT

• The language to manipulate trees of S-

expressions already exists

33

Finally, let us embrace and extend XML. We all know
a constructive proof that this is a sound policy. Let us
follow XML rules – and emphasize how verbose XML is
compared to other representations of S-expressions. Let
us remark on the immaturity and bloatedness of SOAP,
and on clarity and firm foundations of KQML. Let us use
XSLT, and remind how limited and imperfect language
it is. Let us build tools that take the existing stylesheets
and XML queries – and offer powerful and convenient
S-expression-based extensions. Let us engage in W3C
XPath and XQuery discussions. Let us also point out
that the language to manipulate trees of S-expressions
already exists. There is no need to re-invent the wheel,
especially a square one.

33-1

