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Abstract. We describe the design and implementation of a trust-management
system Soutei, a dialect of Binder, for access control in distributed systems.
Soutei policies and credentials are written in a declarative logic-based security
language and thus constitute distributed logic programs. Soutei policies are mod-
ular, concise, and readable. They support policy verification, and, despite the sim-
plicity of the language, express role- and attribute-based access control lists, and
conditional delegation.

We describe the real-world deployment of Soutei into a publish-subscribe web
service with distributed and compartmentalized administration, emphasizing the
often overlooked aspect of authorizing the creation of resources and the corre-
sponding policies.

Soutei brings Binder from a research prototype into the real world. Support-
ing large, truly distributed policies required non-trivial changes to Binder, in
particular mode-restriction and goal-directed top-down evaluation. To improve
the robustness of our evaluator, we describe a fair and terminating backtracking
algorithm.

Keywords: Access control, Security Language, Logic Programming, Datalog,
Non-determinism, Backtracking, Haskell.

1 Introduction

An authorization system is called upon to advise whether an access request, such as
fetching a web page, should be permitted. To reach a decision, the system consults
attributes of the request (such as the users and resources involved), information about
the world, and policies. While simple data structures like access control lists suffice as
policies in some cases, they fail to accommodate large and volatile sets of users and
resources, complicated constraints, and distributed administration.

Blaze et al. [3] introduced the trust-management system as a standard interface for
applications (web servers, etc.) to ask an authorization system whether a requested ac-
tion should be allowed, and a standard language for writing distributed and interoper-
able policies. Trust management is characterized by the following design principles,
which have proved to be both flexible and efficiently implementable:

– The application provides facts about the requested action (axioms);
– policies specify the derivation of other facts (inference rules);
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– the authorization system is a policy compliance checker, which advises the appli-
cation whether an application-defined action (formula) should be allowed (can be
inferred from the axioms and inference rules);

– the compliance checker is a deduction engine.

These principles have been validated by KeyNote [2], the most well-known trust-
management system with several real-world applications. The security language of
KeyNote however has several notable drawbacks [15, 13]: It is impossible in gen-
eral to analyze the effect of KeyNote assertions, for example to verify global policy
constraints.

We argue that a trust-management system should be based upon a single, declara-
tive language, with transparent semantics and a minimum of primitives. The language
should be easy to read, write, and modify. It should express complicated policies with-
out redundancy, and allow independent policies to be composed. It should be amenable
to automated formal analysis and efficient, robust, high-assurance implementation.

Experience with a common class of policies, firewall configurations, illustrates the
hazards when these requirements are not met. Firewall rules are numerous, and their
overall effect is difficult to understand; a seemingly small change may lead to a cascade
failure [19], which, absent policy verification, may go undetected. A study of firewall
configuration errors [23] found flaws in every firewall examined: “Only one of the 37
firewalls exhibited just a single misconfiguration. All the others could have been easily
penetrated by both unsophisticated attackers and mindless automatic worms.”

DeTreville [7] introduced a logic-based security language Binder for expressing poli-
cies in distributed systems. Binder is an extension of the logic programming language
Datalog, which, in turn, is a subset of pure Prolog. Despite having few primitive con-
structs (only one distinguished relation says), Binder is shown to be more expressive
than most existing security languages. The ease of naming and referring to other policies
via says is especially attractive. Despite its power, Binder is concise and comprehen-
sible: A statement in Binder can be read as a declarative, stand-alone English sentence
[7]. Binder has a clean design and sound logical foundations [1]. In our view, Binder
meets the criteria for a trust-management language put forth above. Alas, it was just a
research prototype with no implementation.

Soutei can be viewed as KeyNote whose security language is replaced with Binder—
or as the first practical implementation of Binder. However in producing a working
system, we had to specify many aspects left undefined in DeTreville’s paper, and add
several extensions. Many of the extensions, such as the interaction between an applica-
tion and Soutei, are notably influenced by KeyNote.

Our contributions are:

– An extension of Binder to specify the interaction between the authorization system
and the application. We introduce a dedicated application namespace for the
application to supply attributes of the request and environment data, which can be
used in policies.

– A re-interpretation of the distinguished Binder relation says, allowing us to use
a goal-directed resolution-based strategy, which can cope with the large number of
distributed policies.
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– A mode system for assertions, with mode-restricted forms and static checking of
the satisfaction of the restrictions.

– A general-purpose efficient backtracking algorithm with fairness and termination
properties.

– Two implementations, designed to support various applications.1

– Deployment of Soutei into a publish-subscribe web service with distributed and
compartmentalized administration. Administrative actions such as the creation of
resources and the attachment of authorization policies are themselves subject to
authorization.

The next section introduces Soutei by a series of examples. Section 3 presents a
real-world use case, using Soutei with a publish-subscribe web service. In Section 4,
we describe three aspects of Soutei implementation: its goal-directed resolution-based
evaluation, modes, and backtracking algorithm. These aspects represent notable devi-
ations from Binder, influenced by practical requirements, and can be re-used in other
similar systems. We present performance measurements in Section 5. Section 6 exam-
ines related work; and Section 7 concludes. The formal semantics of Soutei is given in
the Appendix.

2 Soutei by Example

We present the fundamentals of Soutei with a simple policy:

may(read) :- application says ip-address(?IP),
internal(?IP).

internal(#p10.10.1.1). ; trusted internal clients
internal(#p10.10.1.2).

The syntax of Soutei is taken mainly from Binder and Datalog; however, there are
minor departures: A leading question mark rather than a capital letter identifies logical
variables, to avoid confusion with proper names. Atomic constants include symbols
(which may be enclosed in double quotes, to escape spaces and similar characters) and
IP addresses. A semicolon begins a single-line comment.

The semantics of Soutei is likewise close to Binder and Datalog [7]. The above ex-
ample consists of three clauses: an inference rule for the predicate may, and two axioms
for the predicate internal. The may rule has a body consisting of two atoms, both
of which must be satisfied to derive may(read). The internal predicate has two
clauses, either of which may satisfy ip-address(?IP). Informally, the policy can
be read, “read access is granted to clients with internal IP addresses, which are 10.10.1.1
and 10.10.1.2”.

The interpretation of the predicate may is not built-in, but given by the application
requesting advice, which presents the formula for Soutei to derive. In our example,
an application would submit formulas such as may(read) and may(write). The
application also sends additional axioms representing facts about the request; in this

1 A simple web interface to Soutei is available at http://www.metnet.navy.mil/
cgi-bin/mcsrvr/soutei-demonstration.

http://www.metnet.navy.mil/
cgi-bin/mcsrvr/soutei-demonstration
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case, we expect it to send an ip-address axiom. Again, the application, not Soutei,
chooses the predicates. These axioms, along with the formula to prove, are analogous
to an action in KeyNote.

We have created an s-expression-based protocol for applications to request advice
from Soutei. The application in this example might open a TCP connection to a Soutei
server and send

(req-17 query (may read) (ip-address #p10.10.1.1) ...)

Soutei responds with a boolean result, indicating whether it could derive the formula:
(req-17 #t).2 It is the responsibility of the application to ensure that Soutei’s advice
is followed. In RFC 3198 [22] terms, Soutei acts as a Policy Decision Point, and the
application as a Policy Enforcement Point.

We have left to explain the primitive form says. As in Binder, the policy in Soutei is
a set of (distributed) assertions, named collections of facts and rules. The distinguished
assertion system, analogous to the POLICY principal in KeyNote, represents the top-
level policy, and is loaded from a start-up configuration file. Derivation of the formula
presented by the application is always attempted within the system assertion.3 The
distinguished assertion application contains the facts sent by the application (as
well as some some built-in predicates that cannot be defined within Soutei; see Sec-
tion 4.2). The form says indicates that a predicate should be resolved within another
assertion, allowing assertions to refer to each other. In our example, the ip-address
predicate is to be resolved within the application assertion. The semantics of says
is discussed further in Section 4.1.

Assertions (other than system and application) may come from various
sources, depending on the system architecture. In our current implementation, they are
pushed to Soutei; however, they might instead be stored in a local, remote, or distributed
database, pulled from a subscription service, or be delivered with a decision request as
signed credentials. Because an assertion has no force unless referred to by says, we
can allow every user to control his own assertion without worrying about compromising
the policy.

Let us consider some more sophisticated examples. We can model access control
lists, statements enumerating the users and roles who have access to given resources.
The user and resource data are, like the IP address, passed as application facts.

may(?access) :- application says resource(?resource),
application says public-key(?key),
user-key(?user, ?key),
role-member(?user, ?role),
acl-may(?access, ?resource, ?role).

; users and their public keys
user-key(Peter, "rsa:Z2FuZ3N0YQ==").
user-key(Bill, "rsa:eWVhaCBoaQ==").
; roles
role-member(Peter, programmer).

2 req-17 is a request identifier chosen by the client; it is not interpreted Soutei.
3 Our example policy was tacitly the system assertion.
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role-member(Bill, manager).
; ACLs
acl-may(read, TPS-report-memo, programmer).
acl-may(read, TPS-report-memo, manager).
acl-may(write, TPS-report-memo, manager).

Following KeyNote, we identify users by their public keys, which may be delivered to
the application in an SSL handshake. As public keys are unwieldy, we create convenient
aliases with user-key. The predicate role-member expresses role membership,
and acl-may lists the permissions of different roles on resources.

Storing role membership, ACLs and associations of user names with their keys in
the top-level policy is generally inappropriate. The system policy is modifiable only
by the Soutei administrator, but (hypothetically) the human resources (HR) department
should maintain users’ keys, the application owner should manage roles, and resource
owners should control ACLs. We can divide authority in this way using says.

may(?access) :- application says resource(?resource),
application says resource-owner(?owner),
application says public-key(?key),
hr says user-key(?user, ?key),
app-owner says role-member(?user, ?role),
?owner says acl-may(?access, ?resource, ?role).

The assertions of HR, the application owner, and the resource owner are now all
involved in the authorization decision, although each has a different and limited role.
These assertions may use the full Soutei language; in particular, they may use says to
further delegate their authority.

Another use of says is to reconcile policies, even policies using different
vocabularies.

may(?access) :- authority1 says can(?access)
application says resource(?resource),
authority2 says ok(?access, ?resource).

may(read) :- authority1 says can(read).

In this example, authority1 alone may grant read access, but other access requires
the agreement of both authorities. Note it is not a problem that the authorities use dif-
ferent predicates.

The Soutei documentation [13] describes the use of Soutei for role-based and
capability-based access control, discusses monotonicity, revocation, blacklisting,
and introduces additional use cases (which we use as the regression test of our
implementation).

3 A Real-Life Use Case

We have integrated Soutei with a general purpose publish-subscribe data distribution
web service, Metcast Channels [12]. Clients of this service can publish data into a chan-
nel, monitor a channel for data, and request the list of all channels. Metcast Channels
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have been used in an operational environment for several years. Previously, Metcast
Channels used simple access control lists, which were quite inflexible. Assistance of
the administrator was required to install or modify access control lists of any channel.
As the system became more widely used and the number of user communities and their
channels increased, so did the load on the administrator. Ideally the administrator should
set up the top-level policy and leave managing particular channels to their owners.

Now, Metcast Channels is a Soutei application. Upon receiving a request to read,
write, create, or delete a channel, the server seeks the advice of Soutei. Users may also
submit their own Soutei assertions, via a special channel. A submitted assertion is asso-
ciated with the user’s authenticated name and stored in a local database. Since they pass
through a channel, policy changes are authorized by Soutei, though we currently allow
any authenticated user to submit an assertion. The following scenario demonstrates how
this system overcomes the previous difficulties, and provides additional benefits.

The system policy is quite minimal: it does not grant privileges itself, it only del-
egates them. Specifically, it delegates permission to administer channels to a system
administrator; permission to read and write channels to the channel owner; and all per-
missions to a security officer, for use in emergencies. In order to emphasize the dis-
tinction between channel administration and channel access operations (and to guard
against carelessness), Metcast Channels uses two predicates, may-admin and may.

; delegate channel administration to sam.sysadmin
may-admin(?access) :- sam.sysadmin says may-admin(?access).
; delegate channel access to the channel owner
may(?access) :- application says channel-owner(?owner),

?owner says may(?access).
; delegate all access to the security officer
may-admin(?access) :- ed.emergency says may-admin(?access).
may(?access) :- ed.emergency says may(?access).

The security officer’s assertion will normally be empty, so access will only be granted
by the first two rules; however when the security officer does submit an assertion, it
may bypass the usual rules.

A user, cam.create, wishes to create a channel, in order to publish his blog. In
some systems, create access is tricky because there is no existing resource on which
to hang the permissions. Soutei does not have a rigid vocabulary, though, so we can
express an action not involving a resource naturally. On cam.create’s request,
sam.sysadmin submits the rule

may-admin(create) :- application says user(cam.create).

The user cam.create then creates the channel CamsBlog. Note that by the very
creation of this channel (and without administrator intervention), cam.create’s as-
sertion comes into force to control access. He submits the following policy, granting
himself read and write permissions, and authorizing don.delegate to grant read
permission—but only within the computer science department.

may(?access) :- application says channel(CamsBlog),
application says user(cam.create),
known-access(?access).
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known-access(read).
known-access(write).
may(read) :- application says channel(CamsBlog),

application says user-department(CS),
don.delegate says may(read).

The ability to delegate, in a controlled way, represents a major advance over access
control lists.
don.delegate is careless. His policy is:

may(read) :- application says channel(CamsBlog).

This permissive rule appears to grant read access to everyone. Of course, it does not: the
chain of proof stops in cam.create’s policy if the user is outside the CS department;
don.delegate’s assertion is never considered.

The stipulation of cam.create can, however, be circumvented by
ed.emergency, because his authority comes directly from the system as-
sertion. In a situation where access to information is paramount, he submits the
policy

may(read).

Anyone can now read all channels. In the defense community, this flexibility is called
Risk Adaptable Access Control (RAdAC), and is considered a critical requirement for
the Global Information Grid [5].

4 Implementation

We initially implemented Soutei in Scheme, using the logical programming system
Kanren [11]. We then re-implemented Soutei in Haskell. Decisive factors in this deci-
sion were static typing, manifest distinction between pure and effectful code, closeness
to the specification language, and QuickCheck property testing. These all help increase
one’s confidence in the code, which is of special importance to us since Soutei is in-
tended for high-assurance applications.

In this section, we discuss three particular aspects: goal-directed resolution-based
evaluation, mode analysis, and a fair and terminating backtracking algorithm. These
aspects represent advances over Binder and illustrate how practical needs for scalability,
robustness, and error reporting influence design decisions.

4.1 Goal-Directed Resolution-Based Evaluation

Binder implicitly assumed that all assertions are immediately available. The relation
says was taken to qualify predicates with assertion names. The formal qualification
rules are given in [7] and logically justified in [1]. Once all predicates become qualified,
one may regard the qualifier as an extra argument to the predicate, and then treat the
collection of all available assertions as an ordinary, non-distributed Datalog program,
to be evaluated with the conventional bottom-up strategy.
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We assume a potentially large number of assertions, which makes keeping them all in
memory impractical. We further assume that not all assertions are locally known—the
logical program of Soutei is truly distributed. Under these conditions, whole-program
translation into Datalog is not feasible. Goal-directed resolution-based evaluation seems
more suitable, as it consults only those assertions that may actually be needed for the
goal at hand. In fact, Soutei needs only one proof to advise access, so it may consult
fewer.

We therefore view each assertion as a set of clauses [17], and a says B as a judge-
ment that there is a proof of formula B given the clauses in assertion a. When such a
judgement is required—and only then—we load the assertion and proceed with resolu-
tion. We use the backchaining rule to prove a formula given the clauses in an assertion
[17, 4]. Appendix A shows the formal semantics of Soutei in full.

Our Haskell implementation follows the established pattern [18, 6] of embedding a
resolution-based logical programming system in Haskell. To apply the backchaining
rule, we non-deterministically choose a clause for the target predicate (see Section 4.3),
unify with the head to build up the substitution, then sequentially resolve the body.

4.2 Modes

The distributed nature of Soutei motivates another aspect of the design. In Binder, one
may use says whose left argument, the assertion name, is a logical variable—even an
uninstantiated variable. This would have the effect of enumerating all assertions, which
is fine when all assertions are locally available, but impractical in a distributed system.
Therefore, we disallow this situation: the first argument of says must be instantiated,
that is, it must have the In mode [20]. The application namespace has several
built-in predicates that are similarly mode-restricted, such as ip-of, for matching an
IP address against a network range. It expects both arguments to be instantiated, so they
have the In mode.

Mode enforcement can be performed as a run-time instantiatedness check, whose
failure either triggers an error or suspends the evaluation of a goal. But debugging these
cases—which could arise from the interaction of many assertions—would be painful,
and one could never be sure they are all eliminated. We prefer to detect and report
ill-moded assertions when they are submitted. Therefore, we have designed and imple-
mented a static mode analysis, which ensures that logical variables are used with the
correct modes.

The static mode analysis poses several challenges. For ease of use, we would like
to avoid explicit mode declarations. On the other hand, the distributed nature of Soutei
makes whole-program mode analysis all but impossible. Fortunately, we can impose a
simplifying and yet not-too-limiting restriction. For any predicate defined in an asser-
tion, we require that all of its arguments be instantiated when the predicate succeeds.
This requirement is tantamount to an implicit Out mode declaration for all arguments.
We reject an assertion at submission time if it is not well-moded with respect to the
implicit mode declaration.

The application assertion, which consists of application facts and built-in pred-
icates, is treated specially. Facts trivially satisfy the Out mode; however the built-in
predicates may have other modes, which must be known to the mode checker.
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The intuition for the mode checker is that after a logical variable is used with an
Out mode, it is safe to use in mode-restricted contexts. More precisely, we first assume
that all atoms in the body of a rule, except those with mode-restricted application
predicates, instantiate their logical variable arguments when they succeed. We then
attempt to demonstrate two safety conditions: that all mode-restricted arguments to
application predicates and to says are instantiated by a previous body atom; and
that all logical variables in the head of the rule are instantiated somewhere in the body,
that is, they satisfy the implicit Out mode. If so, the rule is well-moded. We leave a
full elaboration of the mode inference judgments, and a proof of soundness, for future
work.

We can apply this procedure to the rule

may(?access) :- application says ip-address(?IP),
application says ip-of(?IP, #n192.168.0.0/8),
administrator(?admin),
?admin says may(?access).

The logical variable ?IP is instantiated by the non-mode-restricted application
predicate ip-address before it is used in the mode-restricted ip-of. The logical
variable ?admin is instantiated by the predicate administrator before it is used to
the left of says. And the head variable ?access is instantiated by the body predicate
may. So the rule passes the mode checker. If the last two body atoms were reversed, so
that ?adminwere used with says before being instantiated, the rule would be rejected
with a mode error.4

The requirement that predicates have the Out mode has a practical impact on their
design. To give full access to a super-user, we cannot write

may(?access) :- application says user(?user),
super-user(?user).

If may were called with ?access uninstantiated, it would remain uninstantiated, vio-
lating the implicit Out mode declaration.

Rather, we write the assertion as5

may(?access) :- application says user(?user),
super-user(?user),
known-access(?access).

known-access(read).
known-access(write).

We find that this style, while more verbose, is clearer about what is being granted. It
will also give more information to a future policy verifier.

For similar reasons, we model users and resources as application facts, rather than
(following DeTreville) as arguments to the formula to prove. Consider the proposed
super-user rule

4 We are investigating allowing the mode checker to reorder atoms in order to satisfy mode
restrictions, as in Mercury [20].

5 This explains the use of known-access in Section 3.
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may(?user, ?access, ?resource) :- super-user(?user),
known-access(?access).

The mode checker rejects this rule, as the ?resource argument does not satisfy the
Out mode. To repair it, we would need a predicate enumerating all resources, which is
often infeasible. Our style sidesteps the issue.

4.3 Fair and Terminating Backtracking Algorithm

The goal-directed evaluation of Section 4.1 relied upon backchaining, which involves
non-deterministic selection of the clause to apply. In this section we describe a back-
tracking algorithm implementing that non-deterministic choice. Although expressed as
a Haskell monad, it can be implemented in other languages (and has been, in OCaml
and Scheme). We use Haskell as a typed, executable specification language.

Following Wadler [21], we realize non-deterministic computations in Haskell
as computations in a particular monad, MonadPlus. Specifically, the type class
MonadPlus defines the interface for the minimal set of operations to express non-
deterministic computations: mzero creates a failing computation; return a cre-
ates a deterministic computation that yields a; m >>= k sequences two computations,
passing the results of computation m to k; and mplus m1 m2 represents choice be-
tween computations m1 and m2. There is also an operation to run the computation,
obtaining its answer (if any).

Wadler also introduced the list monad, an implementation of the MonadPlus in-
terface that amounts to depth-first search. Although the most common MonadPlus
implementation, and part of Haskell98 standard, we cannot use it for Soutei if we in-
tend to be robust against careless or malicious policies. Consider the assertion:

loop(?x) :- loop(?x).
may(read) :- loop(1).
may(read).

Attempting to prove may(read) with depth-first backchaining, and selecting clauses
in the order given, will diverge trying to prove loop(1). We will never get to the
second may clause, so access will not be granted, and—worse—Soutei will enter an
infinite loop. If loop were in a separate assertion, referred to by says, that assertion
could effect a denial of service attack.

Seres and Spivey [18] suggest using breadth-first search instead, and give a monad
implementing this strategy. Breadth-first search is complete: it always finds a solution,
provided one exists. However, it has large memory requirements, to hold the entire
frontier of the computation, and so is not practical.

Depth-first search with iterative deepening brings completeness to depth-first search,
at the cost of repeating parts of the computation, including side-effects such as loading
assertions. We prefer to avoid this duplicate work.

Kiselyov, Shan, Friedman, and Sabry [14] present a non-determinism monad with
fair operations for combining computations that may make an infinite number of
choices. Alas, these operations are of no help in dealing with computations, such as
our proof of loop(1), that never yield an answer.
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import Control.Monad

data FStream a = Nil | One a | Choice a (FStream a)
| Incomplete (FStream a)

instance Monad FStream where
return = One

Nil >>= f = Nil
One a >>= f = f a
Choice a r >>= f = f a ‘mplus‘ (Incomplete (r >>= f))
Incomplete i >>= f = Incomplete (i >>= f)

instance MonadPlus FStream where
mzero = Nil

mplus Nil r’ = Incomplete r’
mplus (One a) r’ = Choice a r’
mplus (Choice a r) r’ = Choice a (mplus r’ r) -- interleave
mplus r@(Incomplete i) r’ =

case r’ of -- try alternative
Nil -> r
One b -> Choice b i
Choice b r’ -> Choice b (mplus i r’)
Incomplete j -> Incomplete (mplus i j)

yield :: FStream a -> FStream a
yield = Incomplete

runFS :: Maybe Int -> FStream a -> [a]
runFS _ Nil = []
runFS _ (One a) = [a]
runFS n (Choice a r) = a : (runFS n r)
runFS (Just 0) (Incomplete r) = [] -- exhausted cost
runFS n (Incomplete r) = runFS n’ r

where n’ = liftM pred n

Fig. 1. Complete FStream implementation

To overcome non-termination in such cases, we introduce a search algorithm
that enjoys fairness, termination, and efficiency properties not found in prior work.
Figure 1 shows the complete implementation.6 We represent non-deterministic com-
putations by terms of the algebraic type FStream a. In addition to the conventional
terms Nil and Choice (analogous to [] and (:) in the list monad) representing
failure and a choice [10], we add a term One a for a deterministic computation, and a
term Incomplete (FStream a) denoting a suspended computation. The function
runFS runs the computation.

The introduction of Incomplete allows us to capture the continuation of a
computation—even a divergent one. Denotationally, Incomplete is the identity on

6 We have also implemented the algorithm as a monad transformer, which allows us to execute
IO operations, such as fetching a remote assertion, during computation.
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computations. Operationally, it is a hint to the evaluator to explore alternative com-
putations, if any. The definition of mplus honors the hint by deferring a computa-
tion marked with Incomplete; it also adopts the interleaving technique from [14] to
achieve fairness. The result is a balance between depth- and breadth-first search strate-
gies that performs well in practice. We leave a complete analysis of FStream for future
work.

The programmer must apply the Incomplete hint (using the exported function
yield) to potentially divergent computations. In Soutei, we call yield every time
we choose a clause in the backchaining rule. Therefore, even a tight recursion such as
proving loop(1) can be interrupted to try the second may clause. We believe that our
use of FStream makes Soutei’s resolution algorithm complete.

A final problem remains, of a top-level computation that neither fails nor succeeds
in any evaluation strategy, such as our example with the second may clause removed.
We require a way of giving up a fruitless search. Here Incomplete provides a sepa-
rate benefit, as a measurement of the cost of a query. We take advantage of this in the
top-level runFS. When runFS eliminates an Incomplete, it decrements a counter,
allowing the programmer to control how long the computation should run.

Soutei passes a number chosen by the Soutei administrator to runFS, and of course
does not advise access if the cost is consumed before finding a proof. We emphasize
that although Soutei may fail to find an existing proof in this case, our logic itself is
decidable, as can be seen from the translation to Datalog in Section 4.1. Further, while
Datalog is decidable in polynomial time with a bottom-up strategy, the large number
of possible assertions would make running this algorithm to completion impractical for
providing timely authorization advice; a timeout would still be needed. Thus, the effec-
tiveness of Soutei is not fundamentally hampered by our choice of evaluation strategy.

As a demonstration of the power of FStream, Soutei is able to deal with left-
recursive and divergent rules, such as this search for paths in a directed graph:

path(?x, ?y) :- path(?x, ?z), edge(?z, ?y).
path(?x, ?y) :- edge(?x, ?y).
edge(1, 2).
edge(2, 1).
edge(2, 3).

The graph contains a loop between points 1 and 2. Further, the path predicate is
left-recursive, so a depth-first evaluation strategy would loop without even deriving
path(1, 2). However, Soutei avoids these pitfalls and can derive path(1, 3).

5 Performance Measurements

We use the scenario in Section 3 as the primary benchmark of our implementations.
When used with Metcast Channels, the overhead added by Soutei was within measure-
ment error. Therefore, we extracted the Soutei requests performed by Metcast Channels
during the scenario, five new assertions and 17 queries, into a script that calls Soutei
directly.

We ran this script against the Haskell implementation of Soutei running as a TCP
server. As an average over many repetitions, the scenario took 55 ms. (This and all other
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measurements were performed on a 1.8 GHz Pentium 4 PC with 1 GB RAM. Programs
were compiled by the Glasgow Haskell Compiler, version 6.4.1, with the -O2 flag.)

This test included the overhead of network communication, protocol processing, and
saving assertions to disk. To eliminate this, we added a mode to the script to call Soutei
in-process. In this mode, the scenario took only 5.9 ms. We suspect that the overhead
in the server version of Soutei could be trimmed; however since its performance is
adequate, we have not attempted this.

Both tests placed a large weight on submission of assertions. A new assertion re-
quires parsing, mode checking, and transformation into a form optimized for query
execution. In real use, queries would likely be far more common than policy changes,
so we modified the script to submit the assertions once and run the queries many times.
This gave us a measurement of just the logic engine. The 17 queries in the scenario took
2.7 ms, or .16 ms per query.

The total virtual memory required by these tests was around 4-5 MB, as reported by
the operating system; however, some of this can be accounted to the Haskell garbage
collector.

6 Related Work

Because of its obvious importance, the area of access control has been the subject of
much research and development. Unfortunately, many deployed access control systems
(e.g., firewall access control lists and UNIX permissions) are ad hoc and inexpressive.
Trust-management systems [3, 2] introduced a principled approach and a security lan-
guage. Alas, the design of an expressive, tractable and logically sound security language
turns out to be quite hard: Li and Mitchell [15] show that the language in KeyNote has
features that impede analysis, and Abadi [1] points out other languages and their short-
comings. The same paper describes the logical justification for Binder. It seems to us
that Binder offers the best balance of simplicity and expressivity.

Li and Mitchell [15] investigate constrained Datalog in trust-management systems,
prove the tractability of important domains such as trees and ranges, and describe the
application to a particular trust-management system RT. We believe Binder offers a
better modularity, via says. However, adding constraints to Soutei would increase its
expressiveness and remains an interesting research direction.

Garg and Pfenning [9] introduce a constructive logic for authorization, and prove
non-interference theorems: for instance, only users mentioned directly or indirectly by
the system assertion can affect decisions. Their logic appears quite similar to Soutei,
and we are investigating whether their techniques can be adopted for off-line policy
verification.

XACML (eXtensible Access Control Markup Language) 2.0 [24] is an OASIS stan-
dard for authorization policies. It is a large specification, and contains some of the
same features, such as arithmetic functions, that reduce the tractability of KeyNote; yet
XACML cannot express delegation. Fisler et al. [8] have verified XACML policies us-
ing decision diagrams, but their work is limited to a subset of the language, and faces
scalability questions. They acknowledge that certain XACML constructs “fall outside
the scope of static validation.”



Soutei, a Logic-Based Trust-Management System 143

Backtracking transformers are derived in [10] and [14]. Only the second paper deals
with fairness and neither can handle left-recursion.

7 Conclusions and Future Work

We have presented a trust-management system Soutei that combines the strengths of
KeyNote and Binder and is a practical alternative to various ad hoc user-, role-, and
attribute-based access control lists. We inherit from Binder distributed policies, sim-
plicity, and independence of any application vocabulary. The system is implemented
and can be used with any application.

We have validated the system by integrating it with a publish-subscription web ser-
vice. With the current (quite small) number of assertions, the impact of Soutei on the
performance of the system is negligible.

The practical requirements of scalability to many, possible remote assertions moti-
vated goal-directed resolution-based evaluation. To implement this robustly, we have
designed a novel fair and terminating backtracking algorithm. To ensure statically that
all assertions will not have to be loaded to resolve a query, we have designed a mode
analysis for assertions, which places only a light burden on policy authors.

We are currently developing policy administration user interfaces and off-line policy
verification tools, and integrating Soutei into additional applications.

Acknowledgements. We thank Paul Steckler, Frank Pfenning, Christopher Thorpe, and
the anonymous reviewers for many helpful suggestions.
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A The Formal Semantics of Soutei

Table 1 describes syntax and meta-variables used in this section. Predicate constants
have the implied arity n ≥ 1. Logic variables range over constants. A substitution is a
finite map from logic variables to terms, mapping no variable to itself. An application
of a substitution is written in postfix notation.

In an assertion clause, H is an unqualified formula, B is a set of zero or more
general formulas, {y1 · · · ym},m ≥ 0 is a set of variables free in B but not in H ,
{x1 · · · xn}, n ≥ 0 is a set of variables that are free in H (they are all free in B, too);

symbol
∆= is just a separator.
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Table 1. Syntax and meta-variables

Constants = a, b,application,system
Predicate constants = p, q

Logic variables = x, y, z
Terms t ::= a | x

Substitutions = θ, ρ

Unqualified formulas A, H ::= p t1 . . . tn

Qualified formulas Q ::= t says A
General formulas B ::= A | Q

Assertion clause c ::= ∀x1 · · · ∀xn ∃y1 · · · ∃ym H
∆= B

Assertion Γ ::= {c, . . .}

Table 2. Judgments

a �n Γ a is the name of the assertion Γ
Γ � B Formula B holds in the assertion Γ
a � B Formula B holds in the assertion named a

Table 3. Semantics

� � �
� � � 	 �  	 � � � � � � �

� � � � � � �
� � � � � � �  " # �

$ � � ' ) * ' , ' - . 0 1 2 2 2 . 0 � 6 � 1 2 2 2 6 � 8 9 ;< ' , � � < 9 )
� � � � � � A  A B � D E �

application � F H I � � � E M N � constants � and � are distinct

application � O Q S T U � � � D # � � X � represent IP network addresses and � is included in �

Table 2 lists the judgements. Soutei accepts a formula A as input and replies whether
there exists a substitution ρ such that the judgement system � Aρ can be deduced ac-
cording to the rules in Table 3. The latter table omits the axioms for a �n Γ judgements:
These axioms specify the contents of system, application, and other assertions;
the set of such axioms is specific to a particular invocation of Soutei.

The rule (says) is similar to the conventional modality law: if b � A holds, then
Γ � b says A holds in any any existing assertion Γ [1]. In the rule (backchain) the set
of premises of the rule is given explicitly as a set, which may be empty. The domain of
the substitution θ includes both {x1 · · · xn} and {y1 · · · ym}.
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