
Normal-order direct-style beta-evaluator

with syntax-rules,

and the repeated applications of call/cc

• Repeated applications of call/cc, formally

• Normal-order direct-style beta-normalizer

as syntax-rules

• Use (2) to prove (1)

• A few less common examples

1

The full title of the talk, in the expanded form, is this .
We will talk about less frequently mentioned applica-
tions of call/cc and hygienic Scheme macros. For ex-
ample, we will use macros as a sort of a proof assistant,
to help in tedious lambda-calculations. As you can see,
we will be talking about undelimited and delimited con-
tinuations, continuation-passing style transforms – with
a detour on hygienic macros and beta-normalization.
It should come as no surprise that all these topics are
directly influenced by Dan Friedman – and, in fact, de-
veloped straight in response to his challenges. Perhaps
he didn’t know about that though.

1-1

The call/cc challenge

((call/cc call/cc) (call/cc call/cc))

(call/cc call/cc) ==> ??

(call/cc (call/cc call/cc)) ==> ??

(call/cc ... (call/cc call/cc)) ==> ??

(call/cc ... (call/cc id)) ==> ??

(define (p x) (if (eq? x p) ’(p p) ‘(p ,x)))

((call/cc (call/cc call/cc)) p) ===> (p p)

2

It all started about two years ago, upon the meditation
on this famous incantation. It was disclosed by Shriram
on USENET. What is the application of call/cc to itself?
And one more time? And a few more times? What if
we have the identity function?

To be sure, on one hand, these questions seem
trivial. We can easily find the answer if we just
apply these things to a suitable function, like
that. It’ll tell us what is being applied to what.

This is an instance of a type-directed partial evaluation, btw.
So

we easily find out that all these expressions are just
self-applications. A more interesting question is this:
are there any side-conditions on p? Can we prove
it? As we know, the field of first-class continuations
is sufficiently interesting to reasonably doubt one’s
intuition and rely on formal proof instead. BTW, there
was one surprise, to be mentioned later.

2-1

The call/cc theorem

Theorem 1. Expressions

• ((call/cc ... (call/cc call/cc)) p)

• ((call/cc ... (call/cc (call/cc id)))

p)

• ((lambda (x) (x x)) p)

where p is a value,

all yield β-equivalent terms after CBV CPS.

Catchy phrase 1.

self-application is the fixpoint of call/cc

3

Here (call/cc ...) signify zero or more applications of
call/cc, and id is the identity function (lambda (x) x).

3-1

Proving the theorem: CPS

(define-syntax CPS

(syntax-rules (lambda call/cc p)

((CPS (?e1 ?e2))

(lambda (k) ((CPS ?e1) (lambda (f)

((CPS ?e2) (lambda (a) ((f a) k)))))))

((CPS (lambda (x) ?e))

(lambda (k) (k (lambda (x) (CPS ?e)))))

((CPS call/cc)

(lambda (k0)

(k0 (lambda (p) (lambda (k)

((p (lambda (a)

(lambda (k1) (k a)))) k))))))

((CPS p)

(lambda (k) (k pv)))

((CPS ?x)

(lambda (k) (k ?x)))))

4

We have mentioned CPS in the formulation of the the-
orem, so the best way to prove it would be via the
CPS transform. CPS is a source-to-source transla-
tion. Therefore, it behooves us to use Scheme’s syntax-
transformers.

This macro is straightforward: it is the standard CPS
transformation written in Latin rather than in Greek.

Here we see the CPS for application, abstraction, call/cc, our
skolem constant for a value, and just other value.

4-1

Need a more perspicuous CPS

> (expand ’(CPS (lambda (x) (x x))))

(lambda (#:k)

(#:k (lambda (#:x)

(lambda (#:k)

((lambda (#:k) (#:k #:x))

(lambda (#:f)

((lambda (#:k) (#:k #:x))

(lambda (#:a) ((#:f #:a) #:k)))))))))

5

We will be using Petite Chez Scheme, which conve-
niently provides a form (expand e) to macro-expand an
expression e. We see a problem however: the expan-
sion isn’t entirely easy to look at: it has a bit too many
lambdas. We know how to deal with that: we just have
to reduce them. We need a beta normalizer. So, we
take a detour on lambda-calculators.

5-1

Hilsdale-Friedman λ-calculator

(define-syntax beta1

(syntax-rules (lambda)

((beta1 (lambda (Formal) Body) SK FK)

(beta1 Body (beta1-lambda-k SK Formal) FK))

((beta1 ((lambda (Formal) Body) Arg) SK FK)

(lc-subst Arg Formal Body SK))

((beta1 (Op Arg) SK FK)

(beta1 Op (beta1-op-k SK Arg)

(beta1 Arg (beta1-arg-k SK Op) FK)))

((beta1 X SK FK) (apply-syn-cont FK))))

(define-syntax beta*

(syntax-rules ()

((beta* Exp K)

(beta1 Exp (beta*-k K)

(apply-syn-cont K Exp)))))

(define-syntax beta*-k

(syntax-rules ()

((beta*-k K NewExp) (beta* NewExp K))))

6

We are looking for a beta-normalizer as a source-to-
source transformer – that is, again as a Scheme macro.
At the Scheme workshop 2000 in Montreal Dan Fried-
man and Erik Hilsdale presented a paper on a systematic
writing of hygienic Scheme macros. The key turns out
to be CPS. After that paper, and an incidental discovery
of macro-lambda, a lot of CPS macros have been writ-
ten. A lot here applies both to the number of macros
of this sort as well to each macro of that sort.

One of the examples in their paper was a normal order
beta-normalizer. Here’s a short excerpt. The code for
macros such as beta1-lambda-k and lc-subst occupies a
two-column page in the paper.

As you can see, the normal-order normalizer attempts
to reduce a term – and if successful, reduces the result,
etc. This algorithm can be expressed by a phrase ‘cook
until done’. I should say that this method did not appeal
to me, probably because I dislike cooking. So, I chose a
different algorithm – which is that of bottom-up parsing,
with shift and reset, I mean, reduce.

6-1

Direct-style λ-calculator

(define-syntax NORM
(syntax-rules (lambda)
((NORM t) (NORM t () ()))
((NORM (lambda (x) e) env ())
(let-syntax ((ren (syntax-rules ()

((ren ?x ?e ?env)
(lambda (x) (NORM ?e ((?x () x) . ?env) ()))))))

(ren x e env)))
((NORM (lambda (x) b) env ((enve e) . stack))

(NORM b ((x enve e) . env) stack))
((NORM (e1 e2) env stack)

(NORM e1 env ((env e2) . stack)))
((NORM x () ()) x)
((NORM x () ((enve e) ...))

(x (NORM e enve ()) ...))
((NORM x env stack)

(let-syntax
((find

(syntax-rules (x)
((find ?x ((x ?envs ?es) .) ?stack)
(NORM ?es ?envs ?stack))
((find ?x (. ?env) ?stack)
(NORM ?x ?env ?stack)))))

(find x env stack)))
))

7

This calculator is written in a direct style. There are
no success and failure continuations as we saw on previ-
ous slide. It is also a single, stand-alone macro. It does
no alpha-renaming directly and no substitutions directly.
Everything is integrated with normalization, and every-
thing is delayed until the latest possible moment. As
you can see, the only recursion here is via NORM itself.
The auxiliary macros are not directly recursive and exit
back to NORM.

This is my second attempt. The first had a substitution se-
mantics: when processing a redex, the normalizer will traverse
and rebuild the term being substituted into. However, that re-
building was shallow: we stop at the first application. Rather
than traverse both sub-terms of an application, we make a
promise to traverse further later. We make such a promise by
building beta-redexes on both sub-terms. Indeed, a beta-redex
is a reification of a substitution. Alas, that first normalizer was
not lazy enough – it would build large intermediate terms and
could quickly run out of memory. Also, the first attempt was
bigger: the substitution part was as big as this whole normal-
izer.

7-1

Sample normalization

(λx.x x)(λx.x) env0 stack0

let s1 = (λx.x)e0 : s0 in λx.x x e0 s1

let e1 = x.(λx.x)e0 : e0 in xx e1 s0

let s2 = xe1 : s0 in x e1 s2

λx.x e0 s2

let e2 = x.xe1 : e0 in x e2 s0

x e1 s0

λx.x e0 s0

if e0 and s0 are empty:

λx9. let e3 = x.x9() in x e3 ()

8

To see how that macro works, let’s normalize this
sample term given the initial environment env0 and
the term stack stack0. We will abbreviate those just
to e0 and s0. As I said, the algorithm is almost
the same as that of bottom-up parsing. The term
stack stores terms to be applied to the current term.

At every time, we maintain the following invariant:

head (term ...
︸ ︷︷ ︸

stack

) ≡ head term ...

In addition to the stack, we have the environment. Our
normalizer implements the calculus of explicit substitu-
tions, and the environment is the record of those. It
is actually a stack, to handle shadowing of bound vari-
ables.

So, our initial term is an application. We shift its argu-
ment onto the term stack – along with the environment
in effect, e0. The current term now is an abstraction,
the term stack is not empty – and so we have a redex.
We remove the top of the term stack – along with its
saved environment – and push it into the environment
stack, associated with the bound variable x. And that
is all we do for a redex. No extra term traversals, no
alpha-renaming. The current term now is abstraction’s
body, and we process it as usual. We will deal with
the substitution only when we are pressed. The current
term is now an application, of x to x, and we handle
it as before: shift the argument into the term stack,

8-1

along with the current environment e1. The current
term now is a bare variable – and now we are pressed
for the substitution. We reduce that variable against
the environment stack: we shift the associated term,
along with its environment, out of that stack into the
current position. And continue. The re-parsing is the
only difference between our normalizer and a bottom-up
parser.

Now, we get the redex again: we reduce from the term
stack and shift onto the environment stack. The cur-
rent term becomes just x, we reduce from the environ-
ment and get our answer. As you can see we never
traverse a term just for the sake of substitutions. Sub-
stitution becomes a part of overall normalization. We
don’t do an explicit alpha-conversion either. Only when
we encounter a lambda on an empty stack – we dive
underneath and have to change the bound variable into
something else. Again, we do not rush into the renam-
ing: we merely create a record on the environment to
do the replacement when we are pressed into it, that is,
when we come across the bound variable.

Direct-style λ-calculator

(define-syntax NORM
(syntax-rules (lambda)
((NORM t) (NORM t () ()))
((NORM (lambda (x) e) env ())
(let-syntax ((ren (syntax-rules ()

((ren ?x ?e ?env)
(lambda (x) (NORM ?e ((?x () x) . ?env) ()))))))

(ren x e env)))
((NORM (lambda (x) b) env ((enve e) . stack))

(NORM b ((x enve e) . env) stack))
((NORM (e1 e2) env stack)

(NORM e1 env ((env e2) . stack)))
((NORM x () ()) x)
((NORM x () ((enve e) ...))

(x (NORM e enve ()) ...))
((NORM x env stack)

(let-syntax
((find

(syntax-rules (x)
((find ?x ((x ?envs ?es) .) ?stack)
(NORM ?es ?envs ?stack))
((find ?x (. ?env) ?stack)
(NORM ?x ?env ?stack)))))

(find x env stack)))
))

9

Here’s our macro again. This short incantation is to
get the macro-expander to give us a fresh name with
the same stem. When we view the result of the macro-
expansion – and we will – it’s nice to see variable names
close to the ones that existed in the original term.

So, with two stacks, we have two shifts and two reduc-
tions. Applications shift onto the term stack. Redexes
reduce the term stack and shift onto the environment
stack. Variables reduce from the env stack.

Again, this single, stand-alone macro is all there is to
lambda-calculus, really. As we all know, it is indeed very
simple on the surface.

9-1

CPS with normalization

> (expand ’(CPS (lambda (x) (x x))))

(lambda (#:k)

(#:k (lambda (#:x)

(lambda (#:k)

((lambda (#:k) (#:k #:x))

(lambda (#:f)

((lambda (#:k) (#:k #:x))

(lambda (#:a) ((#:f #:a) #:k)))))))))

> (expand ‘(NORM

,(expand ’(CPS (lambda (x) (x x))))))

(lambda (#:k)

(#:k (lambda (#:x)

(lambda (#:k) (#:x #:x #:k)))))

10

Now that we’ve got the normalizer, we can apply it to
the result of the CPS transform. Here’s one way of
doing it. As you can see, the result is indeed more
comprehensible.

However, this nested use of expand isn’t nice, let alone
cumbersome to type. As I said, I am lazy. We can inte-
grate NORM into the CPS – performing a deforestation.

10-1

CPS with normalization, truly

(define-syntax CPS
(syntax-rules (lambda call/cc p)
((CPS (?e1 ?e2) . args)

(NORM (lambda (k) ((CPS ?e1)
(lambda (f) ((CPS ?e2) (lambda (a)

((f a) k)))))) . args))
((CPS (lambda (x) ?e) . args)

(NORM (lambda (k)
(k (lambda (x) (CPS ?e)))) . args))

((CPS call/cc . args)
(NORM (lambda (k0)
(k0 (lambda (p) (lambda (k)

((p (lambda (a)
(lambda (k1) (k a)))) k)))))

. args))
((CPS p . args)

(NORM (lambda (k) (k pv)) . args))
((CPS ?x . args)

(NORM (lambda (k) (k ?x)) . args))))

(define-syntax NORM
(syntax-rules (lambda CPS)
((NORM (CPS e) env stack) (CPS e env stack))
...

11

That is quite straightforward. We add to the CPS trans-
former the opaque normalization state – args – to carry
around. We make the transformer do the normaliza-
tion after the transformation. We also add one more
rule to the normalizer, to handle delayed CPS. CPS and
normalization are truly intertwined.

Incidentally, we could easily mark which lambda’s
come from the source expression and which
come from the CPS itself – so the normal-
izer will handle the administrative lambdas only.

OTH, for the theorem we have to make a few further reduc-
tions. So, here we make no distinction between administrative
and serious lambdas and try to reduce what we can. We use
this as an assistant anyway: if it takes too long, there is always
Control-C.

11-1

Proving the theorem 1/3

Lemma 1. CPS transform of (λx.x x)p is

λk.pv pv k

Proof:

> (expand ’(CPS ((lambda (x) (x x)) p)))

(lambda (#:k) (pv pv #:k))

Lemma 2. CPS of callcc callcc is

λk.k (λa.λ k1 . k a)

Proof:

> (expand ’(CPS (call/cc call/cc)))

(lambda (#:k)

(#:k (lambda (#:a) (lambda (#:k1) (#:k #:a)))))

12

We are all set for proving our theorem. We start with
the following lemmas.

12-1

Proving the theorem 2/3

Lemma 3. CPS transform of callcc (callcc callcc)

is the same as that of callcc callcc

Proof:

> (expand ’(CPS (call/cc (call/cc call/cc))))

(lambda (#:k)

(#:k (lambda (#:a) (lambda (#:k1) (#:k #:a)))))

Lemma 4. CPS transform of callcc (callcc id) is

the same as that of callcc callcc

Proof:

> (expand ’(CPS (call/cc

(call/cc (lambda (u) u)))))

(lambda (#:k)

(#:k (lambda (#:a) (lambda (#:k1) (#:k #:a)))))

13

Proving the theorem 3/3

Lemma 5. CPS transform of (callcc callcc)p is

the same as that of (λx.x x)p

Proof:

> (expand ’(CPS ((call/cc call/cc) p)))

(lambda (#:k) (pv pv #:k))

14

The call/cc theorem

Theorem 1. Expressions

• ((call/cc ... (call/cc call/cc)) p)

• ((call/cc ... (call/cc (call/cc id)))

p)

• ((lambda (x) (x x)) p)

where p is a value,

are observationally equivalent in CBV.

Follows by Plotkin simulation theorem

Φ(evalvM) = evalv((ΨM)(λx.x))

15

As our lemmas, and their trivial inductive extension,
showed, all these three expressions have identical CPS
transforms. So, our theorem follows from Plotkin sim-
ulation theorem.

15-1

Catchy Conclusions

• self-application is the fixpoint of call/cc

• macro-expander is a proof assistant

• direct normal syntax-rule lambda-

calculator

pobox.com/~oleg/ftp/Scheme/callcc-fixpoint.txt

16

These catchy phrases conclude the talk.

But no computer science paper is complete without
working out a factorial or Fibonacci. Let us indeed con-
sider a factorial. As we saw, we can get self-application
via call/cc. And self-application is at the heart of the
Y combinator. So we get the tantalizing opportunity to
write the factorial function like this.

16-1

Factorial via call/cc

(begin

(define fact

((lambda (f)

((lambda (u) (u (lambda (x)

(lambda (n) ((f (u x)) n)))))

(call/cc (call/cc (call/cc

(call/cc (call/cc (lambda (x) x))))))))

(lambda (f) (lambda (n)

(if (<= n 0) 1 (* n (f (- n 1))))))))

(display (map fact ’(5 6 7)))

(newline))

17

Note, that there is no overt recursion nor iteration nor
self-application.

Note the top-level BEGIN. Bonus question: why it is
there? Does it matter?

It doesn’t matter for a compiler, but does if the code is
‘load’ed or typed in in an interpreter. Separate top-level state-
ments in most interpreters (REPL) – tried: Bigloo, Scheme48,
Petite Chez, Gambit, Gauche – have an implicit prompt
around them – which cuts the continuation in call/cc. NB: the
cupto paper strongly argues that continuations should have a
limited extent – act within one ‘prompt’. Here, the technique
is based on the fact that the continuations should be truly
unlimited!

17-1

The case of delimited continuations

(define (H a b)
(lambda (on-h) (lambda (on-hv)

((on-h a) b))))

(define (HV v)
(lambda (on-h) (lambda (on-hv)

(on-hv v))))

(define-syntax greset
(syntax-rules ()
((greset hr e) (hr (reset (HV e))))))

(define-syntax gshift
(syntax-rules ()
((gshift hs f e)

(shift f* (H (lambda (x) (hs (f* x)))
(lambda (f) e))))))

18

As we know, shift and reset macro-express everything,
from prompt and control all the way to shift0 and even
call/cc if we consider its prompt to be in the infinite
future. That macro-expression is a simple one: this pair,
depending on the choice of simple functions hr and hs,
gives us everything from shift and reset to prompt and
control to less and less limited continuations.

18-1

The case of delimited continuations

(define (hr-stop v)
((v
; on-h
(lambda (f) (lambda (x)

(greset hr-stop (x f)))))
; on-hv
(lambda (v) v)))

(define hs-stop hr-stop)

(define (hr-prop v)
((v (lambda (f) (lambda (x)

(x f))))
(lambda (v) v)))

(define (hs-prop v)
((v
(lambda (f)

(lambda (x)
(shift g
(H (lambda (y) (hs-prop (g (f y)))) x)))))

(lambda (v) v)))

(define-syntax prompt
(syntax-rules ()
((prompt e) (greset hr-stop e))))

(define-syntax control
(syntax-rules ()
((control f e) (gshift hs-prop f e))))

19

There are actually two choices for each
of the functions hr and hs. Here’s the
sample expression for prompt and control.

Other delimited continuation operators – from shift/reset to
prompt0/control0 and cupto – are obtained by varying hr and
hs functions here from these two choices.

As you can see, shift and reset indeed macro-express
prompt and control. That’s all there is to delimited
continuations.

Given these simple definitions, we can express the fac-
torial in the following particular simple form, and try it
out.

19-1

Shift control to factorial

(prompt
(let ()
(define (call/cc p)
(shift* (lambda (f)

(f (p (lambda (x)
(shift* (lambda (g) (f x)))))))))

(let ()
(define fact

((lambda (u)
(u (lambda (x)

(lambda (n)
(if (<= n 0) 1

(* n ((u x) (- n 1))))))))

(call/cc (call/cc (call/cc
(call/cc (call/cc (shift* control*))))))))

(display (map fact ’(5 6 7)))
(newline))))

20

Here shift* and control* are procedural versions of shift
and control, just like call/cc is. I could have swapped
shift and control here.

(define (control* p) (control f (p f)))

Justification for (shift* control*) etc. – straight from the
operational – context reduction – semantics of delimited con-
trol. First of all, (shift* control*) is (shift f (control* f))

is (shift f (control g (f g))). Let X,Y in the following be ei-
ther shift or control, and reset? be either reset for the shift
alternative, or nothing for the control alternative.

(reset (C [(X f (Y g (f g)))]))
==> (reset (Y g (f g)) with f x = (reset? C[x]))
==> (reset (f g) with f x = (reset? C[x]) and

g x = (reset? [x]))
==> (reset (f g) with f x = (reset? C[x]) and g = id)
==> (reset (reset? C[id]))
==> (reset C[id])

as if (X f (Y g (f g))) were just id.
It is also easy to see that if X is shift, then Y can even be
shift0 or control0 – the end result is the same.

20-1

