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Abstract. Delimited continuations are the meanings of delimited evalu-
ation contexts in programming languages. We show they offer a uniform
view of many scenarios that arise in systems programming, such as a re-
quest for a system service, an event handler for input/output, a snapshot
of a process, a file system being read and updated, and a Web page. Ex-
plicitly recognizing these uses of delimited continuations helps us design
a system of concurrent, isolated transactions where desirable features
such as snapshots, undo, copy-on-write, reconciliation, and interposition
fall out by default. It also lets us take advantage of efficient implemen-
tation techniques from programming-language research. The Zipper File
System prototypes these ideas.

1 Introduction

One notion of context that pervades programming-language research is that of
evaluation contexts. If one part of a program is currently running (that is, being
evaluated), then the rest of the program is expecting the result from that part,
typically waiting for it. This rest of the program is the evaluation context of the
running part. For example, in the program “1 + 2 × 3”, the evaluation context
of the multiplication “2× 3” is the rest of the program “1 + ”.

The meaning of an evaluation context is a function that maps a result value
to an answer. For example, the meaning of the evaluation context “1 + ” is the
increment function, so it maps the result value 6 to the answer 7. Similarly, in
a program that opens a file and summarizes its contents, the meaning of the
evaluation context of the opening of the file is a function that maps a handle for
a file to a summary of its contents. This function is called a continuation.

A continuation is delimited when it produces an intermediate answer rather
than the final outcome of the entire computation. For example, the increment
function is a delimited continuation when taken as the meaning of “1 + ” in
the program “print(1 + 2× 3)”. Similarly, we treat a function from file handles
to content summaries as a delimited continuation when we view the summa-
rization program as part of an operating system that reaches its final outcome
only when the computer shuts down months later. The delimiter (or prompt)
is the boundary between the producer of the intermediate answer (such as the
summarization program) and the rest of the system.

Many uses have been discovered for the concept of continuations [1]: in the se-
mantic theory of programming languages [2, 3], as a practical strategy for their
design and implementation [4, 5], and in natural-language semantics [6, 7]. In



operating-system research, continuations are poorly known and seldom used ex-
plicitly. In this paper, we cross the boundary between operating systems and
programming languages to argue by examples that continuations, especially de-
limited ones, pervade operating systems—if only implicitly. We contend that
systems programmers should recognize the applications of delimited continua-
tions, so as to design systems with sensible defaults and implement them using
efficient techniques from the literature.

One example of delimited continuations appears in the interaction between
an operating system and a user program running under its management. From
time to time, the user program may request a service from the kernel of the
operating system, for example to read a file. When the kernel receives a request
for a system service, it first saves the state, or execution context, of the user
process. After processing the request, the kernel resumes the process, passing it
the reply. If the request takes some time to process, such as when data must be
fetched from a hard drive, the operating system may let some other user process
run in the meantime and only resume the original user process when the hard
drive is done. We can think of the execution context as a function that maps the
kernel’s reply to the outcome of the user process. This function is a delimited
continuation; the delimiter in this case is the boundary between the user process
and the rest of the system.

Saving the execution context for a process to be resumed later is called cap-
turing the continuation of the process [8]. Usually a captured continuation is
invoked exactly once, but sometimes it is invoked multiple times. For example, a
typical operating system offers services for a process to duplicate (“fork”) itself
into two parallel processes or to save a snapshot of itself to be restored in the
future. Other times the captured continuation is never invoked, such as when a
process invokes the “exit” service to destruct itself. Two or more continuations
that invoke each other once each are called coroutines. For example, in the PDP-
7 Unix operating system, the shell and other user processes transfer control to
each other as coroutines (using the “exec” system service [9]).

The concept of an operating-system kernel has found its way into the pro-
gramming-language literature, for instance to describe in a modular and rigorous
way what side effects such as state, exceptions, input/output, and backtracking
mean [10–12]. A recurring idea in that work is that of a central authority [13],
mediating interactions between a program, which performs computations, and
the external world, which provides resources such as files. A computation yields
either a value or a side effect. A side effect is a request to the central authority
to perform an action (such as reading a file), paired with a continuation function
that accepts the result of the action and resumes the computation.

In practical systems programming, continuations are best known for writing
concurrent programs [8, 14–20], distributed programs [21–23], and Web programs
[24–29]. In these and many other applications, the programmer codes the han-
dling of events [30] in continuation-passing style, whether or not the programmer
is aware of the fact. With awareness, continuations have guided the design of
a network protocol that does not require the server to track the state of each



connection, and is thus more scalable, easier to migrate, and more resistant to
denial-of-service attacks [31].

This paper focuses on a less-known use of continuations: file systems. We
stress transactional file systems, which treat each operation such as changing,
deleting, or renaming a file as a transaction, and where a transaction can be
undone (that is, rolled back). Our Zipper File System manages each connection
between it and its users as a delimited continuation, so it is natural and easy to
implement copy on write: each user appears to have exclusive use of a separate
file system, but the parts that are identical across users are actually stored only
once and shared until one user changes its “copy” to be different.

Section 2 gives two examples of delimited continuations in systems program-
ming in more detail. Section 3 describes our Zipper File System. Section 4 reviews
the benefits we reap of recognizing continuations explicitly.

2 Instances of continuations

We give two examples of delimited continuations: a user process requesting a
system service, and traversing a data structure. The examples seem unrelated,
yet use the same programming-language facility (notated CC below), thus simpli-
fying their implementation. We have built the Zipper File System as a working
prototype of both examples. Our prototype and illustrative code below are writ-
ten in Haskell, a high-level general-purpose programming language, because it
is suitable for operating systems [32] and its notation is concise and close to
mathematical specification.

2.1 System calls

The first example is a user process that invokes a system service. As sketched
above, the process captures its current continuation and sends it to the kernel
along with the requested action. The code below defines a data structure Req r
that combines the continuation and the action.

data Req r = Exit
| Read (Char -> CC r (Req r))
| Write Char (() -> CC r (Req r))

The possible actions defined are Exit, Read, and Write. An Exit request means
to destruct the process: it contains no continuation because the process is done. A
Read request means to read a character: it contains a continuation that accepts
the Character read, yields as the answer another request (usually Exit), and
may issue more requests during the computation. The type of this continuation,
Char -> CC r (Req r), reflects the fact that the continuation may issue more
requests: CC r marks the type of a computation that may incur side effects, so
the type CC r (Req r) means a computation that yields Req r after possibly
incurring side effects. (The parameter r is a region label [33, 34] and does not
concern us here.) A Write request means to write a character: it contains the



Character to write, along with a continuation that accepts nothing; hence the
type () -> CC r (Req r).

Using these services, we can program a simple user process cat to copy the
input to the output.

service p req = shiftP p (\k -> return (req k))

cat p = do input <- service p Read
service p (Write input)
cat p

The function service initiates a system call : cat invokes service to request
reading and writing services from the kernel.

The variable p above is a control delimiter: it represents the boundary be-
tween the user process and the kernel, delimiting the continuation in a request
from the user process to the kernel. In the definition of service above, the
expression shiftP p (\k -> ...) means for the user process to capture the
delimited continuation up to the delimiter p and call it k. Because p delimits the
user process from the kernel, the delimited continuation k is precisely the exe-
cution context of the user process. The subexpression return (req k) means
for the user process to exit to the kernel with a new request data structure
containing the captured delimited continuation k.

We now turn from how a user process initiates a request to how the operating-
system kernel handles the request. The kernel handles system calls in a function
called interpret, which takes three arguments.

1. The record world represents the state of the whole operating system. It
includes, among other fields, the job queue, a collection of processes waiting
to run.

2. The process control block pcb describes various resources allocated to the
current process, such as network connections called sockets. Sockets consti-
tute the input and output channels of the process.

3. The request from the process, of type Req r, specifies how the process exited
along with whether and how it should be resumed.

The function interpret is invoked by the scheduler, another component of the
operating system. The scheduler passes an old world to interpret and receives
in return an updated world, then chooses the next process to run from those in
the updated job queue.

Let us examine how interpret implements Exit and Read actions. An Exit
request is handled by disposing of the process’ resources, such as by closing its
socket. The process itself never resumes, and the memory it uses can be reclaimed
right away, because no continuation in the system refers to the process anymore.
The process control block can be reclaimed as well.

interpret world pcb Exit = do liftIO (sClose (psocket pcb))
return world



Reading a character may take a long time, and other user processes should be
allowed to run in the meantime. Thus the kernel does not respond to a Read
request immediately. Rather, the interpret function creates a record of the
pending read on the socket and appends the record to the job queue. It then
returns the world with the updated job queue to the scheduler.

interpret world pcb (Read k) = return world
{jobQueue = jobQueue world ++ [JQBlockedOnRead pcb k]}

The kernel keeps track of the process waiting for a character only by storing the
process’ continuation in the record of pending read. When the kernel receives
data from a socket, it locates any associated read-pending request in the job
queue and resumes the blocked process by invoking the function resume below.

resume world (JQBlockedOnRead pcb k) received_character =
do req <- k received_character

interpret world pcb req

The function extracts the continuation k of the suspended process and passes
it the received_character, thus resuming the process. The process eventually
returns another request req, which is interpreted as above.

This example shows how a process that just yielded control (to the kernel)
is a continuation [14]. We have in fact implemented delimited continuations in
the Perl 5 programming language by representing them as server processes that
yield control until they receive a client connection. Although the mathematical
meaning of a delimited continuation is a function that maps request values from
a client to response answers from the server, the function is represented by data
structures [35] and so can be saved into a file or sent to remote hosts. To save
a captured continuation to be reused later is to take a snapshot of a process, or
to checkpoint it.

The control delimiter p in the code above delimits the kernel from a user
process. The same kind of delimiters can be used by a user process such as a
debugger to run a subcomputation in a sandbox and intercept requests from the
sandbox before forwarding them to the kernel. This interposition facility falls
out from our view of requests as containing delimited continuations.

2.2 Data traversal

The second, seemingly unrelated example of delimited continuations is the traver-
sal and update of a complex data structure. For simplicity, instead of a direc-
tory tree, we consider here a binary tree in which each node either contains two
branches or is a leaf node labeled by an integer.

data Tree = Leaf Int | Node Tree Tree

We define an operation to traverse the leaves of the tree, perhaps returning a
new, updated version for some of them.



traverse :: Monad m => (Int -> m (Maybe Int)) -> Tree -> m Tree
traverse visit l@(Leaf n) = do result <- visit n

return (maybe l Leaf result)
traverse visit (Node l r) = do l <- traverse visit l

r <- traverse visit r
return (Node l r)

The first argument to the traverse function, visit, is itself a function, of
type Int -> m (Maybe Int). It takes the integer label of the current leaf node
and returns either Nothing or a new label with which to update the node. For
example, the following code makes a tree like tree1 except all leaf labels less
than 2 are replaced with 5.

traverse (\n -> return (if n < 2 then Just 5 else Nothing)) tree1

The update is nondestructive: the old tree1 is intact and may be regarded
as a snapshot of the data before the update. If tree1 is not used further in the
computation, the system will reclaim the storage space it occupies. To use tree1
further, on the other hand, is to “undo” the update. The nondestructive update
takes little more memory than a destructive update would, because the new
tree shares any unmodified data with the old tree. That is, traverse performs
copy-on-write. (The code above actually only shares unmodified leaves among
traversals. A slight modification of the code, implemented in the Zipper File
System, lets us share unmodified branches as well.)

Another benefit of the nondestructive update performed by traverse is iso-
lation: any other computation using tree1 at the same time will be unaffected
by our update and may proceed concurrently. Two concurrent traversals that
wish to know of each other’s updates must exchange them, possibly through a
common arbiter—the operating-system kernel—using the same system-call in-
terface based on delimited continuations discussed in Section 2.1. The arbiter
may reconcile or reject the updates and report the result to the concurrent
traversals. The outcome does not depend on the order in which the updates are
performed—that is, we avoid race conditions—because nondestructive updates
do not modify the same original version of the data that they share. Nonde-
structive updates of the same sort are used in distributed revision control and
in robust distributed telecom software [36].

For reading and updating a file, file system, process tree, or database, an
interface like traverse is a more appropriate access primitive than the cursor -
based (or handle-based) interface more prevalent today, in that the traversal
interface eliminates the risk of forgetting to dispose of a cursor or trying to use
a cursor already disposed of [37]. The traversal interface is no less expressive:
when the cursor-based access is truly required, it can be automatically obtained
from the traversal interface using delimited continuations, as we now explain.

The zipper [38] data-type Z r is what is commonly called a database cursor
or file handle.

data Z r = Done Tree | Yet Int (Maybe Int -> CC r (Z r))



A zipper’s state is either Done or Yet. A Done zipper has finished traversing the
old tree and holds a new tree. A Yet zipper represents an unfinished traversal
and holds the current leaf label (Int) and a continuation to advance the traversal
(Maybe Int -> CC r (Z r)).

The zipper provides the following interface. The open function begins a
traversal on an initial tree. The curr function reads the current leaf label. The
next function advances the traversal, whereas write updates the current leaf
label then advances the traversal. The close function finishes the traversal and
returns the new tree.

open :: Tree -> CC r (Z r)
open tree = promptP (\p -> let visit n = shiftP p (return . Yet n)

in liftM Done (traverse visit tree))

curr :: Z r -> Int
curr (Yet n _) = n

next :: Z r -> CC r (Z r)
next (Yet _ k) = k Nothing

write :: Int -> Z r -> CC r (Z r)
write n (Yet _ k) = k (Just n)

close :: Z r -> CC r Tree
close (Done tree) = return tree
close z = next z >>= close

The sample program below uses these functions to add the first leaf label to
the second leaf label.

test2 = runCC (do z1 <- open tree1
let s1 = curr z1
z2 <- next z1
let s2 = curr z2
z3 <- write (s1+s2) z2
close z3)

This programming style is like using a database cursor or file handle, except the
functions next and write are nondestructive and return new zippers (z2 and
z3 above) to reflect the new state of the tree. Using the old zippers (z1 and
z2), we can recall any past state of the traversal, undoing the updates after that
point. If we do not use the old zippers, the system will reclaim the storage space
they occupy. As before, different zippers from the same traversal share data by
copy-on-write. To save a captured continuation to be reused later is to take a
snapshot of the data.

3 The Zipper File System

The Zipper File System is a prototype file server and operating system. It con-
sists of only about 1000 lines of Haskell code, about half of which implements de-
limited continuations and zippers. It provides multitasking, exception handling,



and transactional storage all using delimited continuations. More information,
including complete source code, is available online at http://okmij.org/ftp/
Computation/Continuations.html#zipper-fs

Storage in the Zipper File System is a data structure much like the Tree
above, except leaves contain file data and tree nodes have an arbitrary number
of branches, identified by string names that serve the same role as directory
and file names in a conventional file system. The system exports the traversal
and zipper operations described above as an interface for client access. A simple
kernel manages shell processes, each of which lets a user access this interface
over a network connection. Multiple users may connect at the same time and use
commands such as ls (list directory contents), cat (display directory contents),
cd (work in another directory), touch (create a file), mkdir (create a directory),
rm (delete), mv (move), cp (copy), and echo (write a literal string to a file).
Thanks to the copy-on-write semantics that arises naturally from the use of
delimited continuations, the cp (copy) command need only establish sharing
between two locations in the file system, not copy any actual file data. Unlike in
the Unix operating system, one can traverse sequentially to the next node from
any node.

The kernel uses delimited continuations to provide system calls and schedule
which user process to run next. The type system isolates the processes from each
other and prevents them from performing input/output or changing global state
except by issuing a request to the kernel. Thus any processor can potentially be
scheduled to run any process without worrying about the undesirable interactions
that often result when two processes access the same memory at the same time.
This protection is similar to that among Unix processes, except we enforce it
by programming-language types in software rather than a memory-management
unit in hardware.

For a user of the Zipper File System, what most sets it apart is the trans-
actional semantics of its storage. The user can undo mistakes such as deleting a
directory or truncating a file. Moreover, multiple users are completely isolated
from each other: each network connection appears to expose exclusive use of a
separate file system, as if every operation always occurs before or after every
other operation, never concurrently. Data unmodified by two clients are shared
across them. These features all come for free with the zipper.

As with database transactions, a client may announce its update by “commit-
ting” it. The commit request is handled by a central authority, which examines
the update and accepts or rejects it, with no risk of race conditions. Any transac-
tion system needs a conflict resolution mechanism such as versioning, patching,
or manual intervention. Our system resolves conflicts in the central authority
that maintains the global state, rather than in user processes, which cannot
change the global state directly. The conflict-resolution policies are thus easier
to implement.



4 Conclusion

We have described how the Zipper File System explicitly uses delimited contin-
uations for multitasking and storage. For storage, delimited continuations make
it natural and easy to provide a transactional semantics, complete isolation, and
sequential traversal. For multitasking, delimited continuations make it natural
and easy to schedule processes for execution, respond to input and output events,
and handle exceptions. In both applications, delimited continuations avail us of
the state of the art in implementation techniques, such as copy-on-write and
stack segmentation [39–41].

The recent surge of operating systems and file systems implemented in high-
level programming languages [32, 42, 43] find their roots in earlier systems such
as Multics, Inferno, and SPIN. Our work shows how delimited continuations
are particularly helpful, especially in conjunction with types that describe the
shape of data and effect of code in detail. We use such types to sandbox processes,
isolate transactions, prevent race conditions, improve scalability to multiple pro-
cessors, and obviate the user-kernel boundary in hardware.

We treat the file system, which is usually thought of as a persistent data
structure, as an ongoing traversal process that communicates with the outside
world as a coroutine. More generally, data as small as a single integer variable
can be profitably treated as a process with which to exchange messages [44,
45]. These alternating viewpoints between process and data prompt us to ask:
could the vision of persistent virtual memory pioneered by Multics be relevant
in today’s world of ubiquitous memory management units?

Any software component can interact with the rest of the world using delim-
ited continuations. When the continuations are isolated by restrictions on side
effects, the interaction naturally and easily supports snapshots, undo, and recon-
ciliation. Thus to use an operating system can and should be to navigate a virtual
file system containing the history and transcript of all potential interactions.
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