
1

Zipper-based File/OS1

An extra-program demo at the Haskell Workshop 2005

We present a file server/OS where threading and exceptions are
all realized via delimited continuations.

There are no unsafe operations, no GHC let alone Unix threads,
no concurrency problems. Our threads cannot even do IO and
cannot mutate any global state — and the type system sees to it.

1I am very grateful to the Program Committee of the Haskell Workshop
2005 and its chair, Daan Leijen, for the opportunity to present ZipperFS as an
extra talk. Many thanks to Chung-chieh Shan for discussions and invaluable
help with the presentation.

2

Getting the first impression

I Load ZFS.hs into GHCi

I Start up the system: main at the GHCi prompt
I From some terminal: telnet localhost 1503

I ls
I cat fl1
I cd d1
I ls
I ls d11
I ls d11/d111

That was an empty directory. This all looked like UnixFS.
However, there are no . and ..

I ls ../d2 – another empty dir
I cat ../d2/../fl2

Absolute paths work too.

3

Filesystem term

type FileName = String

type FileCont = String – File content
data Term = File FileCont | Folder (Map.Map FileName Term)

data NavigateDir =

Update Term | DownTo FileName | Up | Next

traverse :: Monad m => (Path → Term → m NavigateDir)

→ Term → m (Term, UpdateStatus)

The ‘file system’ we’ve just seen is a zipper over a recursive data type
based on Data.Map of this structure: Term. NavigateDir defines
movement from one subterm to another.
The user defines a traversal function of this signature. It is a mapM over
the term, in an arbitrary monad. It is not a fold — merely a map. It
pays to define the function that maximally preserves sharing: see
ZipperM.hs.

4

Generic Zipper

data DZipper m =

DZipper{

dz_path :: [FileName],

dz_term :: Term,

dz_k :: NavigateDir → CC PP m (DZipper m)

}

| DZipDone Term

Once we have defined traverse (see ZipperM.hs), we can make a
zipper. A zipper is an update cursor into an immutable data structure
— term. It is generic — it depends only on the interface of the
traversal function, as we shall see shortly. Unlike Huet’s Zipper, our
zipper is independent of the data structure.

5

Creating generic zipper

pz :: Typeable1 m => Prompt PP m (DZipper m)

pz = pp

dzip'term :: (Typeable1 m, Monad m) =>

Term → CC PP m (DZipper m)

dzip'term term = pushPrompt pz

(traverse tf term �= return . DZipDone . fst)

where

tf path term = shift0P pz

(\k → return $ DZipper (dir_path path) term k)

dir_path = foldr filterfn []

filterfn (PathName fname) acc = fname : acc

filterfn _ acc = acc

We create the zipper via the following generic function. The function
is quite short and fits on one slide.

6

Creating generic zipper (cont)

The function dzip'term relies on the delimited continuation operators
from the delimcc monad transformer library. Not surprisingly, because
zipper is the manifestation of a delimited continuation reified as a
DZipper record. The zipper maintains the path to the current location
in the term. Again, we do so generically, regardless of the term.

7

Built-in traversal

I cd /d2

I next

a few times. Watch for the changes in the “shell prompt”
I When in File, one can do ls: indeed, one can cd into a file.

cat is the same as ls: both list directories and files.
I a few more next

when the traversal is finished, we are stuck at the root

Unlike UnixFS, our file system has a built-in traversal facility:
from each node, we can get to the next. Furthermore, our
traversal can start from any arbitrary node in the tree.

8

Multi-threading

I From another terminal: telnet localhost 1503

I Enter at the command prompt: ls, cd d1, ls
I Enter ls in the first terminal window

We have what looks like multi-threading. However, the whole
server is a single Unix process, a single Unix thread and a single
GHC thread.

We do not use handles; rather, we read/write sockets directly
and rely on select.

Our “file server” is an OS, complete with the main osloop,
“interrupt” handler and and the syscall interface.

We use delimited continuations to implement our processes.

9

Transactional semantics

I From the first terminal
I cd /d2
I touch nf
I ls
I echo "new content" > ../d2/n2

Error-check does work...
I echo "new content" > ../d2/nf
I cat nf
I rm /
I rm ../d2 – can’t remove itself or its own parent
I rm ../d1
I cd ..
I ls

Indeed, d1 is gone.
I From the second terminal (the current directory was d1)

I ls
I ls /

Directory d1 still exists

10

Transactional semantics (cont)

I From the first terminal
I commit

I From the second terminal
I ls
I ls /

d1 still exists. If we open the third terminal, we find that d1
is gone

I refresh
I ls

And now d1 is gone
I rm /d2

we can remove whole directory trees. Oops...
I ls

it is gone indeed
I refresh

but we can easily undo that
I ls

we see that d2 is back

11

Transactional semantics (cont)

I Strongest, “repeatable read” isolation mode
I Undo
I Multiple undo and snapshots are possible

We get this all for free, without any extra programming,
courtesy of the zipper

12

Process isolation

run'process ::

(∀ m. (Typeable1 m, Monad m) => CCM m (OSReq m))

→ CCM IO (OSReq IO)

run'process body = pushPrompt pOS body

Here is the function to run our “process”. The process function, the
first argument, does not have the IO type.
The base monad type m is left polymorphic. Although a process runs
eventually in the IO monad, the process cannot know that and hence
cannot do any IO action. It must ask the “OS” by sending an OSReq.
That means, a process function cannot mutate the World or any global
state, and the type system checks that! Because processes cannot
interfere with each other and with the OS, there is no need for any
thread synchronization, locking, etc. We get the transactional
semantics for free.

13

Processes and OS requests

data OSReq m = OSRDone

| OSRRead (ReadK m)

| OSRWrite String (UnitK m)

| OSRTrace String (UnitK m) – so a process can syslog
| OSRCommit Term (UnitK m)

| OSRefresh (FSZipper m → CCM m (OSReq m))

type UnitK m = () → CCM m (OSReq m)

type ReadK m = String → CCM m (OSReq m)

svc req = shift0P pOS (return . req)

Here’s the type of syscalls: read, write, commit the changes to the
file system, refresh, write to the syslog.
The function svc is the “supervisor call”. A process invokes svc to
request a service from the “kernel”.

14

Conflict resolution

Since different processes manipulate their own (copy-on-write)
terms (i.e., file systems), when processes commit, there may
arise conflicts.

One has to implement some conflict resolution — be it
versioning, patching, asking for permission for update, etc. In
our system, these policies are implemented at the level of the
supervisor rather than at the level of a process. Because
processes are “pure”, always ask the supervisor for anything,
and the supervisor has the view of the global state, the
resolution policies become easier to implement.

15

Smart sharing

I quit on all terminals, kill main
I At the GHCi prompt: main' fs2

I From some terminal: telnet localhost 1503
I ls
I cd d1
I ls
I cd d1
I ls

fs2 = Folder

(Map.fromList [("d1",fs2), ("fl1", File "File1")])

Here is the ‘file system’ fs2. It has a cycle: whenever we descend into
d1, we get back into it. No surprises here: you can do that in Unix, if
you are root: hard directory link.

16

Smart sharing (cont)

I touch newfile

We are in the directory /d1/d1/

I cd /

I ls

No newfile here!
I cd d1

I ls

newfile is not here either
I cd d1

I ls

Now, it is here
I cd d1

I ls

I ls d1

I ls d1/d1

I ls d1/d1/d1/

17

Smart sharing (cont)

Initially, our file system
was like that

d1

fl1

However, it ap-
peared like this d1

fl1

d1

fl1

d1

fl1

d1

fl1

. . .

After we
created
/d1/d1/newfile,
it became:

d1

fl1

d1

fl1

d1

fl1

newfile

d1

fl1

. . .

When we updated the directory /d1/d1, the zipper automatically
broke the cycle and introduced three real directories. We get the real
copy-on-write. Try to get this with a Unix file system!

18

Conclusions

Zipper-based file system over any term
I Transactional semantics
I Strongest (repeatable read) isolation mode
I Built-in traversal
I Smart sharing
I Threading and exceptions via delimited continuations
I Static guarantee of processes’ non-interference

Future work
I FUSE or NFS or 9P server
I Semantically richer terms: extended attributes, . . .
I cd into a λ-term in bash

Delimited continuations do the right thing for free

