
Code Generation and Hybrid Logic

Shunsuke Yamasaki and Oleg Kiselyov

Tohoku University, Japan
oleg@okmij.org

Abstract. Although code generation (staged) calculi are developed to
serve as models of program generation, they also turned out to have deep
connections to various systems of modal logic.
A recent addition to the family of staged calculi is <NJ>, designed to
model program generators that may use mutable cells to store and re-
trieve fragments of the generated code. Even though <NJ> permits stor-
ing fragments with not yet bound variables, <NJ>’s type system, modeled
after region calculi, nevertheless ensures that the generated code is well-
typed and well-scoped.
This paper proposes a logical interpretation of <NJ>. First, we distill the
calculus to a simpler <NJ>. We then introduce an intuitionistic hybrid
logic NJ γ , describe its Kripke semantics, specify the natural deduction
proof system and prove its soundness. We then relate the type system of
<NJ> to NJ γ .

1 Introduction

This work originates from the study of program generation, specifically, staging:
programming language systems with facilities to generate code for later use. The
long history of code generation (see [11] for an overview) taught the importance
of static correctness guarantees about the generated code. At the very least, we
ought to ascertain that the generated code be (i) well-formed; (ii) well-typed;
and (iii) well-scoped. Well-scopedness is rather subtle [6, 10]; in the first approx-
imation one may think of it as the absence of unbound variables in the generated
(or, ‘future-stage’) code. The three requirements together ensure that the gen-
erated code shall compile without errors. The user would hence be spared from
debugging or even looking at that code (which is often obscure to the point of
unreadable).

With such guarantees in mind, there have been developed a number of cal-
culi, starting from λ� [5] and λ◦ [4] (the latter underlying the Typed Template
Haskell, among others) to λα [12] (influencing MetaOCaml) and their many suc-
cessors. All these calculi stress ensuring the three guarantees by construction:
not only the complete generated code should be correct (in the sense of the three
criteria), but also the fragments still under construction. The insistence on the
static correctness by construction is not a luxury: [9] reports from the real-life
experience with a large-scale code generation system that detecting unbound
variables only when compiling the complete generated code is too late. It proved

truly time consuming to determine what part of a large generator has lead to
one variable out of several thousands to be used before bound.

Although stage calculi have been developed from pragmatic motivations of
code generation, they turn out to have deep logical connections: to the intuition-
istic modal logic S4 (for λ�), to a linear-time temporal logic and lax modality
(λ◦) to the contextual modal type theory [8]. We report on logical connections
of the recently introduced staged calculus <NJ> [7] to a variant of intuitionistic
hybrid logic.

The calculus <NJ> stands out in allowing effects during code generation,
specifically, storing code fragments in mutable cells. Code-generation effects are
indispensable for let- and assertion-insertion, loop-invariant code motion and
loop interchange [6]. Storing potentially open code fragments in mutable cells
also brings in the danger of moving a part of code beyond the scope of its bind-
ings, resulting in a program with unbound or unexpectedly bound variables:
so-called ‘scope extrusion’. The calculus <NJ> statically prevents such problems.
As many other stage calculi, <NJ> has been pragmatically motivated. The ex-
perience with other stage calculi suggests that it may be worth looking at <NJ>
from a more theoretical point of view: Exactly which features of <NJ>’s type sys-
tem are responsible for the prevention of scope extrusion? Can they be untied
from the semantics of reference cells and understood in terms of some formal
logic system? The type system of <NJ> has rather complicated rules; one may
hope the logical point of view help clarify them.

As intimated already in [7] and fully explained in §2.2, the key feature of <NJ>
is a rather odd-looking typing rule (CAbs), which, in turn, relies on annotating
code types with the representation of binding environment. The annotation, by
a symbol called refined environment classifier thus points out the environment
in which the code type ‘makes sense’. Nominals of the hybrid tense logic (hybrid
logic in general) [2] immediately spring to mind.

Although the connection between <NJ> and hybrid logic is intuitively clear,
making it precise turns out not straightforward. Most systems of hybrid logic
are based on classical propositional logic. The rare exceptions [3] are intuition-
izing classical hybrid modal logic (taking direct product of Kripke intuitionistic
possible-world and hybrid modal logic semantics). For connection with <NJ> we
want a hybridized intuitionistic logic – which we develop in this paper and use
it to understand the type system of <NJ>.

Specifically, our contributions are:

– a subset <NJ> of the full <NJ> without the artifacts caused by the small-step
dynamic semantics of <NJ> and without reference cells, but possessing all
characteristics of <NJ> including modeling of scope extrusion;

– an intuitionistic hybrid logic NJ γ with the standard Kripke possible-world
semantics and the nominals that let logical formulas refer to a particular
possible world;

– a natural deduction system for NJ γ , with a proof of its soundness (and
hence consistency);

2

– an interpretation of <NJ> types as NJ γ formulas and a proof that the typing
rules of <NJ> are admissible. Thus <NJ> terms are proof witnesses of NJ γ
propositions expressed by their types.

The structure of the paper is as follows. First we remind of <NJ> and intro-
duce its subset <NJ>. §3 introduces NJ γ : its semantics §3.1, natural deduction
proof system §3.2 and the proof of its soundness. Next, §4 describes the interpre-
tation of <NJ>’s types as NJ γ formulas and proves the admissibility of <NJ>’s
typing rules. We review the related work in §5.

2 The calculus <NJ>

This section reminds of <NJ> by the way of introducing its subset <NJ>, with
only the features needed for our task of relating <NJ>’s type system with NJ γ .

<NJ>, Figure 1, is an extension of the simply-typed lambda-calculus with
constants and expression forms that create or combine program code (‘code
values’). The (generated) program code is often called ‘future-stage’ because it
is to be executed only in the future, when compiled and run. The code that can
be executed now is, hence, ‘present-stage’. Code values represent future-stage
expressions that can be combined into bigger expressions (but not executed!)
now. A future-stage expression of type t is represented as a code value of the type
〈t〉γ . Code value may contain free variables, which are described by the binding
environment γ (so-called ‘environment classifier’) as discussed later. Beside code
types, <NJ> has unspecified base types (for the sake of examples we assume they
include integers and booleans), function types t1→t2 and product types t1 ∗ t2.
(Sum types are elided for brevity; they are straightforward to add.) <NJ> was
designed to be a two-stage language (capable of generating code but not code
generators), therefore, in 〈t〉γ , t itself does not contain any code types.

Variables x,y,z,u,f,n,r. . .
Classifier γ
Base Types b
Simple Types s ::= b | s → s | s ∗ s
Types t ::= b | t → t | t ∗ t | 〈s〉γ
Expressions e ::= x | c0 | c1 e | c2 e e | λx. e | λx. e | e e

Fig. 1. Syntax of <NJ>

Expressions are the familiar variable references, lambda-abstractions and ap-
plications – and ‘constant expressions’, which are constants applied to the ap-
propriate number of arguments according to their arity. The constants ci with
their arities i are defined in Fig. 2. In particular, values of pair types are cre-
ated by the expression pair e1 e2. The underlined constants, whose result type is
code type, are code combinators. The shown types are schematic: t denotes any
suitable type and γ any suitable classifier. We silently add other constants and

3

code combinators as needed. Although the constants may have function types,
they are not expressions, unless applied to the right number of arguments.

Arity 0
1,2,3,. . . : int
true, false: bool

Arity 1
cint: int → 〈int〉γ
cbool: bool → 〈bool〉γ

Arity 2
pair: t1 → t2 → t1 ∗ t2
pair: 〈t1〉γ → 〈t2〉γ → 〈t1 ∗ t2〉γ

+: int → int → int
+: 〈int〉γ → 〈int〉γ → 〈int〉γ
@: 〈t1→t2〉γ → 〈t1〉γ → 〈t2〉γ

Fig. 2. The constants ci of <NJ> with their arities i

We describe the dynamic semantics of <NJ> only briefly, to give intuition for
code generation. The formal presentation is unnecessary since <NJ>, the subject
of study here, is the subset that deals with type-checking of expressions, not with
their reductions. Whereas other stage calculi use dedicated expression forms for
generating code (such as quotes in Lisp, brackets of λα), <NJ> uses code combi-
nators. For example, the present-stage expression cint 1 generates the code with
the literal 1; likewise, cbool generates a literal boolean. More complex expres-
sions are built by combining the already generated fragments. Whereas 1 + 2 is
a present-stage expression made of the constant + (written in infix) applied to
two arguments, which evaluates to 3, cint 1 + cint 2 evaluates to the code value
that represents the program adding two and three. No addition is performed
now. As another example, pair (cbool true) (cint 2 + cint 3) produces the code
pair true (2+3).

Functions are generated by the λx. e form (which is the only form that dis-
tinguishes <NJ> from the standard lambda-calculus): λx. x + (cint 1) produces
the code λy. y + 1, where y is a fresh name. First, a fresh name, say, y, for the
future-stage variable is generated and substituted for x; then the code for the
body is built; finally, the binder λy for the so-far free y is generated. Unlike the
ordinary λx, the body of λx is evaluated.

<NJ> is (intentionally) a mere shadow of <NJ>: the latter also has fixpoints,
lists, and, specifically, references. Nevertheless, <NJ> reproduces characteristic
features of <NJ>, including the prevention of scope extrusion, as we explain in
§2.2.

2.1 Type System

The typing judgement Γ ` e: t states that the expression e has the type t in the
typing environment Γ . The environment

Γ ::= [] | Γ , γ | Γ , (γ1�γ2) | Γ , x:t

is an ordered sequence associating types with free variables in an expression. Γ
also contains classifiers γ and classifier subtyping witnesses γ1�γ2 to be explained
shortly. We will always assume that Γ is well-formed: all free variables, classifiers

4

and subtyping witnesses are unique; any classifier that appears in Γ as part of a
subtyping witness or the type must have appeared as an element earlier (that is,
classifiers must be defined before use). We write Γ ,Γ ’ and for the concatenation
of two sequences such that the result must be well-formed. Intuitively, classifiers
are references to binding environments. The initial environment Γ contains only
γ0, representing the empty binding environment.

Const
Γ ` c: tc

x:t ∈ Γ
Var

Γ ` x: t

Γ ` e: 〈t〉γ1 Γ |= γ2�γ1
Sub

Γ ` e: 〈t〉γ2
Γ ` e1: t1→t2 Γ ` e2: t1

App
Γ ` e1 e2: t2

Γ , x:t1 ` e: t2
Abs

Γ ` λx.e: t1→t2

γ ∈ Γ γ1 6∈ Γ Γ , γ1, (γ1�γ), x:〈t1〉γ1 ` e: 〈t2〉γ1
CAbs

Γ ` λx.e: 〈t1→t2〉γ

Fig. 3. Type system

Thus to type-check λx.e, e should have the type annotated with a fresh
classifier γ1 in the context extended with x:〈t1〉γ1 and the subtyping witness that
lets e use the code values marked with the old γ. The new γ1 hence represents
the environment that is an extension of γ’s. The rule (Const) uses the types of
constants tc, given in Fig. 2. We abuse the notation and treat, for type-checking
purposes, constant expressions such as c2 e1 e2 as applications to c2, although
c2 is not an expression per se. The rule (Sub) relies on the partial order on
classifiers: Γ |= γ2�γ1 if either γ2�γ1 literally occurs in Γ as a witness, or can
be derived by reflexivity and transitivity.

As an example, the following is a typing derivation for the generator of the
t1 → t2 → t1 ∗ t2 function. The derivation illustrates the use of the Sub rule.
We have assumed Γ1 to be γ0,γ1,γ1�γ0, x1:〈t1〉γ1 ,γ2,γ2�γ1,x2:〈t2〉γ2 .

Γ1 ` pair: 〈t1〉γ2→〈t2〉γ2→〈t1∗t2〉γ2
Γ1 ` x1: 〈t1〉γ1 Γ1 |= γ1�γ2

Sub
Γ1 ` x1: 〈t2〉γ2 Γ1 ` x2: 〈t2〉γ2

App
Γ1 ` pair x1 x2: 〈t1∗t2〉γ2

CAbs
γ0,γ1,γ1�γ0,x:〈t1〉γ1 ` λx2. pair x1 x2: 〈t2 → t1∗t2〉γ1

CAbs
γ0 ` λx1. λx2. pair x1 x2: 〈t1 → t2 → t1∗t2〉γ0

2.2 Scope Extrusion

<NJ> is designed to model code generation with effects, in particular, mutable
cells. Storing generated code in mutable cells brings in the danger of scope ex-
trusion, or the ‘leaking’ of a future-stage variable beyond the scope of its binder.
To show the problem, we temporarily add to <NJ> the type of reference cells
t ref and the corresponding constants

5

ref : t → t ref ! : t ref → t := : t ref → t → t

(as we shall soon see, the scope extrusion problem can be understood without
any reference cells).

Consider the following code:

let r = ref (cint 3) in
let z = λx. r:= x in
!r

(where let x = e1 in e2 is syntax sugar for (λx. e2) e1). Recall, λx. r:= x is eval-
uated by first generating a unique name for a future-stage variable and substi-
tuting it for x. The later evaluated body stores that future-stage variable in an
outside reference cell, from which it is extracted at the end. The end result is a
program made of an unbound variable.

Let us examine what exactly makes <NJ> with reference cells (and, hence,
<NJ>) reject this code. (The explanation here is a significantly expanded version
of the explanation in [7, §3.1].) First, consider the safe version of the code

let r = ref (cint 3) in λx. pair !r x

which is accepted by the type checker. Here is the derivation (we write Γ for
γ0, r:〈int〉γ0 ref, γ1, γ1�γ0, x:〈t〉γ1):

Γ ` !r: 〈int〉γ0 Γ |= γ1�γ0
Sub

Γ ` !r: 〈int〉γ1 Γ ` x:〈int〉γ1

γ0, r:〈int〉γ0 ref, γ1, γ1�γ0, x:〈t〉γ1 ` pair !r x: 〈int∗t〉γ1

γ0 ` let r=ref (cint 3) in λx. pair !r x: 〈t→int∗t〉γ0

Recall, pair (see Fig.2) applies only to the code values annotated with the same
classifier. However, the reference cell r holds the code fragment annotated with
the classifier γ0 (because γ1 is not available outside the λx expression) but x is
annotated with γ1. Fortunately, we can apply (Sub) to the contents extracted
from r, taking advantage of the presence γ1�γ0 in Γ .

Now consider the scope extrusion code. We attempt the typing derivation as

stuck !

γ0, r:〈int〉γ0 ref, γ1, γ1�γ0, x:〈int〉γ1 ` r := x: 〈int〉γ1

γ0 ` let r=ref (cint 3) in λx. r := x: 〈int→int〉γ0

And here we are stuck: r has the type 〈int〉γ0 ref with the classifier γ0 but x:〈int〉γ1
is annotated with γ1. A reference cell may be updated only with values of the
single type. We cannot give r the type 〈int〉γ1 ref to start with, because γ1 is
not available outside the λx expression; we cannot use (Sub) to derive x:〈int〉γ0
because the needed γ0�γ1 does not hold (in fact, the opposite is true). Finally,
we cannot use subtyping to convert the type of r to 〈int〉γ1 ref, because the ref
type is non-variant.

Thus the reason the scope extrusion code is rejected by the type-checker is (i)
a fresh classifier γ1 cannot leak from its subderivation (akin to the eigenvariable

6

condition in natural deduction); and (ii) non-variance of reference cell types. The
(CAbs) rule was responsible for the former property, by introducing the fresh γ1
in the first place. We can model and understand the typing problem with the
scope extrusion code without any reference cells: after all, function types like
t→t are also non-variant.

First, we consider the following valid derivation

···
γ0, u:〈int〉γ0 , γ1, γ1�γ0, x:〈t〉γ1 ` pair u x: 〈int∗t〉γ1

γ0 ` let u=cint 1 in λx. pair u x: 〈t→int∗t〉γ0

Although u:〈int〉γ0 and x:〈t〉γ1 , with different classifiers, the expression pair u x
is well-typed because the (Sub) rule lets us derive u:〈int〉γ1 . However, a rather
similar

stuck !
App

γ0, f:〈t〉γ0→〈int∗t〉γ0 , γ1, γ1�γ0, x:〈t〉γ1 ` f x: 〈int∗t〉γ1

γ0 ` let f=λz. pair (cint 1) z in λx. f x: 〈t→int∗t〉γ0

is stuck: to apply (App), the types of x and of the f’s argument should have
the same classifiers, but they do not, and (Sub) cannot be used to make them
the same. The only other way to complete the derivation is to give f the type
〈t〉γ1 → 〈int∗t〉γ1 – which leaks the local γ1 to a wider scope.

Granted, if we are to run the program just rejected, no scope extrusion occurs.
By the same token, no ill result comes from executing 1 + if true then 2 else false,
which is nevertheless ill-typed in many type systems. <NJ> hence rejects pro-
grams which the closely related λ◦ would have accepted. However, the latter
cannot be safely extended with reference cells but the former can.

Once we have understood how the dynamic problem of scope extrusion is
statically prevented, we can dispense with reference cells in <NJ>, keeping it
small and normalizing. After all, the crucial rule (CAbs) does not involve them.
Our goal is to study that rule logically.

3 Intuitionistic Hybrid Logic NJ γ

Hybrid logic arose from the work of Arthur N. Prior on tense logic, to give
meaning to the sentences like “It is 1am on January 7, 2018”, which are true at
only one specific moment. He introduced ‘nominals’ – special kind of proposi-
tional letters; a nominal is true only at exactly one possible world, and, hence,
in effect ‘names’ that world. Nominals, therefore, let logical formulas refer to
possible worlds. This section develops an intuitionistic hybrid logic NJ γ , with
its Kripke semantics and natural deduction proof theory. Its connection with
<NJ> is described in §4 (and its relation with other hybrid and modal logics, in
§5).

NJ γ is a propositional logic, whose formulas are:

7

Formulas A,B ::= p | γ | A ∧ A | A → A | �A | ♦A | @γ A
Simple Formulas Formulas without nominals
Set of formulas Γ
where p is a propositional letter and γ is a nominal (a special kind of propositional
letters). For the sake of connection with <NJ> we do not include ⊥ and negation:
our NJ γ is hence minimal. We also omit disjunction – but this is for brevity
(for the same reason, <NJ> elides sums). Both are straightforward to add. NJ γ
also has so-called ‘satisfaction statements’ @γ A, which are meant to assert that
A is true in the world named by γ. For example, if worlds describe time instances
and γ is true in the world corresponding to 1am, January 7, 2018 and p is the
proposition “it is snowing”, then the formula @γ p represents the meaning of
the sentence “It is snowing at 1am on January 7, 2018”.

We write NOM(A) and NOM(Γ) for the set of nominals occurring in a formula
(resp. set of formulas): NOM(γ) is {γ}, NOM(@γ A) = NOM(A) ∪ {γ}, with
the other cases being homomorphisms. Simple formulas are formulas without
nominals as a component (but, possibly, with satisfaction statements).

3.1 Kripke semantics

We now define the Kripke possible-world semantics for NJ γ , which is the se-
mantics for intuitionistic logic with added nominals and satisfaction statements.

A model M is a tuple (W,≤,g,V) where

– W is a non-empty set whose elements, denoted v or w, are called worlds;
– ≤ is a partial order on W (i.e., reflexive, anti-symmetric and transitive rela-

tion)
– g, called assignment, is a surjective function from nominals to worlds: for

each nominal it tells the world in which it is true.
– V is a function on W such that for each w ∈ W gives a set of propositional

letters. V has to be monotone: if w ≤ v then V(w) ⊂ V(v).

A frame is (W,≤), i.e., model without valuations.
The truth of a formula A in a model M = (W,≤,g,V) at a world w ∈ W –

written as M,w |= A – is inductively defined as follows:

M,w |= p iff p ∈ V(w)
M,w |= γ iff g(γ) = w
M,w |= A ∧ B iff M,w |= A and M,w |= B
M,w |= A → B iff for all v such that w≤v, M,v |= A implies M,v |= B
M,w |= �A iff for all v such that w≤v, M,v |= A
M,w |= ♦A iff there exists v such that w≤v and M,v |= A
M,w |= @γ A iff M,g(γ) |= A
The relation |= straightforwardly extends to a set of formulas. As common,

we say A is valid in the model M, written as M |= A, iff it is valid at every
world w in the model. A formula A is valid, (written |= A) just in case it is valid
in every model. Finally, we write Γ |= A whenever M |= Γ implies M |= A for
all models M.

8

Our relation |= is rather standard for hybrid logics (see, for example, [1, 2]).
In particular, from the truth of M,g(γ) |= A follows the truth of M,w |= @γ A
for any world w whatsoever – which is the intended meaning of the satisfaction
operator, see [1, 2]. What is specific for our |= relation is the meaning we give
to A→B, motivated by the (CAbs) and (Sub) rules of <NJ>.

One can easily verify the following (we write @γ Γ for a set of formulas
obtained by attaching @γ to each formula in Γ):

Proposition 1. Γ |= A iff @γ Γ |= @γA for any γ 6∈ NOM(Γ) ∪ NOM(A).

Proposition 2 (Monotonicity of simple formula). For any simple formula
B, if M,w |= B and w ≤ v then M,v |= B.

3.2 Natural Deduction

Figure 4 presents the proof system for NJ γ , in natural deduction style, deriving
Γ ` A for a formula A and a set of its assumptions Γ .

A ∈ Γ
Assm

Γ ` A

Refl1
Γ ` @γ γ

Refl2
Γ ` @γ ♦ γ

Γ ` @γ A Γ ` @γ γ1
EqR

Γ ` @γ1 A

Γ , @γ A ` B Γ ` @γ γ1
EqL

Γ , @γ1 A ` B

Γ ` @γ ♦ γ1 Γ ` @γ1 ♦ γ2
Trans

Γ ` @γ ♦ γ2

Γ ` @γ A
@I

Γ ` @γ′ @γ A

Γ ` @γ′ @γ A
@E1

Γ ` @γ A

@γ′ Γ ` @γ′ A
@E2∗

Γ ` A

Γ ` @γ A Γ ` @γ B
∧I

Γ ` @γ (A ∧ B)

Γ ` @γ (A ∧ B)
∧E1

Γ ` @γ A

Γ ` @γ (A ∧ B)
∧E2

Γ ` @γ B

Γ , @γ ♦ γ′, @γ′ A ` @γ′ B
→I?

Γ ` @γ (A → B)

Γ ` @γ (A → B) Γ ` @γ A
→E

Γ ` @γ B

Γ ` @γ B
� I1†

Γ ` @γ � B

Γ , @γ ♦ γ′ ` @γ′ A
� I2∗

Γ ` @γ � A

Γ ` @γ ♦ γ′ Γ ` @γ � A
�E

Γ ` @γ′ A

∗ γ’ 6∈ NOM(Γ) ∪ NOM(A)

? γ’ 6∈ NOM(Γ) ∪ NOM(A) ∪ NOM(B) ∪ {γ}
† B is a simple formula

Fig. 4. Natural deduction rules

Most of the rules are standard (see [3]). Some rules, however, stand out, most
notably →I. The rule � I1 is essentially the necessitation rule of modal logic,
but it is asserted only for simple formulas (without nominals) (@γ γ, which is
true, clearly does not entail @γ �γ, which can be false). This rule expresses the

9

monotonicity, Thm. 2. Its side condition – B be a simple formula – makes the rule
‘non-orthodox’ (non-orthodox rules, with syntactic side conditions, frequently
occur in proof systems of hybrid logic [1]).

The rules Refl2 and Trans are ‘geometric’ in that they express the structure
of frames (the accessibility relation being reflexive and transitive).

The proof system lets us establish the following theorems

Theorem 1. 1. �A ` A
2. �A, �B ` �(A ∧ B)
3. �(A→B), �A ` �B
4. ` A → B → A ∧ B for simple formulas A and B

Theorem 1-1 is what is called the M axiom of modal logic, and Theorem 1-
3 is essentially the distribution rule (the defining rule of all normal logics, starting
from K). Theorem 1-4 is derived as follows, where Γ is @γ ♦γ1, @γ1 A, @γ1 ♦γ2, @γ2 B.

Assm
Γ ` @γ1 ♦ γ2

Assm
Γ ` @γ1 A

� I1
Γ ` @γ1 � A

�E
Γ ` @γ2 A

Assm
Γ ` @γ2 B

∧I
Γ ` @γ2 (A ∧ B)

→I
@γ ♦γ1, @γ1 A ` @γ1 (B → A ∧ B)

→I
` @γ (A → (B → A ∧ B))

The proof illustrates that even the →I rule is rather non-standard, we can still
prove the expected theorems involving implication.

The proof system is sound with respect to the semantics in §3.1 (which also
shows its consistency).

Theorem 2 (Soundness). If Γ ` A then Γ |= A

Proof. The proof is by induction on the derivation of Γ ` A. We show only a rep-
resentative case of →I. That is, given Γ ` @γ(A→B) show that Γ |= @γ(A→B).
The inductive hypothesis gives Γ , @γ ♦γ’, @γ′ A |= @γ′ B where γ’ is fresh. The
latter condition lets us generalize ∀ γ’. Γ , @γ ♦γ’, @γ′ A |= @γ′ B. Let M be a
model, w’ be its arbitrary world and g(γ) be w. Let v be an arbitrary world.
From the surjectivity of g, let γ’ be such that g(γ’) is v. The inductive hypothe-
sis, instantiated for w’, and thus chosen γ’ reads: M,w’ |= Γ , M,w’ |= @γ ♦γ’,
M,w’ |= @γ′ A implies M,w’ |= @γ′ B. From the definition of the satisfaction
statements, it can be re-written as M,w’ |= Γ , M,w |= ♦γ’, M,v |= A implies
M,v |= B. Furthermore, M,w |= ♦γ’ says that there exists the world w1 such
that w≤w1 andM,w1 |= γ’, which implies that w1 is v. Overall, we haveM,w’ |= Γ ,
w≤v,M,v |= A impliesM,v |= B for an arbitrary v. This gives usM,w |= A→B,
or M,w’ |= @γ (A→B).

We leave investigating the converse (the completeness) to the future work:
as we shall see soon, the proof system is ‘complete enough’ for our main purpose
of relating it to the type system of <NJ>.

10

4 <NJ> and NJ γ

This section introduces an interpretation of <NJ> types as NJ γ formulas, and
checks that the typing rules of <NJ> are all admissible in NJ γ . In short, we take
the environment classifiers to be nominals and regard code types 〈t〉γ of <NJ>

as satisfaction statements @γ t in NJ γ .
First we introduce a particular class of frames (see §3.1), to be called stage

frames:

– An isolated world wB , accessible only to itself: wB≤v implies that v is wB
itself;

– A world w0 such that w0≤v for any other world v except wB

In other words, the accessibility relation in stage frames is a partial order that
can be represented as a tree rooted at w0, plus the isolated point wB . Likewise,
we distinguish two particular nominals, γB and γ0, such that g(γB) = wB and
g(γ0) = w0 in any assignment g.

The proof rules in Figure 4 are amended with those in Fig. 5 which are sound

Γ ` @γB ♦ γ
Nom

Γ ` @γB γ

Fig. 5. Natural deduction rule for nominal

only for stage frames and represent the particular structure of stage frames.

4.1 <NJ>’s types and NJ γ ’s formulas

All types of <NJ> are interpreted as satisfaction statements in NJ γ : code types
〈t〉γ are interpreted as @γ t; all other types t are regarded as @γB t. Intuitively,
the isolated wB (and the corresponding nominal γB) represent the present-stage.
The other worlds/nominals denote future-stage code; in particular, w0 (and the
nominal γ0) marks the closed future-stage code and all the worlds represent open
code with the various number of free variables. The relation w ≤ v (where w is
not wB) means that the future-stage world v contains all the free variables of w
(and may add some). Thus the world accessibility relation corresponds to future-
stage binding environment inclusion. In proof terms, this is written as @γ ♦γ1:
the future-stage code classified by γ1 has all free variables of the code classified
by γ. It then follows that the <NJ>’s judgement Γ |= γ2�γ1 is to be interpreted
as Γ ` @γ1 ♦γ2.

4.2 Admissibility of <NJ>’s typing rules

We now consider that each typing rule of Fig. 3 is admissible in NJ γ .

11

ConstPair
Γ ` pair: @γB (A→B→A∧B)

ConstCPair
Γ ` pair: @γB (@γ A → @γ B → @γ A∧B)

ConstCApp
Γ ` @: @γB (@γ (A→B) → @γ A → @γ B)

x:A ∈ Γ
Var

Γ ` x: A
Γ ` e: @γ1 A Γ ` @γ1 ♦γ2

Sub
Γ ` e: @γ2 A

Γ ` e1: @γB (A→B) Γ ` e2: @γB A
App

Γ ` e1 e2: @γB B

Γ , x:@γB A ` e: @γB B
Abs

Γ ` λx.e: @γB (A→B)

γ1 6∈ NOM(Γ) Γ , @γ ♦γ1, x: @γ1 A ` e: @γ1 B
CAbs

Γ ` λx.e: @γ (A→B)

Fig. 6. The rules of type system, interpreted as logic

First, we re-write the typing rules according to the interpretation of types
we have just given (writing the types as A, for easier comparison with NJ γ ’s
proof rules): Fig.6. We have inserted the types of the main constants.

The rule (Var) is just (Assm) of NJ γ , and (App) is an instance of →E,
for the case of γ being γB . The rule (CAbs) is →I, whose side-conditions are
satisfied given that code types in <NJ> must be simple types and hence in the
corresponding @γ A, the formula A contains no nominals whatsoever. For (Sub),
we have the following derivation in terms of NJ γ , keeping in mind that all types
of <NJ> correspond to simple formulas:

Γ ` e: @γ1 A
� I1

Γ ` e: @γ1 �A Γ ` @γ1 ♦γ2
�E

Γ ` e: @γ2 A

For (Abs),

Γ , x:@γB A ` e: @γB B
weaken

Γ , @γB ♦γ′, x:@γB A ` e: @γB B

Assm
Γ , @γB ♦γ′, x:@γB A ` @γB ♦γ′

Nom
Γ , @γB ♦γ′, x:@γB A ` @γB γ′

EqL, EqR
Γ , @γB ♦γ′, x:@γ′ A ` e: @γ′ B

→I
Γ ` λx.e: @γB (A→B)

12

The admissibility for (ConstPair) is similar. We assumed
Γ1 to be Γ , @γB ♦γ1, @γ1 @γ A, @γ1 ♦γ2, @γ2 @γ B.

Assm
Γ1 ` @γ1 @γ A

@E1
Γ1 ` @γ A

Assm
Γ1 ` @γ2 @γ B

@E1
Γ1 ` @γ B

∧I
Γ1 ` @γ (A ∧ B)

@I
Γ1 ` @γ2 @γ (A ∧ B)

→I
Γ , @γB ♦γ1, @γ1 @γ A ` @γ1 (@γ B → @γ A∧B)

→I
Γ ` pair: @γB (@γ A → @γ B → @γ A∧B)

The admissibility of (CApp) is analogous.
Since all type checking rules are admissible, it follows that <NJ> terms rep-

resent proof terms of the NJ γ formulas expressed by their types.

5 Related Work

Hybrid logic has developed into a vast area, with many different variations, mod-
els, axiomatizations, and proof systems. The rather comprehensive overview can
be found in [1, 2]. Most of hybrid logic systems are based on classical proposi-
tional logic. The rare intuitionistic exceptions are described in [3]. However, the
latter system essentially takes the direct product of the hybrid modal semantics
(whose worlds interpret, say, time moments) and the Kripke semantics for intu-
itionistic logic, whose worlds are ‘knowledge states’. Correspondingly, Braüner
and de Paiva introduce two accessibility relations, for interpretating modal op-
erators and nominals, and for relating knowledge states. Our approach is differ-
ent: we hybridize standard intuitionistic logic, introducing nominals and satis-
faction statement. Our worlds are just knowledge-states, interpreted as future-
stage binding environments. (The price we pay is the non-orthodox rules, which
Braüner and de Paiva avoid.)

Connections of staging calculi with (non-hybrid) modal logic has been inves-
tigated in [4, 5, 13]. They all consider multistage languages and the accessibility
relation relating stages. In contrast, <NJ> is specifically two stage and accessi-
bility relation is between future-stage binding environments.

Following the Lisp tradition, many stage calculi have a special form to ‘quote’
the code being generated (variously called � in λ�, next in λ◦, bracket in MetaO-
Caml, etc.). Albeit quite convenient to program with, it brings the problem of
dealing with free variables within these quotes. As Davies and Pfenning thor-
oughly discuss in [5], substituting inside quotes is a rather delicate matter. Naive
approaches quickly break subject reduction. (Actually, the problem of substitut-
ing in modal context was discussed already by Quine, who declared such sub-
stitutions nonsensical.) The code combinator approach used in <NJ> (and <NJ>)
avoids this problem entirely, by not having quotes to start with.

13

Davies and Pfenning [4, 5] stress the importance of so-called ‘local sound-
ness’ and ‘local completeness’ when designing the inference rules. Naively, local
soundness does not hold for our →I and →E rules. It also does not hold for
Braüner and de Paiva’s (BoxI) and (BoxE) rules, and for many such rules that
introduce eigenvariables.

6 Conclusions

We have pared down the <NJ> calculus of code generation with mutable cells
to its bare essentials, distilling from it the calculus <NJ>. We have proposed a
variant of hybrid intuitionistic modal logic NJ γ , with the Kripke knowledge-
state–like semantics and proof system. Our NJ γ is essentially intuitionistic logic
with nominals and satisfaction statements borrowed from tense hybrid logic. We
then related <NJ> and NJ γ , by interpreting <NJ> types as logic formulas and
demonstrating the admissibility of the calculus typing rules in NJ γ . We have
thus advanced the logical understanding of <NJ>.

For future work, it is interesting to investigate the generalization of <NJ> to
multiple stages (at the very least, lifting the restriction that in 〈s〉γ , s must be a
simple type.)

14

Bibliography

[1] Carlos Areces and Balder ten Cate. Hybrid logics. In Patrick Blackburn,
Johan van Benthem, and Frank Wolter, editors, Handbook of Modal Logic,
pages 821–868. Elsevier Science Inc., New York, 2006.

[2] Torben Braüner. Hybrid logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, summer 2017 edition, 2017.

[3] Torben Braüner and Valeria de Paiva. Intuitionistic hybrid logic. Journal
of Applied Logic, 4:231–255, 2006.

[4] Rowan Davies. A temporal logic approach to binding-time analysis. In
LICS, pages 184–195, 1996.

[5] Rowan Davies and Frank Pfenning. A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, May 2001.

[6] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Combinators
for impure yet hygienic code generation. Science of Computer Programming,
112 (part 2):120–144, November 2015.

[7] Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. Refined environment
classifiers - type- and scope-safe code generation with mutable cells. In
Atsushi Igarashi, editor, APLAS, volume 10017 of LNCS, pages 271–291.
Springer-Verlag, 2016.

[8] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual
modal type theory. Transactions on Computational Logic, 9(3):23:1–49,
June 2008.

[9] Georg Ofenbeck, Tiark Rompf, and Markus Püschel. RandIR: differen-
tial testing for embedded compilers. In Aggelos Biboudis, Manohar Jon-
nalagedda, Sandro Stucki, and Vlad Ureche, editors, Proceedings of the 7th
ACM SIGPLAN Symposium on Scala, SCALA@SPLASH 2016, pages 21–
30. ACM, October 30 - November 4 2016.

[10] Nicolas Pouillard and François Pottier. A fresh look at programming with
names and binders. In ICFP, pages 217–228, New York, 2010. ACM Press.

[11] Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Institute of Science and Technology, November
1999.

[12] Walid Taha and Michael Florentin Nielsen. Environment classifiers. In
POPL, pages 26–37, 2003.

[13] Takeshi Tsukada and Atsushi Igarashi. A logical foundation for environment
classifiers. Logical Methods in Computer Science, 6(4), 2010.

