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Abstract. We present a technique for compiling lambda-calculus ex-
pressions into SKI combinators. Unlike the well-known bracket abstrac-
tion based on (syntactic) term re-writing, our algorithm relies on a spe-
cially chosen, compositional semantic model of generally open lambda
terms. The meaning of a closed lambda term is the corresponding SKI
combination. For simply-typed as well as unityped terms, the meaning
derivation mirrors the typing derivation. One may also view the algo-
rithm as an algebra, or a non-standard evaluator for lambda-terms (i.e.,
denotational semantics).
The algorithm is implemented as a tagless-final compiler for (uni)typed
lambda-calculus embedded as a DSL into OCaml. Its type preservation
is clear even to OCaml. The correctness of both the algorithm and of its
implementation becomes clear.
Our algorithm is easily amenable to optimizations. In particular, its out-
put and the running time can both be made linear in the size (i.e., the
number of all constructors) of the input De Bruijn-indexed term.

1 Introduction

Since Curry [2] definitely and constructively demonstrated that any lambda-
expression can be transformed into SKI-combinators, there seems to have been
no need to revisit this issue. And yet it has continued to attract attention: of
mathematicians, investigating connections of lambda-terms and graphs, and of
theoretical computer scientists, studying the complexity of this process [4].

In a surprising turn, the translation from lambda-terms to SKI combinators,
previously regarded as purely academic, proved very practical. David Turner
used the translation as the compilation technique for his functional language
SASL [12, 13], and later Miranda. The familiar presentation of the translation,
or compilation – called “the bracket abstraction” and originally due to Schoen-
finkel [8] – was made popular by Turner, who polished and optimized it, and
made it practical. The entire chapter of Peyton Jones’ book on implementing
functional languages [7, Chap. 16] is devoted to the SKI translation, which is
“appealing because it gives rise to an extremely simple reduction machine”. The
book mentions two physical machines designed around SKI reductions: Cam-
bridge SKIM machine [11] and Burroughs NORMA.

Above all, the bracket abstraction is a pearl. We can’t help to peek at its
shine right away, ahead of the formal presentation in the background §2. The
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Reductions Compilation Rules

I Ix  x λx. x 7→ I
K K y x  y λx. e 7→ Ke †
S Sfg x  fx(gx) λx. e1 e2 7→ S (λx. e1) (λx. e2)

Fig. 1. SKI reductions and compilation rules. †In the K compilation rule, e is a com-
binator or variable other than x.

translation turns a lambda-term to applications of the S, K, I combinators, whose
reductions are shown in the left column of Fig.1.

The translation is re-writing with three simple rules of the right column of
Fig.1. The I and K rules are the re-statements of the corresponding reductions;
the S rule becomes obvious if we notice that a term e with a possibly free variable
x is equal to (λx. e)x. Taking as the running example λx. λy. y x, we can only
use the S-rule, on the inner lambda-abstraction, obtaining λx. S (λy. y) (λy. x),
to which K and I rules apply, giving λx. (SI) (Kx). Using the S rule three more
times leads eventually to S(S(KS)(KI))(S(KK)I). The result is bigger than
the original term: we tackle the size explosion in §6.

We present another pearl of the translation from lambda-terms to SKI com-
binators and show off its facets. It comes from a very different oyster. Our trans-
lation is not based on (syntactic, in its essence) re-writing. Rather, we define
a semantic model of (generally open) lambda-terms in terms of combinators,
along with the way to compositionally compute the meaning of a term in that
semantics from the meanings of its immediate children. The meaning of a closed
lambda-term is designed to be the corresponding SKI term. Our translation
stands out in avoiding operations like checking variable equality or free occur-
rences. Whereas the bracket abstraction cannot do anything meaningful with
the mere x or x y subterms, ours can. As a source we use lambda-terms with
De Bruijn indices; it turns out the indices supply just enough information about
the environment to figure out the meaning of a single variable or a combination
of variables.

All in all, the semantic presentation of the SKI compilation avoids the ‘nomi-
nal trench’ of lambda-calculus; it is easier to see correct, easier to generalize and
optimize. The semantic pearl shines brighter.

The highlights

– §3 develops the semantic-based translation intuitively and formally. We start
with the simply-typed calculus to see the correspondence of type and mean-
ing derivations. Already the simplest polish naturally reveals optimizations.

– The semantic translation is straightforward to realize in tagless-final style:
§4. The OCaml implementation highlights the algebra of the translation,
naturally prompting further optimizations.

– §5 extends the calculus with integers, conditional and general recursion. The
translation becomes practical.

– §6 presents the linear space and time translation, for the general untyped
calculus (which applies to the typed calculus as well). It goes beyond the
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Schoenfinkel, Curry and Turner bracket abstraction and their further op-
timizations such as director strings; §7 discusses how much beyond and in
which direction. Our translation is hence the viable alternative to supercom-
binators.

We start with the background, in the next section. The complete OCaml
code is available at http://okmij.org/ftp/tagless-final/skconv.ml.

2 Lambda- and SKI-calculi and the Bracket Abstraction

This background section recapitulates lambda- and combinator calculi and the
classical bracket abstraction. Mainly, it introduces the notation for the rest of
the paper.

Figure 2 presents the syntax of the calculi and the notational conventions,
heavily used throughout. We write e for expressions in lambda-calculus with
names and e0 for expressions in the calculus with De Bruijn indices – although
we often write just e if the context disambiguates. Lower-case f, g, x, y, u, v (pos-
sibly adorned with subscripts or superscripts) are always variables. We consider
both untyped calculi and simply-typed calculi. In the latter case, types (denoted
by α, β, γ, σ, τ metavariables) are base and arrow types; there are no type vari-
ables. Γ denotes a possibly empty sequence of types, whereas Γ+ stands for a
nonempty sequence. We write τ, Γ and Γ, τ for prepending, resp. appending τ
to the sequence Γ , and Γ1, Γ2 for sequence concatenation. The S, K, I and other
combinators are, by convention, upper-case letters; the metavariable d stands
for an arbitrary combinator expression.

Variables f, g, x, y, u, v
Base Types ι
Types α, β, γ, σ, τ ::= ι | τ → τ
Type Environment Γ ::= τ, . . .

Expressions e ::= x | λx. e | e e
De Bruijn Expressions e0 ::= z | s e0 | λ e0 | e0 e0
Combinator Expressions d ::= d d | S | K | I | B | C

Fig. 2. Syntax of languages
The meaning of combinators is defined by their reduction rules, collected in

Fig.3. It presents not only S, K, and I but also B and C combinators, which we
shall use later. They are particular cases of S; B is the functional composition.
All combinators can be expressed in terms of just S and K.

I x  x
K y x  y
S f g x  fx (gx)

B f g x  f (gx)
C f g x  f x g

Fig. 3. Combinators and their reduction rules
Fig.4, borrowed from [7, Fig. 16.2] with the adjusted notation, presents the

basic bracket abstraction algorithm: the formalization of the procedure intu-
itively described in §1. The main translation C [e] uses the auxiliaryAx [e′] to “ab-
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stract” x from a lambda-free expression e′ and produce the corresponding combi-
nator expression. As shown in §1, C [λx. λy. y x] gives S(S(KS)(KI))(S(KK)I).

C [e]: compile e to combinators

C [e1 e2] 7→ C [e1] C [e2]
C [λx. e] 7→ Ax [C [e]]
C [c] 7→ c

Ax [e]: abstract x from e

Ax [e1 e2] 7→ S (Ax [e1]) (Ax [e2])
Ax [x] 7→ I
Ax [c] 7→ K c where c is not x

Fig. 4. Basic Bracket Abstraction. We write c for a variable, constant or a combinator
expression. Ax [e] applies to e with with no inner lambdas.

As another example, λy. (λx. x x)(λx. x x) is translated (in a less naive way)
to K((SII)(SII)). The lambda-term is not strongly normalizing (i.e., has a di-
vergent reduction sequence) and the same holds for the translated SKI term.
With no reductions under lambda (as in call-by-name or call-by-value), the
lambda-term is in normal form. In SKI this corresponds to the head reduc-
tion strategy: d d1 . . . dn, where d is a combinator, is irreducible if no reduction
rule applies to d. In the following, only head reductions are considered.

3 Semantic Translation

This section formally presents our translation, first intuitively and then formally.
We argue about its correctness in §4 and improving memory and run-time per-
formance in §6. The translation is formulated as a non-standard denotation of
lambda-terms and amounts to a constructive proof of the combinatorial com-
pleteness of lambda-calculus.

Although our translation applies both to typed and untyped calculi, the
intuitions are easier to see with types, such as those in Fig.5. (We explicitly
consider the untyped case in §6.)

V ar
τ ` z : τ

Γ ` e : τ
WL

σ, Γ ` e : τ

Γ+ ` e : τ
WR

Γ+, σ ` s e : τ

Γ, σ ` e : τ
Abs

Γ ` λ e : σ → τ

Γ ` e1 : σ → τ Γ ` e2 : σ
App

Γ ` e1 e2 : τ

Fig. 5. The simple type system of the De Bruijn lambda-calculus
This is the very standard type system for simply-typed lambda-calculus,

conventionally presented as the inference rules for the judgment Γ ` e : τ that
a term e has the type τ in the environment Γ . The latter is a sequence of types.
Fig. 5 is more explicit than usual about structural rules, distinguishing the right
weakening1 (WR), which is syntactically marked as s e, from the left weakening
(WL), which is unmarked. The ‘unhinged’ nature of (WL) prompts us to move
to a different type system, in which every rule is connected to some syntactic
feature and derivations are syntax-directed. The left-hand-side of Fig. 6 describes
such a system – to be called ‘leftless’, in contrast with the ‘lefty’ system of Fig.

1 By ‘weakening’ we mean a (structural) inference rule stating that adding more
premises to hypotheses of a valid logical deduction preserves the validity.



5

Γ ` e : τ E [Γ ` e : τ ]

V ar
τ ` z : τ

EV ar
τ |= I

Γ+ ` e : τ
W

Γ+, σ ` s e : τ

Γ+ |= d
EW

Γ+, σ |= (|= K)q (Γ+ |= d)
` e : τ

Abs0
` λ e : σ → τ

|= d
EAbs0

|= K d

Γ, σ ` e : τ
Abs

Γ ` λ e : σ → τ

Γ, σ |= d
EAbs

Γ |= d

Γ1 ` e1 : σ → τ Γ2 ` e2 : σ
App

Γ1 t Γ2 ` e1 e2 : τ

Γ1 |= d1 Γ2 |= d2
EApp

Γ1 t Γ2 |= (Γ1 |= d1)q (Γ2 |= d2)

where
Γ1 t Γ2 = Γ1 if Γ1 = Γ3, Γ2 for some Γ3

= Γ2 if Γ2 = Γ3, Γ1

Fig. 6. The ‘leftless’ type system and the corresponding denotational semantics: the
rules for deriving Γ ` e : τ (left column) and E [Γ ` e : τ ] (right column). The function
Γ1 t Γ2 checks that one sequence is a suffix of the other and returns the longer one.
The semantic function q is described in text.

5, from which it was derived by working the (WL) rule into the others. The new
type system is equivalent to the old, as the following proposition shows.

Definition 1. A type judgment Γ ` e : τ (and its derivation) are called left-
strong if (i) Γ is empty, or (ii) Γ is σ, Γ ′ and Γ ′ ` e : τ is not derivable.

Proposition 1. Any left-strong judgment (derivation) in the lefty system can
be derived (converted to) the leftless system, and vice versa.

In the forward direction, the proof is by the straightforward induction on the
type derivation. The reverse direction is trivial.

The reason to split hairs about the weakening and to introduce the messier
leftless system is to make clearer the correspondence between type and semantic
derivations.

We now introduce our denotational semantics. Generally, denotational se-
mantics assigns each syntactic object an element of some semantic domain,
which serves as the ‘meaning’ for the object. The assignment must be com-
positional: the meaning of an object should depend only on the meanings of its
immediate subcomponents. In Church-style calculi, only well-typed terms ‘make
sense’. Therefore, the meaning is assigned to type derivations, represented by
the judgement in their conclusion: in symbols, E [` e : τ ] ∈ V [τ ] where V [−]
stands for the semantic domain, also type-indexed. To give the meaning to
an open term, however, we need to know what its free variables mean. The
common approach is to take the term denotation to be a function of an ‘en-
vironment’, which maps each free variable to its meaning. When variables are
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represented by De Bruijn indices, the environment may be realized as a tuple:
E [τn, . . . , τ1 ` e : τ ] ∈ V [τn × . . .× τ1 → τ ].

Now come two key ideas. Without special introduction they are easy to miss
due to their simplicity. First, we curry the denotation: E [τn, . . . , τ1 ` e : τ ] ∈
V [τn → . . .→ τ1 → τ ]. Second, as the semantic domain V [τ ] we take the set of
combinator expressions of type τ . (We shall soon see it is non-empty.) Alas, we
have conflated closed and open terms: the combinator I : τ → τ may denote the
closed term ` λ z : τ → τ as well as the open term τ ` z : τ . To distinguish
the denotations of terms with the different number of free variables, we pair the
combinator expression with Γ 2.

Definition 2. The denotation of a typed lambda-term E [Γ ` e : τ ] where Γ is
τn, . . . , τ1 is a tuple of an SKI term d of the type τn → . . . → τ1 → τ , and the
type sequence Γ . We write such tuple as Γ |= d.

It follows that for a closed e, E [` e : τ ] is a combinator expression of the
type τ , which we take to be the result of our SKI translation3. The denotation
E [τ ` z : τ ] of the open term z is clearly τ |= I: indeed, I, when applied to
some d0, the one-component ‘environment’, reduces to that d0 – the behavior
expected of z. Likewise, we find that E [τ, σ ` s z : τ ] is τ, σ |= K: the combinator
K, applied to d1 and d0, the two-component environment, reduces to d1.

The right-hand side column of Fig.6 describes the compositional computation
of E [Γ ` e : τ ] in the form of inference rules. (EVar) was explained already.
The (EAbs0) rule says that if the function’s body is closed it is the constant
function. (EAbs) amounts to η-conversion: if d is such that (τn, . . . , τ1, σ |= d),
then (d dn . . . d1) acts as a function: when applied to an argument d0 : σ, that
is, d dn . . . d1 d0, it looks like d in the environment extended with d0. The (EW)
rule states that weakening is the application of the K combinator.

The semantic function (Γ ′ |= d′)q(Γ |= d) computes the application: that is,
converts (τn, . . . , τ1 |= d′)(τm, . . . , τ1 |= d) to the form τmax nm, . . . , τ1 |= d̄ for
some combinator expression d̄. It is an exercise in combinatory logic. Its simplest
(albeit not optimal) solution is to define q by induction4: Let’s consider the case
of the application of a closed term: (|= d′) q (τn, . . . , τ1 |= d). Our goal is to
represent d′ (d dn . . . d1) as a combinator expression d̄ applied to dn through d1.
In the base case of n = 0, clearly d̄ is d′ d. In the inductive case, the B reduction
rule from Fig.3 gives us d′ (d dn . . . d1) = (Bd′) (d dn . . . d2) d1. Therefore, d̄ is the
solution to the smaller instance of the problem: representing (Bd′) (d dn . . . d2)
as d̄ dn . . . d2. In the general case of (d′ dn . . . d1)(d dm . . . d1) with n ≥ 1,m ≥ 1,

2 As we will see in §6, it is enough to keep the length of Γ , that is, the number of free
variables in a term.

3 It is natural to wish a denotation of an open term be non-divergent: if τn, . . . , τ1 |= d
then d, until applied to n other terms, should have only a finite number of reductions,
if any at all. The wish is already granted: in the present simply-typed calculus, all
terms are (strongly) normalizing. We have to wait until §6 to say something non-
trivial about termination.

4 The optimal solution is described in §6.
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the S reduction rule gives us (S (d′ dn . . . d2)) (d dm . . . d2) d1. Then we look
for d̄′ such that S (d′ dn . . . d2) = d̄′ dn . . . d2 (the earlier case of the closed-term
application) and, finally, solve (d̄′ dn . . . d2)(d dm . . . d2), which is the shorter
version of the original problem. All in all, we obtain the following structurally
recursive definition:

(|= d′)q (|= d) = d′ d
(|= d′)q (τn, . . . , τ1 |= d) = (|= Bd′)q (τn, . . . , τ2 |= d)
(τn, . . . , τ1 |= d′)q (|= d) = (|= CCd)q (τn, . . . , τ2 |= d′)
(τn, . . . , τ1 |= d′)q (τm, . . . , τ1 |= d) =

(τn, . . . , τ2 |= (|= S)q (τn, . . . , τ2 |= d′))q (τm, . . . , τ2 |= d)
Fig. 7 shows the typing and semantic derivations for the running example:

the flipped application λx. λy. y x. The typing derivation can be read as a proof,
from the (Var) axioms down to the conclusion that the sample term has the type
α → (α → β) → β. Likewise, the semantic derivation produces the meaning of
the term just as compositionally, from the (EVar) axioms down the chain of
inference rules. The less-obvious step is the q computation in the (EApp) rule:

(α→ β |= I)q (α, α→ β |= BKI)
= (|= (|= S)q (|= I))q (α |= BKI)
= (|= SI)q (α |= BKI) = B(SI)(BKI)

The overall result B(SI)(BKI) is shorter than S(S(KS)(KI))(S(KK)I) we
obtained in §2 with the original Curry bracket abstraction – although far from
being optimal. We describe the improvements in §3.1.

α→ β ` z : α→ β

α ` z : α
W

α,α→ β ` s z : α

α, (α→ β) ` z (s z) : β

α ` λ z (s z) : (α→ β)→ β

` λλ z (s z) : α→ (α→ β)→ β

α→ β |= I

α |= I
EW

α,α→ β |= BKI

α, (α→ β) |= B(SI)(BKI)

α |= B(SI)(BKI)

|= B(SI)(BKI)

Fig. 7. The type and meaning derivations for the running example
Figure 6, when read across, actually defines the translation process formally:

each row of the figure gives the translation for the lambda-term of a particular
form. For example, consider a term Γ+, σ ` s e : τ . (Since this section deals with
the Church-style calculus, each (sub)term comes annotated with its type and
typing environment.) According to the second row of Fig.6, we have to find the
translation for Γ+ ` e : τ , which is Γ+ |= d for some combinator expression d.
Next, we apply the (EW) rule. Lambda-abstraction is the only subtlety: whether
to use (Abs/EAbs) or (Abs0/EAbs0) depends on the type environment. This
formal process is implemented in OCaml, see §4.

To show correctness, we define the reverse translation (d)Λ from a combinator
term d to a lambda-term, by substituting S,K, I,B, S combinators with the
corresponding lambda-terms and treating combinator application as lambda-
application.
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Γ ` e : τ E [Γ ` e : τ ]

Γ+ ` e : τ
W

Γ+, - ` s e : τ

Γ+ |= d
EW

Γ+, - |= d

Γ+, - ` e : τ
Abs1

Γ+ ` λ e : σ → τ

Γ+, - |= d
EAbs1

Γ+ |= (|= K)q (Γ+ |= d)

Γ ′, - t Γ, - = (Γ ′ t Γ ), - (Γ ′, - |= d′)q (Γ, - |= d) = (Γ ′ |= d′)q (Γ |= d)
Γ ′, - t Γ, τ = (Γ ′ t Γ ), τ (Γ ′, - |= d′)q (Γ, τ |= d) = ((|= B)q (Γ ′ |= d′))q (Γ |= d)
Γ ′, τ t Γ, - = (Γ ′ t Γ ), τ (Γ ′, τ |= d′)q (Γ, - |= d) = ((|= C)q (Γ ′ |= d′))q (Γ |= d)

Fig. 8. The ‘weak lazy leftless’ type system and the denotational semantics. Shown
are the differences from Fig. 6: the changed rule (W ) and the new rule (Abs1). The
functions t and q are also extended as shown. This system is presented in full in §4.

Theorem 1 (Translation soundness/Semantics adequacy).
Let E [τn, . . . , τ1 ` e : τ ] be τn, . . . , τ1 |= d. Then (d)Λ sn−1z . . . sz z =βη e

This is the generalization of [10, Thm 5.1.14] to open terms. The proof is the easy
structural induction on the meaning derivation. The totality of the translation
gives

Corollary 1 (Combinatorial Completeness). Every, even open, lambda-
term can be represented by a combinator term

Or: every open term can be put in the form where all of its free variables are “on
the right margin” – moreover, that form can be computed compositionally. So
far, we have been dealing with the simply-typed calculus. §6 shows the general
untyped case.

3.1 Lazy Weakening

The denotation τn, . . . , τ1 |= d says that a combinator d should be considered in
an environment, of being applied to n other terms. For example, to understand
the meaning of E [τ, σ ` s z : τ ], which is τ, σ |= K, we have to apply K to two
other terms, d2 and d1. This example also shows that some of these environ-
ment terms are ignored. Knowing what is ignored is useful: it leads to a better
translation, as we are about to see.

To keep track of ignored context terms we mark them with the special “any
type” - (analogous to the type placeholder in, say, OCaml). Fig. 8 shows the new
type system and denotational semantics. The type system is clearly equivalent
to that of Fig. 6. Now, the rule (EW) does nothing: ignored context terms are
merely marked but ignored when computing the denotation. The real weakening
is delayed until (EAbs1): abstracting over an ignored variable gives the constant
function. This rule corresponds to the so-called K-optimization, which ensures
full laziness [7]. Within the bracket abstraction (Fig. 4) the optimizations is
written [7, §16.2.1] as Ax [e] 7→ K e iff x is not free in e. We have accomplished it
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without needing to compute and search the set of free variables. (The sequence
Γ , a part of the term denotation, is all we need to know about free variables.)

α→ β ` z : α→ β

α ` z : α
W

α, - ` s z : α

α, (α→ β) ` z (s z) : β

` λλ z (s z) : α→ (α→ β)→ β

α→ β |= I

α |= I
EW

α, - |= I

α, (α→ β) |= B(CI)I

|= B(CI)I

Fig. 9. The type and meaning derivations for the running example, in the weak lazy
leftless system (the last two (Abs) steps are compressed)

The extended q rules in Fig. 8 deal with applications of open terms, one of
which (or both) ignore the first contextual term. For example, (τ2, τ1 |= d′) q
(τ2, - |= d) must be such d̄ that d̄ d2 d1 = (d′ d2 d1)(d d2). The latter is equal
to C(d′ d2)(d d2)d1 and hence the desired d̄ is the answer of ((|= C) q (τ2 |=
d′) q (τ2 |= d). It is the so-called C optimization, which the new (EW) rule
forces upon us. Fig. 9 shows the typing and meaning derivations for the running
example. Compared to Fig. 7, the translation result is both shorter and simpler
(avoiding the duplicating combinator S). Table 1 compares the two systems on
more examples: tracking of ignored terms is truly a good optimization.

4 OCaml Implementation

The translation rules that previously have been written in mathematical notation
are straightforward to turn into code, using the so-called tagless-final style [1, 5].
This section does so, taking OCaml as the implementation language. The reason
to show the code in detail is actually theoretical: to present the translation as
an algebra and to argue for its correctness.

Our OCaml code embeds both the lambda and SKI simply-typed calculi
as DSLs, which are specified as OCaml module signatures Lam and SKI. The
abstract type (γ,α) repr represents lambda-terms; it is parameterized by the
term type α and the type environment γ. It might take time to realize that the
Lam signature is the precise re-statement of the left column of Figs. 8 and 6,
but in the OCaml-readable notation: Lam tells the syntax (with $$ denoting an
application) and the typing rules of the weak leftless system. (The operation
Γ ′ t Γ is done by unification during the type checking.)

module type Lam = sig
type (γ,α) repr
val z: (α∗γ,α) repr
val s : (β∗γ,α) repr →

( ∗(β∗γ),α) repr
val lam: (α∗γ,β) repr → (γ,α→β) repr
val ($$): (γ,α→β) repr →

(γ,α) repr → (γ,β) repr
end

module type SKI = sig
type α repr
val kI : (α→α) repr
val kK: (α→β→α) repr
val kS: ((α→β→δ)→(α→β)→α→δ) repr
val kB: ((α→β) → (δ→α) → δ→β) repr
val kC: ((α→β→δ) → (β→α→δ)) repr
val ($ !): (α→β) repr → α repr → β repr

end
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In this notation, the running example is written as lam (lam (z $$ (s z))). The
typed SKI calculus is likewise defined by the signature SKI (where $! is a SKI
application). The Lam and SKI signatures clearly reveal the lambda and the
combinator calculi to be algebras.

The accompanying code shows two implementations of the SKI signature,
that is, two concrete SKI algebras. The carrier α repr of one algebra, PSKI, is
set to be a string: it interprets every SKI expression as its printout. The other
algebra is a SKI evaluator; its carrier is the set of OCaml values.

The lambda-to-SKI translation is also an algebra. It is an implementation of
the Lam signature in terms of SKI:

module Conv(S:SKI) : Lam = struct
type (γ,α) repr = | C: α S.repr → (γ,α) repr

| N: (γ,α→β) repr → (α∗γ,β) repr
| W: (γ,α) repr → ( ∗γ,α) repr

let z: (α∗γ,α) repr = N (C S.kI) (∗Var∗)
let s : (β∗γ,α) repr → ( ∗(β∗γ),α) repr = fun e → W e (∗EW ∗)

let rec ($$): type g a b. (g,a→b) repr → (g,a) repr → (g,b) repr =
fun e1 e2 → match (e1,e2) with
| (W e1, W e2) → W (e1 $$ e2) (∗(se1 )(se2 ) = s(e1 e2 )∗)
| (W e, C d) → W (e $$ C d) (∗(se)d = s(ed)∗)
| (C d, W e) → W (C d $$ e)
| (W e1, N e2) → N ((C S.kB) $$ e1 $$ e2)
| (N e1, W e2) → N ((C S.kC) $$ e1 $$ e2)
| (N e1, N e2) → N ((C S.kS) $$ e1 $$ e2)
| (C d, N e) → N (C S.(kB $! d) $$ e)
| (N e, C d) → N (C S.(kC $! kC $! d) $$ e)
| (C d1, C d2) → C (S.(d1 $! d2)) (∗closed term application∗)

let lam: (α∗γ,β) repr → (γ,α→β) repr = function
| C d → C S.(kK $! d) (∗Abs0∗)
| N e → e (∗Abs∗)
| W e → (C S.kK) $$ e (∗Abs1∗)

let observe : (unit ,α) repr → α S.repr = function (C d) → d
end

This implementation re-tells the right-column of Fig. 8, the bottom-up meaning
computation, spelling out q in full detail. The carrier is the GADT disjoint union
of three sets: closed-term denotations (e.g., |= I is written in OCaml as C S.kI),
open-term denotations that ignore the context term (tagged with W) and general
open-term denotations. If d of the OCaml type (γ,α→β) repr represents Γ |= d
then N d: (α∗γ,β) repr represents Γ, α |= d. Interpreting the running example
lam (lam (z $$ (s z))) in this Conv(PSKI) algebra (with the PSKI implementation
of SKI) gives the string ”B(CI)I”.

Perhaps surprisingly, the implementation Conv makes a theoretical point.
The type of observe reads as a proposition that a closed lambda-term translates
to a SKI term of the same type. The type preservation is hence checked by the
OCaml type checker. Furthermore, the OCaml compiler reports no inexhaustive
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pattern-match warnings: observe is hence total. The type-preservation of the
translation gives, by free theorems, a certain degree of functional correctness.
For example, the OCaml type checker assures that a lambda-term of the type
α→β→α is converted to a SKI term of the same type. Any term of that type
(in a strongly normalizing calculus) have the same meaning. We see that not
only the translation algorithm (Fig. 8) preserves the meaning but so does its
implementation (the Conv functor).
4.1 The eta-optimization

The translation result for our running example, B(CI)I, shows the room for
improvement. After all, B is the functional composition, of which I is the unit.
Alternatively, BdI 7→ d is an η-reduction. We can implement this simplification
as the second phase of the translation, in the standard tagless-final optimization
framework5. It is more instructive to work it out into the translation itself.

Just as in §3.1, procrastination is the key: delay the introduction of the
I combinator. Instead of using I for the denotation of z, we add a dedicated
element V to our semantic domain:

type (γ,α) repr = | C: α S.repr → (γ,α) repr
| V: (α∗γ,α) repr
| N: (γ,α→β) repr → (α∗γ,β) repr
| W: (γ,α) repr → ( ∗γ,α) repr

with the corresponding changes to the semantic functions

let z: (α∗γ,α) repr = V
let lam: type a b g. (a∗g,b) repr → (g,a→b) repr = function
| V → C S.kI
. . .

let rec ($$): type g a b. (g,a→b) repr → (g,a) repr → (g,b) repr =
fun e1 e2 → match (e1,e2) with
| (W e,V) → N e
| (V, W e) → N (C (S.(kC $! kI )) $$ e)
| (N e, V) → N (C S.kS $$ e $$ C S.kI)
| (V, N e) → N (C S.(kS $! kI) $$ e)
| (C d, V) → N (C d)
| (V, C d) → N (C S.(kC $! kI $! d))
. . .

Just like K in §3.1, I is introduced upon abstraction and in some cases upon
applications. On the other hand, when applying a closed term d to V , the free
variable is already at the right margin so the denotation becomes τ |= d with no
extra combinators. With this optimization, the running example translates to
mere CI, which is indeed the shortest combinator for the flipped application –
quite an improvement over the naive translation S(S(KS)(KI))(S(KK)I) in §1.
The comparison Table 1 shows the current algorithm is by far the best: e.g., it
translates the K combinator lambda-term to just K and the S combinator term
to S. Yet the recursion in the $$ semantic function betrays non-linear complexity.
We fix the problem in §6.

5 http://okmij.org/ftp/tagless-final/course/optimizations.html
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5 Compiling Real Programs

The simply-typed lambda-calculus considered so far is not even Turing-complete,
let alone convenient. We want numbers, booleans, convenient conditionals, and
general recursion. Fortunately, all these features are easy to add, as constants
(assuming a non-strict evaluation strategy) of appropriate types. Below is an
example, borrowed from [7, §16.2.6]. It is the lambda-term for finding the greatest
common divisor of two integers a and b (with b ≤ a) using Euclid’s algorithm,
written in the extended calculus embedded in OCaml:

let gcd = fix $$ lam (lam (lam
( let self = s (s z) and a = s z and b = z in

if $$ (eq $$ int 0 $$ b) $$ a $$ ( self $$ b $$ (rem $$ a $$ b )))))

(The let-expression of the host language (OCaml) is the free syntax sugar that
makes the term more readable.) Its translation to SKI (also extended with com-
binators such as Y , IF , Rem and 0) is

Y (B(S(BS(C(B IF (= 0)))))(CC Rem (BBS)))
The algorithm from §4.1 was used as it is, treating fix, if , etc. constants as prim-
itive combinators. The result is compact and can be shown with no ‘cheating’
([7, §16.2.6] translated only the function’s body, without the recursive knot).

6 Linear algorithm

This section describes the time- and space-linear translation algorithm, in the
general case of the untyped lambda-calculus (which can be backported to the
typed case). We stress that for clarity the algorithm is based on the simpler Fig.6
rather than the optimized Fig.8 (and hence has room for improvement).

However odd, we continue to use ‘type derivations’, whose judgments omit
types, and represent the ‘type’ environment Γ by its length, the natural number:
e.g., 1 ` z (with the denotation 1 |= I). The zero length is omitted. The unitype
system and the corresponding denotation rules are presented in Fig.10, which is
the trivial simplification of Fig.6.

The only interesting part is the new definition of the semantic function q,
which computes the denotation of application. Its defining requirement is

(n |= d′)q (m |= d) = d̄ iff (d′ dn . . . d1)(d dm . . . d1) = d̄ dmaxnm . . . d1
for some terms dmaxnm, . . . , d1. Previously, in §3, such d̄ was computed by in-
duction on maxnm. (The two applied terms share the minnm suffix of their
environment, which is easy to see from Fig.6.) In contrast, Fig.10 defines q in
terms of so-called bulk combinators Bn, Cn and Sn, without any recursion. The
bulk combinators (whose reductions and definitions in terms of S and K are
collected in Fig.11) are specifically designed to satisfy the defining requirement
of q. For example:

(d′ dn . . . d1)(d dn . . . d1) = Sn d
′ d dn . . . d1

≡ ((n |= d′)q (n |= d)) dn . . . d1
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n ` e E [n ` e]

V ar
1 ` z

EV ar
1 |= I

n+ 1 ` e
W

n+ 2 ` s e

n+ 1 |= d
EW

n+ 2 |= (|= K)q (n+ 1 |= d)

` e
Abs0

` λ e

|= d
EAbs0

|= K d

n+ 1 ` e
Abs

n ` λ e

n+ 1 |= d
EAbs

n |= d

n ` e1 m ` e2
App

maxnm ` e1 e2

n |= d1 m |= d2
EApp

maxnm |= (n |= d1)q (m |= d2)

(|= d1)q (|= d2) = d1 d2
(|= d1)q (n |= d2) = Bn d1 d2
(n |= d1)q (|= d2) = Cn d1 d2
(n |= d1)q (n |= d2) = Sn d1 d2
(n |= d1)q (m |= d2) = Bm−n(Sn d1) d2 if n < m
(n |= d1)q (m |= d2) = Cn−m(Bn−m Sm d1) d2 if n > m

Fig. 10. The unityped system and the denotational semantics

(d′ dn+k . . . d1)(d dn . . . d1) = Sn (d′ dn+k . . . dn+1) d dn . . . d1
= (Bk Sn d

′ dn+k . . . dn+1) d dn . . . d1
= Ck(Bk Sn d

′) d dn+k . . . dn+1 dn . . . d1
≡ ((n+ k |= d′)q (n |= d)) dn+k . . . d1 k > 1

The bulk Bn, Cn and Sn combinators, like the ordinary B, C and S, take two
terms d′ and d and then n ≥ 1 more terms and distribute the latter across the
first two. The bulk combinators are thus the generalization of ordinary ones, to
distribute several terms ‘in bulk’. (The bulk combinators are typeable and hence
usable also in the typed case.)

B′ d f g x  d f (gx)
C′ d f g x  d (fx) g
S′ d f g x  d (fx) (gx)

B′ = BB
C′ = B(BC)B
S′ = B(BS)B

Bn f g xn . . . x1  f (g xn . . . x1)
Cn f g xn . . . x1  (f xn . . . x1) g
Sn f g xn . . . x1  (f xn . . . x1) (g xn . . . x1)
In f xn . . . x1  f xn . . . x1

Bn = timesn−1B
′ B

Cn = timesn−1 C
′ C

Sn = timesn−1 S
′ S

In = BnI (we set I0 to be I)

Fig. 11. Primed (director) and bulk combinators: reductions and SK definitions. The
n-times application of d to d′ is denoted as timesn d d

′.
The untyped combinator calculus permits divergent terms. The denotation of

the closed (λ z z)(λ z z) comes out as (SII)(SII); the divergent combinator term
as denotation is natural and expected. One may wish, however, denotations of
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open terms be convergent. To this end, one may read n |= d as if it were n |= Ind.
The (assumed) In combinator ensures no reductions taking place until the full
environment is supplied.

In the earlier approaches, the size of the translation result has to be, in the
worst case, at least quadratic in the size of the input term. This is easy to see
on the worst term λx1. . . . λxn. xn . . . x1 from [7]. Its body has n variables each
requiring a different component from the environment, and n − 1 applications.
Distributing one environment variable across an application requires one combi-
nator. The bulk combinators distribute several variables in bulk, hence we expect
improvement.

Let us analyze the time and space complexity of the translation. The com-
plexity measure is the size of the input lambda term, or the number of its con-
structors: z, s, λ and the application. Alternatively, this is the size of the term’s
typing derivation, as each constructor corresponds to a rule in the derivation. If
we regard Bn, Cn and Sn as pre-computed (see below) and take as the cost met-
ric the number of combinator applications, we see from Fig. 10 that each (typing
or semantic) rule contributes at most 4 combinator applications (the worst case
is the application of n ` e1 to m ` e2 where n > m). We stress that q is no
longer recursive. With the reasonable representation of combinator terms (e.g.,
as trees) an application takes fixed amount of time. Thus, the time complexity
is linear. The size of the created term is also proportional to the number of ap-
plications (i.e., the internal nodes of the binary tree of the term). Therefore, the
space complexity – the size of the result – is also linear in the size of the input
term. The last three rows of Table 1 lists the worst-case terms of increasing size.
The last column clearly shows the linear size increase for the present translation.
Overall, the experience so far (including the worst-case examples of [6, 7]) shows
the number of combinators in the translation result stays within 1.5× the size
of the input term.

The linear time- and space complexity may seem surprising. To intuitively
understand it, let’s apply a grossly simplified translation to λx1. . . . λxn. e1 e2.
First we distribute the n-component environment to both e1 and e2 with the
bulk Sn. That costs us only one combinator. If, say, e1 is a variable xi, it has to
project one component from the environment. Realizing the projection may take
Θ(n − i) combinators. However, in De Bruijn notation, xi is encoded as sn−iz,
whose size n− i+ 1 pays for the projection combinators. If e1 happens to be an
application, we again use Sn to distribute the environment to both applicands.
It costs us one combinator, which is paid by the application (which adds one
to the size of the input term). The real translation uses Bn and Cn to avoid
distributing unused prefixes of the environment.

We have assumed that Bn, Cn and Sn have been precomputed (as they would
be in practice). If not, we have to compute them: scan the input term to deter-
mine its size n and compute and store the three sequences of bulk combinators,
of n elements each. Each sequence, say, Bi, 1 ≤ i ≤ n, is built by iteration, apply-
ing the primed combinator such as B′ to the previous element of the sequence.
All in all, the required time and space is linear in n.
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We regard arithmetic operations (such as integer comparison, subtraction,
etc) and array dereference (to fetch a pre-computed bulk combinator) taking
constant time – common in analyses of data structures. (All numbers in our al-
gorithm are bound by the size of the input term. Therefore, if the size of a term
does not fit within a machine register, the term does not fit into memory. Pro-
cessing such terms has a very different cost model, so the traditional complexity
analysis becomes pointless.)

7 Related Work

The bracket abstraction is a classical, textbook algorithm, with many descrip-
tions and explanations and blogs 6; we have already mentioned [7]. The algorithm
and its many variations are syntactic, with typical optimization side-conditions
of the form x 6∈ FV (e). In our semantic approach, the type environment, being
part of the denotation, is all we need to know about free variables. We never
search through it.

The most recent work on combinator translation [9] involves so-called director
strings [7, §16.3], which tell for each application node which parameters should
go left or right or both ways. The bulk combinators in Fig. 11 do a similar job,
but in bulk: directing whole environments rather than single variables.

Hughes’ supercombinators [3] is the alternative combinator-based implemen-
tation strategy for functional languages, tightly connected to lambda-lifting.
Unlike supercombinators, which are program-specific, our bulk combinators are
general-purpose and can be pre-computed once and for all (or even wired into
hardware). The supercombinators and the SKI translation are extensively com-
pared in [7, §16.4], including the performance: the SKI translation time and the
size of the resulting combinator term are worst-case quadratic in the size n of the
(not De Bruijn-indexed) input lambda-term (although the typical complexity is
O(n log n)). In contrast, Hughes supercombinator process has the worst-case size
complexity of O(n log n), but is often linear.

Our bulk combinators Bn, Cn, Sn are the same as Noshita’s [6] B̄n, C̄n, S̄n
(but not his Bn, Cn, Sn), although introduced and used differently. (Like [6], we
take each bulk combinator reference – a pointer to the pre-computed combina-
tor sequence – to take constant space.) Noshita’s combinator translation algo-
rithm is the extension of Turner’s and is syntactic. Noshita proves the O(n log n)
upper-bound on the translation size; there is no claims about time complexity.
Comparing ours and Noshita’s approaches are difficult: not only the translation
algorithms differ and give different (but equivalent) results; our calculi and input
size measures also differ. Ours is lambda-calculus with De Bruijn indexes (since
we also work with the typed calculus, s has to be a constructor and is counted
as such). Noshita’s input are binary trees with constants and named variables
at the leaves –but no lambdas: Noshita only deals with supercombinators.

6 It is worth pointing out one, comprehensive web page: http://www.cantab.net/

users/antoni.diller/brackets/intro.html.
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lambda-term size Fig. 6 Fig. 8 §4.1 §6

λλ z 3 KI KI KI KI

λλ sz 4 BKI BKI K BKI

λλ sz z 6 CCI (BS(BKI)) CCI(BBI) I C(BS(BK))I

λλ z sz 6 B(SI)(BKI) B(CI)I CI B(SI)(BKI)

λλλ z s
2z 8 B(B(SI))

(B(BK)(BKI))
BK(B(CI)I) BK(CI) B2(SI)

(B2K(BKI))

λλλ(λ z) s
2z 9 B(B(BI))

(B(BK)(BKI))
BK(BK(BII)) BK(BKI)‡ B3I(B2K(BKI))

λλλ(s2z z) (sz z) 13 CC(CCI(BS(BKI)))
(BS(B(BS)
(B(CCI)(B(BS)
(B(BK)(BKI))))))

CC(CCI(BBI))
(BB(BS
(CCI(BBI))))

S C(BS2(C2

(B2S(B2K
(BKI)))I))
(C(BS(BKI))I)

The worst-case family for the combinator translation

λλ z sz 6 B(SI)(BKI) B(CI)I CI B(SI)(BKI)

λλλ z sz s
2z 11 B(S(BS

(B(SI)(BKI))))
(B(BK)(BKI))

B(C(BC
(B(CI)I)))I

C(BC(CI)) B(S2

(B(SI)(BKI)))
(B2K(BKI))

λλλλ z sz s
2z s3z 17 B(S(BS(B(BS)

(B(S(BS
(B(SI)(BKI))))
(B(BK)(BKI))))))
(B(B(BK))
(B(BK)(BKI)))

B(C(BC(B(BC)
(B(C(BC
(B(CI)I)))I))))I

C(BC(B(BC)
(C(BC(CI)))))

B(S3(B(S2

(B(SI)(BKI)))
(B2K(BKI))))
(B3K(B2K
(BKI)))

‡
The unoptimized (BKI) comes from a redex: the input term is not normal

Table 1. Translation of the examples using different methods and optimizations.

8 Conclusions

We have presented a semantic approach to translating lambda-terms to SKI
combinators: the translation is a compositional computation of the meaning
of a term. The key ideas are the choice of the semantic domain (the set of
combinators) and the representation of open terms. Our presentation has stressed
the parallel between type- and meaning derivations. We have demonstrated how
easy, ‘natural’ it is to introduce various optimizations – leading all the way to
the time- and space- linear translation algorithm.

The semantic approach easily extends to untyped calculus and to real pro-
grams with integers, conditionals, fixpoint, etc.

The linear translation algorithm has all the attractiveness of the supercom-
binator approach, but using general-purpose combinators, which can be pre-
computed or even wired-in. Perhaps combinators as the compilation target of
real functional languages deserve a second look.
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