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Abstract Danvy’s functional unparsing problem (Danvy 1998) is to implement a type-

safe ‘printf’ function, which converts a sequence of heterogeneous arguments to a string

according to a given format. The dual problem is to implement a type-safe ‘scanf’

function, which extracts a sequence of heterogeneous arguments from a string by inter-

preting (Friedman and Wand 1984, 2008) the same format as an equally heterogeneous

sequence of patterns that binds zero or more variables. We derive multiple solutions

to both problems (Wand 1980b) from their formal specifications (Wand 1982b).

On one hand, our solutions show how the Hindley-Milner type system, unextended,

permits accessing heterogeneous sequences with the static assurance of type safety. On

the other hand, our solutions demonstrate the use of control operators (Felleisen et al.

1988; Meyer and Wand 1985; Wand 1985) to communicate with formats as coroutines

(Haynes et al. 1984; Wand 1980a).

1 Introduction

Most programming languages provide a facility like printf and scanf for formatted

input/output. For example, in C we write

printf("%d-th character after %c is %c", 5, ’a’, ’f’);

to produce the output

5-th character after a is f

according to the given format descriptor, the first argument of printf. The descrip-

tor includes text such as -th character after to output verbatim, and conversion

descriptors such as %d to specify that the corresponding argument of printf must be

an integer and it should be converted to a decimal string and written out. Dually, the

function scanf parses the input according to the descriptor:

scanf("%d-th character after %c is %c", &i, &c1, &c2);
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The literal text in the descriptor must match the input exactly; a formatting directive

such as %d specifies that the input must contain a decimal string, which is parsed into

a machine integer and stored in a reference cell given as the corresponding argument

of scanf. Modulo the fact that this parsing may fail, the functions printf and scanf

are dual: directed by the same descriptor, printf formats a sequence of values into a

string, whereas scanf parses a string into a sequence of values. These functions come

in several versions that differ in whether they write to and read from the console, a file,

or a string. Because input/output is not the topic of this paper, we consider only the

printf that returns a string and the scanf that parses a string argument (sometimes

called sprintf and sscanf).

As shown above, the number and types of the values formatted by printf and pro-

duced by scanf vary depending on the format descriptor. For example, the descriptor

above dictates that printf must receive three arguments, an integer and two charac-

ters in that order. In general, descriptors are just strings and can be built dynamically

rather than specified literally. Thus, if we want the compiler to assure that printf re-

ceives the right number and types of arguments, then dependent types seem required.

That is why most languages with printf do not provide such a static assurance, even

though mismatches lead to wrong outputs, exceptions, and program crashes. (C com-

pilers often warn of mismatches but cannot provide any reliable assurance.) OCaml is

one of the few systems that statically detect mismatches – by extending the Hindley-

Milner type system with custom rules. The main drawback of this ad-hoc approach is

its limited extensibility: programmers cannot introduce conversion descriptors for their

own data types, or write a new version of printf that sends its output to a different

place.

It turns out that printf can be expressed with static type-checking in the unex-

tended Hindley-Milner type system (Danvy 1998). In this paper, we derive that and

other implementations of printf as well as of scanf starting with their formal specifi-

cations. We reproduce well-known implementations and derive several novel ones. All

our implementations statically ensure that the types and the number of items to for-

mat or parse match the format descriptor. The descriptors used by printf and scanf

share the same structure. Inspired by Mitchell Wand’s work (Friedman and Wand 1984,

2008; Kohlbecker and Wand 1987; Wand 1980b, 1982b), our derivation repeatedly takes

advantage of different representations of the same abstract object. In particular, we

treat both value sequences and format descriptors symmetrically as heterogeneous se-

quences, and apply program transformations to fuse them with their contexts of use

so as to make them palatable to the type system.

Figure 1 maps out our implementations and derivation steps. The structure of the

paper is as follows.

– §2 specifies the problem formally, in the now common style of Wand (1982b), as

a set of equations whose non-logical symbols are the names of functions to be

implemented.

– §3 derives implementations of printf and scanf that operate on tuples rather than

strings or successive arguments. The key insight is to regard printf and scanf as

interpreters (Friedman and Wand 2008) of the domain-specific language of format

descriptors, then to implement them as a final algebra (Kamin 1983; Wand 1979).

– §4 further transforms the implementation of scanf to match OCaml’s curried in-

terface. We conduct the transformations by postulating helpful properties and then



3

Specification (§2, Figure 2)

Tuple implementations S1, P1 (§3, Figure 3)

Scanning PrintingFuse descriptors
with input deconstruction

S2 (§4.1)

Fuse descriptors with output construction

S3 (§4.2)

S4 (§4.2, Figure 5)

Represent value sequence
by successive arguments

P3 (§5.1, Figure 6)

PC6 (§5.2)

Curry by
context-
passing

PC7 (§5.2, Figure 7)

Remove
terminating
() argument

P4 (§6.1)

P4 (§6.2)

Simulate answer-type
modification using
multiple prompts

P5, P7 (§6.3, Figure 9)

Accept values
outside reset

P5 (§6.3)

add
accum

ulator, CPS

rem
ove

accum
ulator,

direct style

Fig. 1 Map of this paper. Nodes are implementations; edges are derivation steps.

choosing concrete representations to fit the properties – the approach elucidated

by Wand (1982a) and Kohlbecker and Wand (1987).

– §5 transforms the implementation of printf similarly and yields code in contin-

uation-passing style (CPS). We will introduce accumulators, which play the role

of “data structure continuations” (Wand 1980b) (whose abstract, representation-

independent form is described by Felleisen et al. (1988)). We also rely extensively

on a transformation that fuses an expressions with a part of its context, or con-

tinuation. “By considering continuations, local transformation strategies can take

advantage of global knowledge” (Wand 1980b).

– §6 uses delimited control operators to convert the implementation of printf to

direct style. We still rely on continuation-based transformation strategies (Wand

1980b). However, we keep continuations implicit. Expressions that need to manip-

ulate their context use control operators to obtain their continuation in the reified

(Friedman and Wand 1984) form.

– §7 discusses more related work.

Our OCaml code is all available online at http://okmij.org/ftp/typed-formatting/.

2 Specification

We begin by formally stating the specifications from which to derive implementations.

Our specifications consist of equations that mention the procedures to be implemented
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as undefined terms (Wand 1982b), namely printf and scanf along with construc-

tors of heterogeneous sequences. The utility of this approach is attested by the ease

with which these equations serve both as a user interface and as a starting point for

implementation.

2.1 Format descriptor

Both printf and scanf receive a format descriptor as their first argument. The format

descriptor is a sequence of primitive descriptors. We may omit the qualification ‘primi-

tive’ if no confusion arises. For clarity, we limit ourselves to three primitive descriptors:

– lit "str", to instruct printf to place the literal string str into the output, and

to instruct scanf to skip str in the input;

– char, to put a character into the formatted output or to read a character from the

input; and

– int, to format an integer as a decimal string, or to parse the input as a decimal

string.

We shall see that in all our implementations the set of primitive descriptors is user-

extensible.

To arrange primitive descriptors into a sequence, we write nilD for the empty

sequence and consD h t for the sequence whose first element is h and rest is t. In our

running example, the C format descriptor "%d-th character after %c is %c" can

be written as follows:

consD int

(consD (lit "-th character after ")

(consD char (consD (lit " is ") (consD char nilD))))

We abbreviate this sequence like an OCaml list:

[int; lit "-th character after "; char; lit " is "; char]D

The subscript by the right bracket reminds us that this is not a list but a heterogeneous

sequence.

At present, primitive descriptors like int and the sequence constructors nilD and

consD are abstract. As we derive implementations in the later sections, the concrete

realizations of these constructors will suggest themselves. At that point we will consider

typing, which we leave aside in this section.

Format descriptors constitute a simple domain-specific language (DSL), whose

phrases (terms) are built by attaching (with consD) primitive descriptors to nilD.

This embedded DSL lets us write grammars of printf’s output or scanf’s input, in

the form of OCaml expressions. The expressions can then be interpreted as parsers or

pretty-printers for these grammars. One may therefore regard our format descriptors

as parser/pretty-printer combinators – albeit quite simple ones. Unlike the full-fledged

parser combinator frameworks (Swierstra 2009), we provide only sequential composi-

tion, with no choice or recursion.
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2.2 Printf

Given a format descriptor, printf receives a variable number of arguments of various

types, and produces a string. The number and types of the arguments must match the

format descriptor. For example,

printf [int; lit "-th character after "; char; lit " is "; char]D
5 ’a’ ’f’

= "5-th character after a is f"

To ease specification and reasoning, and to highlight the symmetry between printf

and scanf, we treat the arguments to printf and the resulting string as sequences,

too:

printf [int; lit "-th character after "; char; lit " is "; char]D
[5; (); ’a’; (); ’f’]A

= ["5"; "-th character after "; "a"; " is "; "f"]S

We made three changes, to be reverted in the derivation in §5:

– First, the arguments are given abstractly as a heterogeneous sequence, built with

the constructors nilA and consA.

– We have also changed the behavior of lit. To format a character or an integer, we

have to give the value to format in the argument sequence. In the case of lit, the

literal string to output is given in the descriptor itself and so there is no need for a

corresponding element in the argument sequence. Nevertheless, for uniformity we

do require an argument ().

– Finally, the output is returned abstractly as a sequence of strings, built using the

constructors nilS and consS, rather than a single string.

We are ready to specify printf. Assume that string_of_char c and string_of_

int i convert a character c and an integer i to a string, respectively. (Below, they are

abbreviated as s_of_c c and s_of_i i to fit the definition in each line.)

printf nilD nilA = nilS
printf (consD (lit s) desc) (consA () lst) = consS s (printf desc lst)
printf (consD int desc) (consA i lst) = consS (s_of_i i) (printf desc lst)
printf (consD char desc) (consA c lst) = consS (s_of_c c) (printf desc lst)

This specification is not executable code. We have yet to implement constructors such

as consD, nilD, and consA, which are not necessarily data constructors, and to de-

cide what it means to pattern-match on them. We also ignore typing until we fix the

representation of heterogeneous sequences.

If we regard format descriptors as a DSL, then printf is one interpreter of the

language, interpreting each phrase (term) as a function from an argument sequence to

a string sequence.

2.3 Scanf

We take the interface of the standard OCaml function sscanf as the specification for

our scanf: Given a format descriptor, scanf receives the input string and a consumer
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function accepting the parsed values. The number and types of the arguments of the

consumer function must match the format descriptor. The result of the consumer func-

tion is returned as the result of scanf. For example,

scanf [int; lit "-th character after "; char; lit " is "; char]D
"5-th character after a is f"

f

= f 5 ’a’ ’f’

Following printf, we revise this behavior to a more uniform one:

scanf [int; lit "-th character after "; char; lit " is "; char]D
["5"; "-th character after "; "a"; " is "; "f"]S

= [5; (); ’a’; (); ’f’]A

In addition to the three changes made for printf, we removed the consumer function

and made scanf return an abstract sequence instead. In §4, we re-introduce the con-

sumer function and resolve the problem of breaking the input string into a sequence of

tokens such as "5", "a", etc.

We specify the behavior of scanf as follows. Assume that char_of_string s (ab-

breviated as c_of_s s) converts a string s of length one into a character and int_of_

string s (abbreviated as i_of_s s) converts a string s into an integer.

scanf nilD nilS = nilA
scanf (consD (lit s) desc) (consS s lst) = consA () (scanf desc lst)
scanf (consD int desc) (consS s lst) = consA (i_of_s s) (scanf desc lst)
scanf (consD char desc) (consS s lst) = consA (c_of_s s) (scanf desc lst)

We see that scanf is also an interpreter for the DSL of format descriptors. Dually to

printf, scanf interprets each phrase (term) as a function from a string sequence to a

result sequence.

2.4 Uniform specification

The specification for printf in Section 2.2 is uniform: all cases except for nilD look

very much alike. We can condense them by introducing a generic primitive descriptor

dP as a function that takes a value and converts it to a string. We can re-write the

specification of printf in two lines:

printf nilD nilA = nilS

printf (consD dP desc) (consA x lst) = consS (dP x) (printf desc lst)

Figure 2 introduces the primitive descriptors litP s, intP and charP to which dP

could be instantiated. Now we define these primitive descriptors not abstractly but as

concrete OCaml code. The same generalization applies to scanf: we introduce a generic

format descriptor dS that can be one of litS s, intS and charS. In litS, the check

assert (s = s’) assures that the input string s’ is exactly the same as specified by

litS. Clearly the set of primitive descriptors is extensible: we can easily add floatP

and floatS for formatting floating-point numbers by analogy with intP and intS.

In fact, we can add primitive descriptors for any object obj provided we can write
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functions string of obj and obj of string. Furthermore, we can parameterize the

descriptors, for example, by giving to intS and intP additional arguments specifying

padding, field width, etc.

The condensed specification for printf and scanf at the top of Figure 2 exhibits

a pleasant symmetry. One may even think that printf and scanf are the inverses

of each other. However, that is not quite right. For example, int_of_string used in

the primitive descriptor intS may strip leading zeroes when reading a number; the

corresponding string_of_int used in intP prints numbers without leading zeroes.

Furthermore,

scanf [int; char]D (printf [int; char]D [5; ’4’]A)

reproduces the original sequence [5; ’4’]A only if the result of printf is kept seg-

mented or is appropriately tokenized when given to scanf. Otherwise, scanf will fail

because the format descriptor int has read ‘too much’ (we return to this issue in §4).

Therefore, we require scanf and printf to be weak inverses of each other:

printf descP (scanf descS (printf descP arg)) = (printf descP arg)

scanf descS (printf descP (scanf descS str)) = (scanf descS str)

provided that the innermost scanf expressions on the left-hand-side do yield a result.

The notation descS means descP with primitive descriptors intP replaced with intS,

etc.

So far we have shown only the specification. Deriving the actual code is the subject

of the following sections.

3 Deriving the tupling implementation

The goal of this section is to transform the specification of printf and scanf into

typable code in a rigorous manner, selecting concrete representations for the abstract

sequences. In this section, we represent the argument and string sequences simply as

nested tuples. The key idea is to view the specification of printf and scanf as defining

two interpreters (Friedman and Wand 2008) of a domain-specific language of format

descriptors.

First we have to choose the representation for nilD and consD. The most obvious

choice – to identify them with the constructors [] and (::) of ordinary OCaml lists –

is problematic. The primitive descriptors such as charP and intP have different types

and cannot be put into the same ordinary list. The corresponding elements of the argu-

ment sequence may also be of different types. Furthermore, we would like inconsistent

formatting expressions such as

printf (consD int nilD) (consA ’c’ nilA)

to be rejected by the type-checker as ill-typed. Therefore, we must avoid the universal

type and keep the sequences of descriptors and of arguments heterogeneous.

The view of format descriptors as a DSL offers the needed insight. To be able

to statically reject printf expressions where the number or the types of elements in

the argument sequence do not match the format descriptor, we should make our DSL

typed and its interpreter printf type-preserving. We can implement such a typed DSL

and type-preserving interpreter in two ways – a deep or initial embedding (Goguen

et al. 1978), or a shallow or final embedding (Hudak 1996; Kamin 1983; Wand 1979).
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Main functions:

printf nilD nilA = nilS
printf (consD dP desc) (consA x lst) = consS (dP x) (printf desc lst)

scanf nilD nilS = nilA
scanf (consD dS desc) (consS s lst) = consA (dS s) (scanf desc lst)

Format directives dP for printf:

(* litP : string -> unit -> string *)
let litP s = fun () -> s

(* intP : int -> string *)
let intP = fun i -> string_of_int i

(* charP : char -> string *)
let charP = fun c -> string_of_char c

Format directives dS for scanf:

(* litS : string -> string -> unit *)
let litS s = fun s’ -> assert (s = s’); ()

(* intS : string -> int *)
let intS = fun s -> int_of_string s

(* charS : string -> char *)
let charS = fun s -> char_of_string s

Expected behavior:

printf [intP; litP "-th character after "; charP; litP " is "; charP]D
[5; (); ’a’; (); ’f’]A

= ["5"; "-th character after "; "a"; " is "; "f"]S
scanf [intS; litS "-th character after "; charS; litS " is "; charS]D

["5"; "-th character after "; "a"; " is "; "f"]S
= [5; (); ’a’; (); ’f’]A

Fig. 2 The uniform specification

The initial embedding relies on a generalized algebraic data type (GADT) (Xi et al.

2003). We instead use the final embedding, which can be easily implemented in OCaml

(Carette et al. 2009).

The final embedding implements a typed interpreter as a fold over DSL terms.

At first blush, printf does not seem to be a fold. Rather, it is zipWith (with the

restriction that two lists must have the same size). The function zipWith has the

following specification.

zipWith f nil nil = nil

zipWith f (cons x l1) (cons y l2) = cons (f x y) (zipWith f l1 l2)

(where nil and cons are abstract sequence constructors). Comparing to Figure 2, we

see that both printf and scanf are instances of zipWith whose first argument f is

function application.

However, we can easily transform zipWith into a fold. First, we re-write the above

specification of zipWith as follows:
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zipWith f nil = fun nil -> nil

zipWith f (cons x l1) = fun (cons y l2) ->

cons (f x y) ((zipWith f l1) l2)

(implicitly relying on some sort of pattern-matching in the argument of the function.

We fix the exact form of that later.) We re-write further as:

zipWith f nil = fun nil -> nil

zipWith f (cons x l1) = (fun x -> fun t ->

fun (cons y l2) -> cons (f x y) (t l2))

x (zipWith f l1)

Comparing this expression with the specification for the fold

fold g z nil = z

fold g z (cons x l1) = g x (fold g z l1)

we see that zipWith is an instance of fold:

zipWith f = fold g z

where g x t = fun (cons y l2) -> cons (f x y) (t l2)

z = fun nil -> nil

That conclusion is formally justified by the universality of fold (Hutton 1999). Thus

we can re-write the specification of printf (Figure 2 or §2.4) in terms of fold:

printf desc args = fold g z desc args

where g dP tD = fun (consA y l2) -> consS (dP y) (tD l2)

z = fun nilA -> nilS

The reformulation using fold gives us insight into a well-typed implementation. Let

us take an example of applying printf to a sample descriptor sequence:

printf (consD int (consD char nilD))

= {inline the definition of printf}

fold g z (consD int (consD char nilD))

= {apply the equational specification of fold}

(g int (g char z))

Informally, the net effect of fold is indeed replacing the sequence constructors consD

and nilD with g and z (Hutton 1999). Recall that consD and nilD have deliberately

been left unspecified, appearing in the specification as free identifiers. We can avoid the

building of the sequence using some consD and nilD and the subsequent replacement

of these constructors with g and z if we choose consD as g and nilD as z to begin with.

Our sample descriptor sequence [int; char]D becomes (g int (g char z)), which is

identical to the result of the printf application on the last line in the derivation above.

With this choice for the descriptor sequence constructors, printf becomes the identity.

In other words, we have applied deforestation (Wadler 1990) to replace intermediate

trees, namely format descriptors, by their printf interpretation. Since we no longer

have to build these intermediate trees, we no longer have any typing problems of

building heterogeneous data structure. Carette et al. (2009) elaborate on using similar

deforestation to resolve the typing problems in representing DSL expressions.

By choosing the tuple-encoding for the argument sequence (that is, setting nilA

to be () and consA x y to be (x,y) so that we can pattern-match on nilA and

consA x y), we obtain
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let consD dP tD = fun (y,l2) -> consS (dP y) (tD l2)

let nilD = fun () -> nilS

We can choose the nested tuple representation for the output sequence as well. This

gives us the real, well-typed OCaml implementation for printf, summarized in Fig-

ure 3. Our running example can now be written in OCaml. The format descriptor

(which we bind to the identifier descP1 for ease of reference) becomes

let descP1 = consD intP

(consD (litP "-th character after ")

(consD charP

(consD (litP " is ")

(consD charP

nilD))))

We use the descriptor to format a sample sequence of arguments (which we bind to

the identifier arg1 for ease of reference)

let arg1 = (5,((),(’a’,((),(’f’,())))))

obtaining the result

let r1 = printf descP1 arg1

which OCaml prints as

val r1 : string * (string * (string * (string * (string * unit)))) =

("5", ("-th character after ", ("a", (" is ", ("f", ())))))

We emphasize the type of descP1, which OCaml infers to be

int * (unit * (char * (unit * (char * unit)))) ->

string * (string * (string * (string * (string * unit))))

It is a function from a typed heterogeneous sequence of arguments to a sequence of

strings.

We can also choose nilS to be the empty string and consS to be the string con-

catenation, so that the formatting result becomes the familiar string.

The case for scanf is nearly identical and so we show only the final result of the

derivation, the OCaml implementation in Figure 3. The format descriptor for scanf is

built with the same sequence constructors nilD and consD but using different primitive

descriptors: intS rather than intP, etc. For example, the format descriptor for our

running scanf example is

let descS1 = consD intS

(consD (litS "-th character after ")

(consD charS

(consD (litS " is ")

(consD charS

nilD))))

whose inferred type is

string * (string * (string * (string * (string * unit)))) ->

int * (unit * (char * (unit * (char * unit))))

According to the type, descS1 is the inverse of descP1. Indeed, feeding the result of

the format output (which we bound to r1 earlier) to the format input
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Main functions:
let printf = fun x -> x
let scanf = fun x -> x

Constructors for the format descriptor sequence:

(* nilD : unit -> unit *)
let nilD = fun () -> ()

(* val consD : (’a -> ’b) -> (’c -> ’d) -> ’a * ’c -> ’b * ’d *)
let consD d tD = fun (y, l2) -> ((d y),(tD l2))

Constructors for the argument sequence:
let nilA = ()
let consA x y = (x,y)

Constructors for the result sequence:
let nilS = ()
let consS x y = (x,y)

Fig. 3 The tuple implementation. Primitive descriptors are implemented in Figure 2.

scanf descS1 r1

gives us

- : int * (unit * (char * (unit * (char * unit)))) =

(5, ((), (’a’, ((), (’f’, ())))))

which is the argument sequence arg1 used for producing the format output.

4 Typed scanf

In the previous section, we derived one implementation of typed printf and scanf,

achieving our goal of reporting the mismatch between the data to format and the

format descriptor as a type error. However, we fell short of implementing the interface

of OCaml’s built-in formatted-IO functions. In particular, we would like printf to

receive the data to format as successive curried function arguments rather than as

a nested tuple. We would like scanf to pass the parsed data to a consumer function

rather than returning them as a nested tuple. What’s more, we would like scanf to take

as input a string or a stream rather than an already appropriately tokenized sequence.

In this section, we adjust the earlier derivation of scanf and attain our desideratum:

an implementation of scanf that matches the interface of OCaml’s built-in formatted

input. We achieve this goal by instantiating the abstract sequences in various ways, not

just as nested tuples to pattern-match against, but also as abstract types equipped with

deconstructor functions. We follow the pattern demonstrated in (Kohlbecker and Wand

1987; Wand 1982a) of postulating properties (equational laws) that help transform

specifications in desirable ways, and then choosing concrete representations to fit the

properties. We exploit the freedom of choice for the representation to derive several

implementations of scanf, eventually attaining our desideratum. We deal with printf

in the next section.

We recall the general implementation of nilD and consD for scanf:
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let nilD = fun nilS -> nilA

let consD d tD = fun (consS y l2) -> consA (d y) (tD l2)

The scanf of the previous section was obtained as we set nilS and nilA to be () and

consA and consS to be the tuple constructor. We will make a different choice in this

section.

4.1 Moving input deconstruction into primitive format descriptors

We start by examining the pattern-matching in the definition for nilD and consD

above. The pattern-match in fun nilS -> nilA means checking if the argument of

the function matches nilS: in other words, if the input is finished. Unconsumed input

signifies the inconsistency with the format descriptor nilD. We can also write this check

as fun x -> is_nilS x; nilA, assuming an assertion is_nilS that checks if the input

is finished, raising a compile- or a run-time error otherwise. Similarly, we can re-write

the pattern-match in the definition of consD using a function un_consS that checks to

see that the input is not finished, returning the current item along with the remainder;

see Figure 4.

Using deconstructors to define nilD and consD

let nilD = fun x -> is_nilS x; nilA
let consD d tD = fun x -> let (y,l2) = un_consS x in

consA (d y) (tD l2)

Properties of deconstructors

is_nilS nilS = ()
un_consS (consS y l) = (y,l)

Fig. 4 Sequence deconstructors: is nilS and un consS

So far, we merely restated the earlier definition for nilD and consD, using deconstructor

functions rather than pattern-matching. The deconstructor functions must satisfy the

specification expected of pattern-matching, that is, is_nilS x succeeds if and only if

x is the empty sequence nilS; for any y and the sequence l so that consS y l (is well-

typed and) terminates, un_consS (consS y l) (is well-typed and) terminates with the

value (y,l).

If the sequence of strings is the nested tuple, as was the case for Figure 3, then the

deconstructors are

let is_nilS () = ()

let un_consS (h,t) = (h,t)

They clearly satisfy the expected properties (Figure 4): e.g., is_nilS x succeeds if

and only if x is the empty sequence nilS, that is, (). In fact, is_nilS x is not even

well-typed if x is not (). Substituting these deconstructors in the definition for nilD

and consD in Figure 4, we recover the implementation in Figure 3.

The introduction of deconstructors offers a different perspective on nilD and consD.

We may view the sequence of strings as an “input stream”. The function is_nilS

checks that the stream is finished. The function un_consS “reads” from the (non-

empty) stream, returning the pair of the current element and the rest of the stream.
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The operation consD d tD as defined in Figure 4 could be understood as reading from

the stream x, passing the read string value y to the primitive descriptor d for parsing,

processing the rest of the input, and building the output using consA. The following

diagram visualizes this data flow.

un consS

d

tD

consA

y

l2

x

In this definition of consD, the input token y extracted by un_consS is used only

once: it is passed to the primitive descriptor d. We see a chance to fuse the deconstruc-

tion of the input with the parsing of the token:

let consD d’ tD = fun x -> let (v,l2) = d’ x in

consA v (tD l2)

That is, we re-define the primitive descriptors (the element of the descriptor sequence),

notated as d’ above so they “read” from the input stream themselves. To be precise,

the primitive format descriptors for scanf are to take the input sequence, parse the

current item and, if successful, return the parsing result along with the remainder of

the input sequence:

let litS s = fun x ->

let (y,l2) = un_consS x in

assert (s = y); ((),l2)

let intS = fun x ->

let (y,l2) = un_consS x in

(int_of_string y,l2)

let charS = fun x ->

let (y,l2) = un_consS x in

(y.[0],l2)

Compared with the earlier definition in Figure 2, the new format descriptors invoke

un_consS themselves. The significance of the new definitions is that the reading of the

input stream is no longer done generically by consD. Rather, each primitive descriptor

such as litS reads the input stream in its own way.

d’

tD

consA

l2

v

x

When the input sequence is a nested tuple of string fragments, it is not so useful

for primitive descriptors to read and parse the input sequence in their own ways. To

actually use this new flexibility, we represent the input sequence differently. Instead of

a nested tuple, we take it to be a single string:

let nilS = ""

let consS = (^)

let is_nilS x = assert (x = "")



14

The empty sequence is the empty string and consS is string concatenation. The de-

constructor is_nilS verifies that its argument is the empty string. The deconstructor

un_consS splits a non-empty string into a prefix and a suffix. Since the splitting can

be done in many ways, the deconstructor un_consS is generally a relation rather than

a function. Therefore, the second property in Figure 4 has to be relaxed: un_consS

relates consS y l to (y,l); that is, there is some way to deconstruct the sequence

consS y l to obtain the components y and l. Also, scanf may not always be able to

parse the string produced by printf using the same format descriptor: the string "12"

can be produced by formatting two numbers but should only be parsed as one number.

The fact that deconstructing the input is a relation complicates the derivation of

scanf. This is where it helps to move un_consS into the primitive descriptors. Infor-

mally, we may view un_consS as a non-deterministic function that generates various

prefixes of the input. A primitive descriptor tests the deconstruction candidates and

either accepts one of them or raises a parsing error. The primitive descriptor returns

the result of parsing the prefix along with the suffix of the input. For example, we

may view the format descriptor litS s as invoking un_consS inp to generate decon-

structions of the input string inp into a prefix y and the rest l. We then test if any

candidate y is equal to the string s. If so, we return the parsing result, (), along with l.

If not, we raise the exception Scan_error.

exception Scan_error of string

This generate-and-test process is easy to program deterministically: it simply checks if

the input string inp has the prefix s:

(* val litS2 : string -> string -> unit * string *)

let litS2 str = fun inp ->

if length str <= length inp &&

str = sub inp 0 (length str)

then ((), sub inp (length str) (length inp - length str))

else raise (Scan_error "lit")

Throughout the paper, we develop many versions of the code, illustrating different

approaches or progressive improvements. To tell the versions apart we attach a numeric

suffix to the names of the functions, for example, litS2. The suffix also makes it easy

to correlate the snippets in the paper with the complete code accompanying the paper.

We now see the benefit of moving un_consS into the primitive descriptors: by

bringing the generation (of input prefixes) and testing closer, we can make parsing

deterministic. A primitive descriptor charS accepts the single-character prefix of the

input string, returning the character as the parsing result. The descriptor intS accepts

the longest prefix of the input string that can still be parsed as an integer.

(* val intS2 : string -> int * string *)

let intS2 = ...

(* val charS2 : string -> char * string *)

let charS2 = fun inp ->

if length inp = 0

then raise (Scan_error "char")

else (inp.[0], sub inp 1 (length inp - 1))
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4.2 Returning parsing results as successive arguments

The input to scanf is now a string, but the result is still a nested tuple such as arg1.

In particular, it still contains dummy values. We may be tempted to write something

like the following

let consDS d tD = fun x -> let (vy,l2) = d x in

if vy = () then tD l2 else

consA vy (tD l2)

but that is clearly untypable because the expressions in the two branches of if generally

have different types (for example, different nested-tuple types).

To get rid of the dummy () in the resulting tuple, we fuse further, letting a primitive

descriptor itself construct the resulting sequence. For example, charS2 becomes:

(* val charS3 : (string -> ’a) -> string -> char * ’a *)

let charS3 = fun tD inp ->

if String.length inp = 0

then raise (Scan_error "char")

else consA inp.[0] (tD (String.sub inp 1 (String.length inp - 1)))

Previously, charS2 returned the pair of values (v,l2) to be used in the expression

consA vy (tD l2) constructing the final result. Now, we pass charS the remainder

of the format descriptor tD as an argument, and let it construct the final result by

invoking consA. The primitive descriptor now decides if to invoke consA or not. The

following diagram illustrates this change.

d

tD

x

The descriptor litS, which does not need to construct any output, would not invoke

consA:

(* val litS3 : string -> (string -> ’a) -> string -> ’a *)

let litS3 str = fun tD inp ->

if String.length str <= String.length inp &&

str = String.sub inp 0 (String.length str)

then tD (String.sub inp (String.length str)

(String.length inp - String.length str))

else raise (Scan_error "lit")

We re-define consDS to take advantage of the new primitive descriptors:

(* val consDS : (’a -> ’b -> ’c) -> ’a -> ’b -> ’c *)

let consDS d tD = fun x -> d tD x

Since the new primitive descriptors deconstruct the input sequence and construct the

output one, the new consD has nothing left to do. Indeed, it is just the identity function.

Our running example becomes
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let descS3 = consDS intS3

(consDS (litS3 "-th character after ")

(consDS charS3

(consDS (litS3 " is ")

(consDS charS3

nilDS))))

whose inferred type is string -> int * (char * (char * unit)). Here nilDS stands

for nilD shown earlier. Applying the descriptor to the input string

descS3 "5-th character after a is f"

returns the result (5, (’a’, (’f’, ()))). It is still the nested tuple but has no

dummy () (compare with arg1).

We still have not derived the OCaml-like sscanf, which should pass the parsed

data to a consumer function rather than returning them in a nested tuple. Therefore,

we chose a different representation for the sequence of parsed values. We re-define nilA

and consA as follows:

let nilA = fun f -> f

let consA h t = fun f -> t (f h)

For motivation, consider a sample sequence (consA x1 (consA x2 nilA)), which is

β-equivalent to fun f -> f x1 x2 – a sequence of arguments passed to a consumer

function. That is exactly how we would like to return the parsing results. Using this

new definitions of nilA and consA immediately gives us the desired implementation of

scanf, summarized in Figure 5.

Since consDS is the identity function, we may drop it when writing the format

descriptors. We then notice that the format descriptor is the functional composition

of primitive descriptors, applied to nilDS. The source code accompanying the paper,

the file derive5.ml, shows the further generalization, letting us parse data from an

arbitrary source (a string, a file stream, etc) while using the same format descriptor.

We observe in passing that the type of litS4 str is (string -> ’a) -> string ->

’a, which is the type of the CPS transform of a string -> string function. The

observation suggests that the argument tD may be regarded as a continuation.

5 Typed polyvariadic printf

We now turn to deriving the implementation of the OCaml-like printf outlined at the

beginning of §2.2 from the specification at the end of that section. We proceed in several

steps. We have already derived the tupling implementation, §3 and Figure 3; we now

refine it into the desired implementation. Like in §4, we will be instantiating the abstract

sequences in various ways. We will also perform simple program manipulations such as

inlining, uncurrying, and changing the argument order for the sake of later η-reductions.

An early and lucid example of such transformation-based program development is that

of Kohlbecker and Wand (1987). We make extensive use of a less simple transformation:

fusing an expression with a bit of its context so that local transformation strategies

can take advantage of global knowledge (Wand 1980b).
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Main function:
let scanf = fun x -> x

Constructors for the format descriptor sequence:
(* val nilDS : string -> ’a -> ’a *)
let nilDS = fun x -> is_nilS x; nilA

(* val consDS : (’a -> ’b -> ’c) -> ’a -> ’b -> ’c *)
let consDS d tD = fun x -> d tD x (* identity *)

Constructors for the result sequence:
let nilA = fun f -> f
let consA h t = fun f -> t (f h)

Primitive format descriptors:
(* val litS4 : string -> (string -> ’a) -> string -> ’a *)
let litS4 str = fun tD inp ->

if String.length str <= String.length inp &&
str = String.sub inp 0 (String.length str)

then tD (String.sub inp (String.length str)
(String.length inp - String.length str))

else raise (Scan_error "lit")

(* val intS4 : (string -> ’a -> ’b) -> string -> (int -> ’a) -> ’b *)
let intS4 = fun tD inp -> ...

(* val charS4 : (string -> ’a -> ’b) -> string -> (char -> ’a) -> ’b *)
let charS4 = fun tD inp ->

if String.length inp = 0
then raise (Scan_error "char")
else consA inp.[0] (tD (String.sub inp 1 (String.length inp - 1)))

Running example:
let descS4 = consDS intS4

(consDS (litS4 "-th character after ")
(consDS charS4

(consDS (litS4 " is ")
(consDS charS4

nilDS))))
(* val descS4 : string -> (int -> char -> char -> ’_a) -> ’_a *)

descS4 "5-th character after a is f" (fun x1 x2 x3 -> (x1,x2,x3))
(*
- : int * char * char = (5, ’a’, ’f’)
*)

Fig. 5 The final implementation of scanf.

5.1 Refined tupling implementation

Recall that the specifications of printf and scanf are very much alike: essentially,

we obtain one from the other by swapping consA with consS and nilA with nilS in

Figure 2. We can thus reuse the derivation for scanf in §4 mutatis mutandis. Since

the derivation has already been explained, here we will be brief. First, we write the

expressions for nilD and consD using the deconstructor functions:
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let nilD = fun x -> is_nilA x; nilS

let consD d tD = fun x -> let (y,l2) = un_consA x in

consS (d y) (tD l2)

Compared to the same expressions at the beginning of §4, we have swapped consA and

consS and replaced un_consS with un_consA. As we explained before, we move the

deconstruction of the argument sequence un_consA and the construction of the sequence

of strings consS into the primitive format descriptors. This immediately gives us the

implementation in Figure 6. As in §4, we represent the abstract sequence of strings

as a single string. The result of printf is now a string as desired. The arguments to

printf are still given as a nested tuple – which, however, no longer has dummy () for

the lit primitive descriptor, since litP3 does not call un_consA. As was the case with

the final scanf implementation, consD is just the identity, hence the format descriptor

is a functional composition of primitive descriptors, applied to nilD.

5.2 Polyvariadic printf, context-passing style

In this section, we transform the refined tupling implementation in Figure 6 to printf

that accepts values to format as function arguments rather than grouped into a nested

tuple. We effectively “curry” the implementation in Figure 6. The end result of our

derivation is essentially the result by Danvy (1998).

In the implementation of Figure 6, the descriptor sequence has the type (’a * (’b

* ...)) -> string, built from the primitive descriptors like

let intP3 = fun tD (n,l2) ->

consS (string_of_int n) (tD l2)

using the combining operator consDP (which is just the identity). Instead, we want the

descriptor sequence to have the curried type ’a -> ’b -> ... -> string. To obtain

this type, we need to curry fun (n,l2) -> ... in intP3 above, so that n and l2

become separate successive arguments, then somehow η-reduce l2 away because l2

represents an unknown number of successive arguments.

Let us try to blindly curry intP3, obtaining

let intP3’ = fun tD n l2 ->

consS (string_of_int n) (tD l2)

which is however problematic. Let us consider a sample sequence consDP intP3’

(consDP intP3’ nilDP), which is intP3’ (intP3’ nilDP). The function nilDP has

the type unit -> string. The inner occurrence of intP3’ therefore has the type

(unit -> string) -> int -> unit -> string. The outer occurrence of intP3’ should

therefore have the type of the form (int -> unit -> string) -> int -> ??? ->

string, leading to a contradiction. The inner intP3’ passed its argument tD one value,

unit, obtaining a string. The outer intP3’ now has to pass its argument tD two values

to get a string. Clearly we cannot write a polymorphic intP3’ that can be instantiated

to the two occurrences required by our example.

Our failed experiment showed that the curried intP3 should pass its argument tD

a variable number of arguments to obtain a string. We cannot write such a function

using the regular parametric polymorphism of the Hindley-Milner type system. Thus

the new intP3 should not try to obtain the intermediate formatting result from tD, to

which to prepend string_of_int n, the result of the formatting of its own argument.
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Main function:
let printf = fun x -> x

Constructors for the format descriptor sequence:
(* val nilDP : unit -> string *)
let nilDP = fun x -> is_nilA x; nilS

(* val consDP : (’a -> ’b -> ’c) -> ’a -> ’b -> ’c *)
let consDP d tD = fun x -> d tD x (* identity *)

Deconstructors for the argument sequence:
let is_nilA = fun () -> ()
let un_consA x = x

Constructors for the result sequence:
let nilS = ""
let consS h t = h ^ t

Primitive format descriptors:
(* val litP3 : string -> (’a -> string) -> ’a -> string *)
let litP3 str = fun tD arg ->

consS str (tD arg)

(* val intP3 : (’a -> string) -> int * ’a -> string *)
let intP3 = fun tD arg ->

let (n,l2) = un_consA arg in
consS (string_of_int n) (tD l2)

(* val charP3 : (’a -> string) -> char * ’a -> string *)
let charP3 = fun tD arg ->

let (c,l2) = un_consA arg in
consS (string_of_char c) (tD l2)

Running example:
let descP3 = consDP intP3

(consDP (litP3 "-th character after ")
(consDP charP3

(consDP (litP3 " is ")
(consDP charP3

nilDP))))
(* int * (char * (char * unit)) -> string *)

descP3 (5,(’a’,(’f’,())))
(*
- : string = "5-th character after a is f"
*)

Fig. 6 The refined tupling implementation of printf.

Instead of asking tD to produce a string, the new intP3 should tell tD to prepend

string_of_int n to tD’s result after it is finally computed. Thus the new intP3 should

be written in the accumulator-passing style for the result of the formatting.

Now that we know the general form of the desired primitive descriptors, we can

derive them, by a sequence of two transformations. First, we choose a slightly different

representation for the string sequence. It is no longer a string. Rather, it is a function

that receives a string (an accumulator) and appends to it. In short, the S-sequence is

now a difference string:
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let nilSC4 = fun acc -> acc

let consSC4 h t = fun acc -> t (acc ^ h)

(We shall use the version suffix C4, C5, etc. to emphasize that we are developing context-

passing implementations.) Using the accumulator opens up new optimizations, such as

accumulating string fragments and delaying or avoiding the expensive string concate-

nation operation. We postpone the optimizations however. Inlining consSC4 into intP3

yields

let intPC4 = fun tD (n,l2) acc ->

(tD l2) (acc ^ (string_of_int n))

That is, the descriptor sequence such as intPC4 tD is a function of two arguments,

(n,l2) and acc. To make (n,l2) the last argument and bring l2 in the position

suitable for the η-reduction, we flip the order of the arguments acc and (n,l2):

let intPC5 = fun tD acc (n,l2) ->

tD (acc ^ (string_of_int n)) l2

(we keep in mind that tD is the rest of the descriptor sequence, which, after flipping

the argument order, too takes acc as the first argument). At last, we can curry intPC5

and η-reduce l2:

let intPC6 = fun tD acc n ->

tD (acc ^ (string_of_int n))

Analogously, we inline nilSC4 into the definition of nilDP and flip the argument order:

let nilDPC6 = fun acc () -> acc

Throughout these transformations, consDP remains the identity function:

let consDPC6 d tD = fun acc -> d tD acc

The main function printf was defined in Figure 6 to be the identity function. We

have changed the S sequence to be a difference string, but we still want printf to

return an ordinary string. We have to change printf to pass the empty string as the

accumulator. The flip in the argument order makes the accumulator the first argument

of the descriptor sequence, so that new printf becomes

let printfC5 desc args = desc "" args

or, η-reduced,

let printfC6 desc = desc ""

The running example now reads

let descPC6 = consDPC6 intPC6

(consDPC6 (litPC6 "-th character after ")

(consDPC6 charPC6

(consDPC6 (litPC6 " is ")

(consDPC6 charPC6

nilDPC6))))

whose inferred type is string -> int -> char -> char -> unit -> string. Com-

parison with the type of descP3 in Figure 6 shows that we have achieved our goal to
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Main function:
(* val printfC7 : ((’a -> ’a) -> string -> ’b) -> ’b *)
let printfC7 desc = desc (fun x -> x) ""

Primitive format descriptors:
(* val litPC7 : string -> (string -> ’a) -> string -> ’a *)
let litPC7 str = fun tD acc ->

tD (acc ^ str)

(* intPC7 : (string -> ’a) -> string -> int -> ’a *)
let intPC7 = fun tD acc n ->

tD (acc ^ (string_of_int n))

(* charPC7 : (string -> ’a) -> string -> char -> ’a *)
let charPC7 = fun tD acc c ->

tD (acc ^ (string_of_char c))

Infix operator for functional composition:
(* val ( ^^ ) : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b *)
let (^^) f g = fun x -> f (g x)

Running example:
let descPC7 = intPC7 ^^ (litPC7 "-th character after ") ^^ charPC7 ^^

(litPC7 " is ") ^^ charPC7
(* val descPC7 : (string -> ’_a) -> string -> int -> char -> char -> ’_a *)

printfC7 descPC7 5 ’a’ ’f’
(*
- : string = "5-th character after a is f"
*)

Fig. 7 The polyvariadic context-passing implementation of printf.

curry the tupling implementation. The expression printfC6 descPC6 5 ’a’ ’f’ ()

prints the desired output.

It is inconvenient to have to terminate the argument sequence with the dummy

(), which corresponds to the empty argument sequence in the tupling implementa-

tion. We can trace the dummy () to nilDPC6, which makes sure that the argument

sequence is ‘terminated’. This termination of the argument sequence is not needed:

the type of the descriptor sequence, for example, descPC6, shows that we cannot ob-

tain the formatting result of the desired type string if we pass to printf more or

fewer arguments than specified in the descriptor. The type checker will point out that

error. Therefore, nilDP becomes the identity function. Since consDPC6 is the identity

too, we see that the descriptor sequence such as descPC6 is the functional composition

of primitive descriptors applied to nilDP. We thus obtain the desired implementation

summarized in Figure 7, which is essentially the result by Danvy (1998). The complete

derivation is in the file derive6.ml in the accompanying code. The string accumulator

acc is a data-structure continuation (Wand 1980b) that represents a context of the

form consS s1 (... (consS sn []) ...).
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6 ‘Direct-style’ polyvariadic printf implementations

The implementation in Figure 7 fulfills our desiderata for a typed printf that takes

a variable number of arguments whose types and number match the format descrip-

tor. We have attained our goals, and can stop now. We would like however to get a

fuller picture and derive a different group of printf implementations. They, too, are

polyvariadic and statically assure that the types and the number of the arguments

match the format descriptor. The implementations in this section are in a so-called ‘di-

rect style’, in contrast to the implementation in Figure 7, which is in a context-passing

style. The context in question is the context represented by the string accumulator acc.

Primitive descriptors such as intPC7 (see Figure 7) take the current value of acc as the

explicit argument, and pass the augmented acc to the rest of the descriptor sequence,

represented by tD. (Since acc can be regarded as a data-structure continuation (Wand

1980b), the implementation in Figure 7 can be regarded as a CPS implementation.)

At the end of the present section, we derive an implementation, Figure 9, in which

the primitive descriptors look like

let litP7 str = fun () -> str

let intP7 = fun () ->

let n = shift (fun k -> k) in

string_of_int n

with no accumulator to pass around. The rest of the descriptor sequence is implicit too

in the evaluation context of intP7 rather than being given as the explicit argument tD.

Such an implementation, aptly called ‘direct style’, is more concise, as is generally the

case (Asai 2009). The elegance of direct-style implementations is one reason to consider

them. Direct-style implementations have less ‘bureaucracy’ – auxiliary arguments such

as acc to be passed around. Therefore, direct-style implementations are arguably (Asai

2009) easier to use.

Finally, direct-style implementations are insightful because of a duality between

direct and continuation-passing styles. In CPS, the ‘consumer’ of intPC7’s formatting

result is acc, passed explicitly to intPC7 as an argument. In direct style, the consumer

of intP7’s result is the implicit context of its invocation. The descriptor intP7 uses

control operators such as shift above to turn the implicit context into an explicit

function. This transformation, reification, has been introduced by Friedman and Wand

(1984). The correspondence between CPS and direct style, in the typed setting, was

first studied by Meyer and Wand (1985); Wand (1985).

We derive several direct-style implementations of printf; while some of them are

known and have been described elsewhere (Asai 2009), the others are novel. In partic-

ular, the implementations using so-called multi-prompt delimited control are new and

surprising. All in all, we derive four implementations, which can be arranged in two

groups. The implementations of the first group require applying printf to the values

to format inside a so-called ‘reset’. That requirement is an imposition, overcome in

the implementations of the second group, in §6.3, which are derived by considering the

argument sequence to be a context rather than a data structure. Within each group,

we show one implementation using the delimited continuation operators shift/reset

and one using multi-prompt shift/reset. Only the implementations using multi-prompt

shift/reset can be written in OCaml as it is.
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Our starting point, as in §5.2, is the refined tupling implementation in Figure 6.

Since we want to move away from passing to printf the values to format as a nested

tuple, we try a different representation for the argument sequence, the one we used for

scanf, in Figure 5. We recall this representation below:

let nilA = fun f -> f

let consA h t = fun f -> t (f h)

The sequence [1; 2]A is concretely represented as fun f -> f 1 2. To use this repre-

sentation in printf, we need to define the deconstructors of the sequence, in particular,

un_consA. The deconstructor should satisfy the property that for all h and t such that

consA h t is well-typed, un_consA (consA h t) is well-typed and evaluates to (h,t).

Since consA h t is a function, we can only apply it. If we apply the function to some

argument f, we obtain the value t (f h). We should now choose f so to get the desired

result (h,t). At first glance, such f does not exist. Although the value h is passed to

f as an argument, the value t is available only from the context of f h. There does

not seem to be a way for a function to grab the value from its context. That is where

delimited control helps.

6.1 Delimited control

Delimited control is the generalization of exceptions, or, to be precise, of restartable

exceptions of Common Lisp. The expression <e> (pronounced “reset e”) is quite like

try e with ex -> ex: if e raises no exceptions during evaluation, both forms, reset

and try, are equivalent to e. In particular, for any value v, <v> evaluates to v. Excep-

tions – or, in general, control effects – are raised by the function shift. The function

takes one argument, which is a function itself. The application shift (fun _ -> v) is

equivalent to raise v. Therefore,

<(1 + shift (fun -> 10))>

just like

try 1 + raise 10 with ex -> ex

evaluates to 10. Like exceptions in Common Lisp, the ‘exception’ raised by shift is

restartable. When the application shift (fun k -> e) is evaluated, the variable k is

bound to a function that restarts the exception. Informally, when k is applied to a

value v, the application shift (fun k -> e) in the original expression is replaced by

v, the evaluation continues and the value returned by the closest < > block becomes the

result of k v. For example, <1 + shift (fun k -> k 10)> is equivalent to <let k x

= <1 + x> in k 10> and evaluates to 11: the ‘exception’ raised by shift is restarted

with the value 10. The example can be re-written as (<1 + shift (fun k -> k)>) 10,

demonstrating that the restart function, bound to k, can be returned as the value of the

< > expression and invoked later. The restart function is truly a regular function: it can

be returned as a value, passed as argument to other functions, stored in data structures,

and can be applied several times. These features distinguish delimited control from

Common Lisp exceptions: the latter may be restarted only once and only when control

remains within the scope of the exception-handling block. Restarting a shift-raised

‘exception’ several times lets us emulate non-determinism. We do not use multiple

restarts in the present paper however; we do crucially depend on the ability to re-enter
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Ordinary delimited control:
<v> ≡ v for any value v
<C[shift v]> ≡ <v (fun x -> <C[x]>)>

Multi-prompt delimited control:
<v>p ≡ v for any value v
<Cp[shiftp v]>p ≡ <v (fun x -> <Cp[x]>p)>p

Fig. 8 Ordinary and multi-prompt delimited control. Context C[] is a term with a hole that
contains no < > around the hole. Context Cp[] contains no < >p of the sort p around the hole,
but may contain < >p′ of other sorts p′ around the hole.

an exception-handling block after it has finished; we shall see the tell-tale pattern

shift (fun k -> k) many times. More formally the semantics of delimited control is

described in Figure 8. The figure also shows the generalization of delimited control to

‘exceptions’ of several sorts (identified by so-called prompts p): an exception raised by

shiftp v is caught by the closest enclosing < >p of the same sort p (Dybvig et al. 2007;

Gunter et al. 1995).

We can now define un_consA. Recall that our goal is to find a function f such

that the application ((fun f -> t (f h)) f) would evaluate to a pair (h,t) for any

h and t of appropriate types. The difficulty was obtaining t from the context of the

application f h. By specializing the equations in Figure 8 we obtain <t (shift v)>

is equivalent to <v (fun x -> <t x>)> for some v. Thus shift resolved the difficulty,

obtaining the needed t (or, (fun x -> <t x>), which is almost the same) from the

context of the application of shift v and giving it to v as the argument. What remains

is to choose the hitherto ‘free’ v so to satisfy the property of un_consA. This leads to

the following definition:

un_consA x = <x (fun h -> shift (fun t -> (h,t)))>

It is straightforward to verify that un_consA (consA h t) is equal to (h,fun x -> <t

x>). Although the result differs from the desired (h,t), the difference is, fortunately,

insignificant. The value t is of the type sequence; in fact, it is the tail of the sequence

consA h t. The only operations on an argument sequence within printf are passing

the sequence to the functions is_nilA and un_consA. (We could have used the ML

module system and abstract types to ensure that the values constructed by consA and

nilA could be analyzed only by un_consA and is_nilA, or passed around.) As we just

saw, un_consA t is <t (fun h -> ...)>. It is easy to conclude from Figure 8 that < >

is idempotent, and so un consA t is equivalent to un consA (fun x -> <t x>).

It only remains to define is_nilA, which should satisfy the property that is_nilA x

terminates if and only if x is the empty sequence, that is, fun x -> x. The following

weaker check is sufficient.

let is_nilA x = x ()

Indeed, if x is the identity, is_nilA x obviously terminates and returns the desired

result (). If x is a non-empty sequence (that is, has the form fun f -> f arg1 ...),

then is_nilA x is ill-typed.

Substituting thus defined un_consA and is_nilA into Figure 6 gives us a new

implementation of printf. We obtain

printf [intP4; litP4 "-th character after "; charP4; litP4 " is "; charP4]D
[5; ’a’; ’f’]A

= "5-th character after a is f"
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That is still not quite what we want, because printf is not a polyvariadic function.

It receives, besides the descriptor, just one argument: [5; ’a’; ’f’]A, which is a

function fun f -> f 5 ’a’ ’f’. Again delimited continuations help. Let us see if we

can define printf in such a way that the polyvariadic printf desc arg1 ... becomes

equivalent to our current formulation desc (fun f -> f arg1 ...). That is possible

if we enclose the whole printf expression in reset and observe that <shift v arg1

...> is equivalent to <v (fun x -> <x arg1 ...>)>. We again appeal to the fact that

if all the uses of the argument sequence t is passing it to un_consA and is_nilA, then

t and fun x -> <t x> are equivalent. We thus obtain

let printf desc = shift desc

and so

let descP4 = [intP4; litP4 "-th character after "; charP4;

litP4 " is "; charP4]D
in <printf descP4 5 ’a’ ’f’>

evaluates to the desired string "5-th character after a is f". We have just ob-

tained a novel implementation of printf using delimited control. The implementation

is typed, as we see next. A crucial step in the derivation was reification (Friedman and

Wand 1984): we reified the context of the printf application, [] arg1 arg2 ..., into

a term, a function fun f -> f arg1 arg2 ....

6.2 Types of delimited control

We have so far ignored the typing of delimited control, which is a rather delicate

matter. Meyer and Wand (1985); Wand (1985) gave the first typed treatment of con-

tinuations. Danvy and Filinski (1989) then developed it further for shift/reset, and

Asai and Kameyama (2007) later generalized it to polymorphic shift/reset. Since we

are implementing printf in the typed language OCaml, the typing is of immediate

interest.

To type an expression involving shift/reset, we need to keep track of not only

the type of the expression but also the answer type of its context. We describe the

answer type on the example of <if shift (fun k -> M) then 1 else 2> where M

is some term. To type (fun k -> M) in this expression, we need to know the type

of k. Since shift (fun k -> M) appears in the context of the test expression of the

if statement, the shift expression must have the type bool. Hence, if the ‘exception’

raised by shift here is to be restarted, it must be resumed with a boolean value.

Therefore, k is a function whose argument type is bool. To find the result type of k,

we should look farther – to the whole expression enclosed by reset, which is the whole

if expression in our case. The type of the expression is int. Thus k has the type bool

-> int. The type of the surrounding reset expression, i.e., int in this case, is called

the answer type. Therefore, we can successfully type the expression <if shift (fun k

-> k false) then 1 else 2>, which is equivalent to <let k x = <if x then 1 else

2> in k false>.

Suppose however that M in the above example is string_of_int (1 + (k false)).

According to Figure 8, the whole reset-expression is equivalent to <let k x = <if x

then 1 else 2> in <string of int (1 + (k false))>> and evaluates to the string

value "3". Although the captured continuation k returns a value of type int, the whole

expression returns a result of type string. That is, the answer type has been changed.
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There is nothing wrong with this answer-type modification. Although the context

had originally int as its answer type, it was captured as a composable function, bound

to k, and removed from the current context completely. The answer type int is then

just the type of the codomain of k, unrelated to the answer type where k is invoked.

The answer type where k is invoked is determined by M only, and it need not be the

same as before. Thus, to type expressions with shift/reset, we need to keep track of an

answer type as well as how it is modified by shift.

We need the answer-type modification to type un_consA. Indeed, the type of consA

is ’a -> (’b -> ’c) -> (’a -> ’b) -> ’c. Therefore, in an expression <(consA h

t) (fun h -> shift (fun t -> (h,t)))> the application of consA h t has the type

’c so that t has the type ’b -> ’c. However, the control effect of shift changes the

type of the whole expression from ’c to ’a * (’b -> ’c), the type of the pair (h,t).

Implementing shift/reset with the answer-type modification is difficult within the

existing ML system. Essentially, we need effect typing: we need to assign an expression

not only the type of its value, but also the type of its effect (the answer type and

its change). Incorporating such effect types is a non-trivial change to the existing

type checker. For example, to implement shift/reset in the MinCaml compiler, Masuko

and Asai (2009) had to replace the type system completely to incorporate answer

types. Although it is a straightforward extension of Hindley-Milner type system, how

to incorporate more sophisticated constructs such as modules is not clear. We can

however embed the calculus of Asai and Kameyama (2007) in Haskell, using so-called

parameterized monads. The embedding lets us implement un consA and printf of §6.1,

which we demonstrate in the file Derive5.hs of the accompanying code.

Less intrusive to typing are so-called multi-prompt delimited control operators,

mentioned in Figure 8 (Dybvig et al. 2007; Gunter et al. 1995). They have been imple-

mented in OCaml (Kiselyov 2010). The implementation provides so-called prompts,

which are typed values to mark the ‘flavor’ of reset and shift. The control op-

eration shiftp e is written in code as shift p e, where p is the prompt; <e>p is

written as push_prompt p (fun () -> e). New prompts are created by the operation

new_prompt (). The advantage of introducing explicit prompts is the straightforward

typing of the control operators:

val new_prompt : unit -> ’a prompt

val shift : ’a prompt -> ((’b -> ’a) -> ’a) -> ’b

val push_prompt : ’a prompt -> (unit -> ’a) -> ’a

The typing is a bit ‘simplistic’ as noted already in (Gunter et al. 1995): a well-typed

code can still attempt to evaluate shiftp e outside any enclosing <·>p, which leads to a

run-time error, quite like an ‘uncaught exception’. In contrast, the system of Danvy and

Filinski (1989) for single-prompt shift/reset prevents such run-time errors, by simply

enclosing the whole expression into <·>.

A prompt value has the type ’a prompt where ’a is the answer type. Clearly the

system supports no answer-type polymorphism or answer-type modification: all control

operations dealing with the prompt p have the same answer type, included in the type

of p. In particular, in the type of shift above, the type ’a appears both as the type of

the codomain of the captured continuation and as the final answer type. The question

emerges if un_consA and the printf implementation of §6.1 can at all be written in

OCaml. The answer turns out affirmative: in some situations, the ability to create

arbitrarily many typed prompts makes up for the lack of answer-type modification: the

quantity of prompts makes up for their quality.
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The OCaml definition for un_consA is as follows

(* val un_consA : ((’a -> ’b) -> ’c) -> ’a * (’b -> ’c) *)

let un_consA x =

let pr = new_prompt () in

let p = new_prompt () in

push_prompt pr (fun () ->

push_prompt p (fun () ->

x (fun h -> shift p (fun t -> abort pr (h,t))));

failwith "unreachable")

The inferred type (shown in the comments) confirms its operation. Here

let abort p v = shift p (fun _ -> v)

raises the ‘exception’ v to be caught by the closest enclosing <·>p.

If we disregard abort pr and failwith for a moment, the definition looks the same

as un_consA in §6.1. As we explained earlier, the application x (fun h -> ...) has the

type ’c – which is the type of the push prompt p (fun () -> ...) expression – the

answer type associated with the prompt p. However, we want to return (h,t), which is

of a different type ’a * (’b -> ’c). Our only choice to communicate this value is to

‘throw’ it as an exception, to be caught by the enclosing push prompt pr (fun () ->

...). Since the expression in the body of the latter push_prompt returns by aborting

rather than normally, we can insert the failwith expression. The latter expression

never returns, and so can be given an arbitrary type. The net effect is the ‘change’ of

the type of the body from ’c (the type of push prompt p (fun () -> ...)) to the

type ’a * (’b -> ’c). The demonstrated pattern – aborting to an auxiliary prompt

pr and using failwith to ‘change’ the type – appears quite general; in particular, it

was used by Kiselyov et al. (2006; Sec 5.2).

The appearances of failwith and abort remind us that the correctness of this

emulation of the answer-type modifying delimited control has to be shown separately,

as we have just outlined. Previously we have relied on the type system for justification

of our derivations, for instance, of un consA of §6.1. To prove that for all h and t,

fst (un consA (consA h t)) is equal to h we merely had to look at the type of that

expression in the calculus of Asai and Kameyama (2007) (keeping in mind that the

calculus is strongly normalizing and relying on parametricity). We can no longer justify

the same way the correctness of un_consA written with multi-prompt delimited control;

a more elaborate argument is required. Once it is shown that un_consA satisfies the

property of the sequence deconstructor, using un_consA gives the typed printf with the

same static assurances as the other implementations. The accompanying code presents

the complete OCaml implementation for printf at the end of §6.1. It has not been

known before.

6.3 Deriving polyvariadic printf

We have almost achieved a polyvariadic printf that accepts the values to format as

function arguments. However, we have to enclose the whole printf expression in reset.

Here we derive a different implementation of direct-style polyvariadic printf, which

corresponds to the context-passing implementation of §5.2. Unlike the latter, we es-

chew the conversion to the accumulator-passing style and flipping of the argument
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order. We start again with the refined tupling implementation in Figure 6 and adjust

it by replacing the nested tuple implementation of the argument sequence with a dif-

ferent one. In other words, we choose the deconstructors un_consA and is_nilA so to

obtain the desired printf. We desire printf that can be used like D[printf (consDP

intP (consDP charP ...)) 1 ’c’ ...] where D[] is the context of the whole pro-

gram. Since intP includes un_consA (see Figure 6), the above expression reduces to D[

C[un consA arg] 1 ’c’ ...] where C[] is some evaluation context and arg stands for

a value being passed to un_consA. Recall that one may view un_consA arg as ‘read-

ing’ from a stream described by a ‘handle’ arg. Here, the stream is the sequence of

arguments applied to printf. The argument sequence received by printf turns out

to be a context rather than a term. Now, we would like the above expression to re-

duce to D[ C[(1,arg)] ’c’ ...], the result of ‘reading’ the argument 1. We obtain

the specification for the desired un_consA: C[un consA arg] should reduce to fun y ->

C[(y,arg)]. Examining the reduction rules for shift in Figure 8 shows a way to satisfy

the specification, if we assume that the context C[] is enclosed in a reset. The assump-

tion is easy to satisfy by defining the main function printf to introduce the required

reset around the descriptor sequence. We thus arrive at the following deconstructors:

is_nilA1 arg = ()

un_consA1 arg = shift (fun k -> fun y -> k (y,arg))

We can substitute the above definition into intP3 obtaining

let intP5 = fun tD arg ->

let (n,arg) = shift (fun k -> fun n -> k (n,arg)) in

consS (string_of_int n) (tD arg)

A few straightforward simplifications immediately suggest themselves. First we

observe that arg, the argument sequence handle, is simply passed around never to be

examined. We can set arg to be a fixed value, for example, ():

let intP5 = fun tD () ->

let n = fst (shift (fun k -> fun n -> k (n,()))) in

consS (string_of_int n) (tD ())

which we simplify further by using a law fst (shift f) ≡ shift (fun k -> f (fun

x -> <k (fst x)>)) derivable from the axioms of Kameyama and Hasegawa (2003).

The sub-expression fst (shift (fun k -> fun n -> k (n,()))) thus becomes shift

(fun k -> fun n -> k n), which simplifies further by η-reducing the argument of

shift. We obtain:

let intP5 = fun tD () ->

let n = shift (fun k -> k) in

consS (string_of_int n) (tD ())

The primitive descriptor litP3 does not invoke un_consA and hence remains the

same:

let litP5 str = fun tD () ->

consS str (tD ())

By inlining is_nilA1 into nilDP of Figure 6, we obtain the expression for the empty

descriptor sequence

let nilDP5 = fun () -> nilS
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The descriptor sequence is a function of a dummy argument, a thunk. The main func-

tion printf needs to force the thunk, not forgetting to introduce reset:

let printf desc = <desc ()>

We are very close to achieving our desiderata (put forth at the beginning of §6)

and deriving the implementation of printf that avoids threading through of not only

the accumulator but also of the rest of the descriptor sequence. We want the rest of the

descriptor sequence to be implicit in the evaluation context rather than being given as

the explicit argument tD. We need to find a way to get rid of tD, which we can do by

η-reducing it away. Recalling that consS is string concatenation, we can write intP5

in a form suggestive of further η-reducing the arguments tD and () away:

let intP5 = fun tD () ->

let n = shift (fun k -> k) in string_of_int n ^ tD ()

However, η-reductions in a call-by-value calculus are only sound if the result is a value or

a pure (Sabry 1998), assuredly non-divergent expression. Expressions involving shift

are effectful and certainly not pure. The form of intP5 above shows two parts: first,

obtaining the number n and converting it to a string; second, adding the result to the

output sequence. The following series of equivalence transformations lets us separate

the two parts. Since we are dealing with expressions containing shift, we have to be

mindful of evaluation order.

The first transformation is to name the result of string_of_int n:

let intP5 = fun tD () ->

let n = shift (fun k -> k) in

let x = string_of_int n in

x ^ tD ()

The transformation is equivalence-preserving regardless of the evaluation order for the

expression string_of_int n ^ tD () since string_of_int n is a pure expression. We

re-associate the let-bindings:

let intP5 = fun tD () ->

let x =

let n = shift (fun k -> k) in string_of_int n

in x ^ tD ()

and η-expand:

let intP5 = fun tD () ->

let x =

(fun () -> let n = shift (fun k -> k) in string_of_int n) ()

in x ^ tD ()

The two parts of intP5 can now be separated:

let intP7 = fun () ->

let n = shift (fun k -> k) in string_of_int n

let (^^^) = fun f g () ->

let x = f () in x ^ g ()

let intP5 = fun tD () -> (intP7 ^^^ tD) ()

Keeping in mind that intP7 ^^^ tD is a pure expression (evaluating to a thunk) and

so is (^^^) intP7, we can finally perform two η-reductions on intP5, yielding
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Main function:
let printf7 desc = <desc ()>

Primitive format descriptors:
let litP7 str = fun () -> str

let intP7 = fun () ->
let n = shift (fun k -> k) in
string_of_int n

let charP7 = fun () ->
let c = shift (fun k -> k) in
string_of_char c

Infix operator for descriptor composition:
let (^^^) = fun f g () -> let x = f () in x ^ g ()

Running example:
let descP7 = intP7 ^^^ (litP7 "-th character after ") ^^^ charP7 ^^^

(litP7 " is ") ^^^ charP7

printf7 descP7 5 ’a’ ’f’
(*
- : string = "5-th character after a is f"
*)

Fig. 9 The polyvariadic direct implementation of printf.

let intP5 = (^^^) intP7

The builder of the descriptor sequence consP remains the identity. The observation

made at the end of §5.2 still applies: the descriptor sequence is a functional composition

of primitive descriptors applied to nilDP5. The operation ^^^ is string concatenation

lifted to thunks producing strings. It is an associative operation, and nilDP5 is its

neutral element. This observation leads to the final implementation in Figure 9. If we

assume left-to-right evaluation, we can further reduce our implementation to coincide

with the simplest implementation of the polyvariadic printf in Asai (2009).

To type the implementation we need the type system for shift/reset that sup-

ports answer-type modification (Asai 2009) and answer-type polymorphism (Asai and

Kameyama 2007). Therefore, we cannot type the implementation in Figure 9 in OCaml.

The accompanying code, Derive5.hs, near the end shows the complete implementation

of Figure 9 using the emulation of Asai and Kameyama’s calculus in Haskell.

Surprisingly, we can also use multi-prompt delimited control, which are available

in OCaml. Once again, the quantity of prompts makes up for their quality (the fixed,

monomorphic and unmodifiable answer type). The complete OCaml implementation

is available at the end of derive5.ml.

7 Related work

Danvy’s surprising discovery (Danvy 1998) that statically safe printf can, after all, be

typed in the Hindley-Milner type system has created the field of dependent-type–like

programming and stimulated the search for further properties that can be statically

assured in simpler-typed systems.
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Following Danvy’s work, Asai (2009) presented three solutions to the printf prob-

lem. His solutions are essentially obtained by transforming Danvy’s CPS-based solution

back to direct style using delimited-control operators. The simplest solution uses literal

strings as format descriptors and string concatenation for their composition. To type

this solution, however, requires the type system for shift/reset with answer-type mod-

ification and polymorphism. In the current paper, we developed essentially the same

solution (among many others) from the specification in a rigorous manner.

Hinze (2003) presented a general solution to the printf problem in Haskell. His

solution too is in direct style, and so has to be able to express the answer type and

its modification by format descriptors. In his system, the answer-type modification is

expressed as a type-level function – or, to be precise, as a type that can be interpreted

as a type-level function. The primitive descriptor lit x is associated with a type that

can be interpreted as the identity function; the primitive descriptor int is associated

with the type that can be interpreted as a function transforming a type t to type

Int -> t. The format sequence constructor (consD in our terminology) receives the

type that can be interpreted as a composition of (type) functions. Hinze uses Haskell

type classes to interpret a type code as a type function and compute the result of

applying the function to a given type.

For a long time, computational linguists and programming-language researchers

have sought to use the same grammar representation for both parsing and genera-

tion (Kay 1975; Rendel and Ostermann 2010; Shieber 1988). A view of the type-safe

formatted-IO library as multiple interpretations of the DSL of format descriptors is ex-

pounded in http://okmij.org/ftp/typed-formatting/. That web page presents two

ways to encode the DSL in Haskell: as an initial algebra, using a GADT, or as a final

algebra, using a type class. Although one may translate these implementations into

OCaml, the result is ungainly.

8 Conclusions

We have presented a general specification of formatted IO as a zipWith procedure

for heterogeneous sequences of format descriptors, values to format, and strings. We

have systematically derived several type-safe implementations of the specification in

OCaml. Some of our implementations closely resemble OCaml’s built-in formatted-IO

facility; our implementations require no ad-hoc extensions to the Hindley-Milner type

system and therefore are portable and extensible. Our exposition is the first systematic

exploration of the design space of typed formatted IO in Hindley-Milner type systems.

Some of the derived implementations have not been known or anticipated before.

Writing the paper has been like writing a biographical novel. Most of the ‘facts’ –

implementations of printf and scanf – are already known. As we struggled to come

up with a good story behind the events, we discovered several new facts. Our guiding

principles were (i) to specify modules by sentences containing the names of functions

and constructors as non-logical symbols; (ii) to represent a DSL as a final algebra;

(iii) to transform programs by fusing a term with a part of its context. These principles

are due to Mitchell Wand.
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