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Abstract

We describe a modular programming style that harnesses modern type systems to verify safety conditions
in practical systems. This style has three ingredients:

(i) A compact kernel of trust that is speci�c to the problem domain.
(ii) Unique names (capabilities) that confer rights and certify properties, so as to extend the trust from

the kernel to the rest of the application.
(iii) Static (type) proxies for dynamic values.

We illustrate our approach using examples from the dependent-type literature, but our programs are written
in Haskell and OCaml today, so our techniques are compatible with imperative code, native mutable arrays,
and general recursion. The three ingredients of this programming style call for (1) an expressive core
language, (2) higher-rank polymorphism, and (3) phantom types.

1 Introduction

This paper demonstrates a lightweight notion of static capabilities (Walker et al.

2000) that brings together increasingly expressive type systems and increasingly

accessible program veri�cation. Like many programmers, before verifying that our

code is correct, we want to assure safety conditions: array indices remain within

bounds; modular arithmetic operates on numbers with the same modulus; a �le or

database handle is used only while open; and so on. The safety conditions protect

objects such as arrays, modular numbers, and �les. Our overarching view is that

a capability authorizes access to a protected object and simultaneously certi�es

that a safety condition holds. Rather than proposing a new language or system,

our contribution is to substantiate the slogan that types are capabilities, today:

we use concrete and straightforward code in Haskell and OCaml to illustrate that

a programming language with an appropriately expressive type system is a static

capability language. Because the capabilities are checked at compile time, we achieve

the safety assurances with minimal impact to run-time performance.
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Section 2 presents a simpli�ed introductory example: empty-list checking. Sec-

tion 3 turns to a full-featured example: array-bound checking. In each case, we

formalize our technique as a syntactic translation between two languages. Section 4

distills the three ingredients of our programming style and describes how expressive

it needs the type system to be. Section 5 discusses related and future work.

Our technique scales up: First, shown in the Appendix is a more substantial

example, Knuth-Morris-Pratt string search. Second, the Takusen database-access

project uses our technique to verify the safety of session handles, cursors, prepared-

statement handles, and result sets. For instance, any operation on a session is

guaranteed to receive a valid session handle. We take our examples from Xi's pi-

oneering work on practical dependent-type systems and Dependent ML, as well as

from user suggestions.

2 Empty-list checking

We start with a simpli�ed introductory example. Although it does not show all

features of our approach, it sets the pattern we follow throughout the paper. The

example is list reversal with an accumulator, which can be written in OCaml as

let rec rev l acc = if null l then acc
else rev (tail l) (cons (head l) acc)

The code is written for an arbitrary data structure satisfying the list API (null,

cons, head and tail), so it does not use pattern matching.

The functions head and tail are partial because they do not make sense for the

empty list. Therefore, these functions, to be safe, must check their argument for

null before deconstructing it. This code for rev checks the same list l for null three

times: once directly by calling null, and twice indirectly in head and tail.

We can remove excessive checks and gain con�dence in the code by prohibit-

ing attempts to deconstruct the empty list. We �rst de�ne an abstract data type

'a fullList with the interface and implementation below.

module FL : sig
type 'a fullList
val unfl : 'a fullList -> 'a list
val indeed : 'a list -> 'a fullList option
val head : 'a fullList -> 'a
val tail : 'a fullList -> 'a list

end = struct
type 'a fullList = 'a list
let unfl l = l
let indeed l = if null l then None else Some l
let head l = Unsafe.head l
let tail l = Unsafe.tail l

end

Here Unsafe.head blindly gives the head of its list argument, without checking if

the argument is null. We claim that in well-typed programs the functions FL.head

and FL.tail are total.

Our list reversal with accumulator is now safer and more e�cient:
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let rec rev' l acc = match FL.indeed l with
| None -> acc
| Some l -> rev' (FL.tail l) (cons (FL.head l) acc)

The code is basically the same as before, but it checks for null only once. The inferred

type of rev' is the same as that of rev, that is, 'a list -> 'a list -> 'a list.

The indeed function constructs an option value that is deconstructed by rev'

right away. We can eliminate this tagging overhead by changing our code to contin-

uation-passing style.

module FL : sig ...
val indeed : 'a list -> (unit -> 'w) -> ('a fullList -> 'w) -> 'w
let indeed l onn onf = if null l then onn () else onf l
...
let rec revc' l acc = FL.indeed l (fun () -> acc)
(fun l -> revc' (FL.tail l) (cons (FL.head l) acc))

2.1 Extending a kernel of trust

This example illustrates the basic features of our approach. A security kernel FL

implements an abstract data type fullList. A fullList at run time is the same as

a regular list and need not impose any overhead (it helps to use a defunctorizing

compiler such as MLton). The point of fullList is to certify a safety condition at

compile time, in that a (non-bottom) fullList value is never null. The functions

FL.head and FL.tail use this certi�cate in the type of their argument (rather than

a dynamic check) to assure themselves that the access is safe.

Essentially, fullList (on which FL.head and FL.tail are de�ned) is a subtype

of list (Appel and Leroy 2006). However, to avoid extending the underlying type

system with this subtyping, we make projection explicit as indeed, and injection

explicit as unfl. Experience with toEnum, fromEnum, fromIntegral, etc. in Haskell

suggests that the resulting notational overhead is bearable, even familiar.

Another way to view the fullList certi�cate is as a capability (Miller et al. 2000)

that authorizes access to the list components. This capability is static because it

is expressed in a type rather than a value (Walker et al. 2000). This idea, to

express the result of a dynamic value test as a static type certi�cate, is important in

dependent-type programming (Altenkirch et al. 2005; Section 5). It is reminiscent

of safe type-casting in type dynamic and of the type-equality assertions of Pa²ali¢

et al. (2002).

As above, the functions in the security kernel are generally simple and not re-

cursive. In contrast, the client code whose safety we eventually wish to assure (rev

in our example) is recursive. This pattern recurs throughout this paper: in the

most complex example, Knuth-Morris-Pratt string search, the client code is imper-

ative and nonprimitively recursive, yet the security kernel relies merely on addition,

subtraction, and comparison.

Of course, safety depends on the fact that the capability is only issued for a

nonempty list. Thus the security kernel has to be veri�ed, perhaps formally. Because

FL.fullList is opaque, we need only check that indeed issues the capability only

when the list is nonempty. This claim is straightforward to prove formally:
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Metavariables

Term variables x, y, z

Terms E

Type variables s, t

Types N,T, W

Natural numbers m,n

Typing rules shared between Strict and Lax

T : ? T ′ : ?

T → T ′ : ?

[t : ?]
···

T ′ : ?

∀t. T ′ : ? Int : ?

T : ?

List T : ?

T : ?

List+ T : ?

T : ?

[x : T ]
···

E : T ′

λx.E : T → T ′
E1 : T → T ′ E2 : T

E1E2 : T ′

[t : ?]
···

E : T ′

Λt. E : ∀t. T ′
E : ∀t. T ′ T : ?

ET : T ′ {t 7→ T}

n : Int

T : ?

nil : List T

E1 : T E2 : List T

E1 :: E2 : List T

E : List T E1 : W E2 : List+ T → W

indeed E E1 E2 : W

E : List+ T

head E : T

E : List+ T

tail E : List T

Typing rule in Strict

E1 : T E2 : List T

nonempty (E1 :: E2) : List+ T

Typing rule in Lax

E : List T

nonempty E : List+ T

Fig. 1. Formalizing empty-list checking

• On one hand, we could prove along the operational lines of Moggi and Sabry (2001)

and Walker et al. (2000) that no expression evaluates to an empty fullList.

• Or, we could show along the denotational lines of Launchbury and Jones (1995)

that the functions in FL are parametric even when the logical relation for fullList

excludes the empty fullList (Mitchell and Meyer 1985).

Either way, our proof is simpler than these authors' (for example, the logical rela-

tion may be unary rather than binary) because our safety condition is simpler (for

example, we do not prove that the fullList does not escape some dynamic extent

of execution).
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2.2 Formalization

We now formally verify safety, by translating from a language called Strict to a

language called Lax. We specify the security kernel by Strict and implement it in

Lax. Figure 1 shows the type systems of both Strict and Lax, which extend System F

and di�er in only one rule. Strict's distinguished typing rule looks `fancy' and has

the �avor of dependent types. However, it simply ascribes a type to an expression

of a particular syntactic structure, just like the other, more familiar rules.

The dynamic small-step semantics of these languages are the same and standard.

The only interesting reduction rules are the following (where E1, etc. are all values):

head (nonempty E1 :: E2) ⇀ E1

tail (nonempty E1 :: E2) ⇀ E2

indeed nil E1 E2 ⇀ E1

indeed (E :: E′) E1 E2 ⇀ E2(nonempty E :: E′)

(1)

For example, both Strict and Lax admit the following transition, which starts to

compute the head of the list 5 :: 7 :: nil.

indeed (5 :: 7 :: nil) 0 (λx.head x) ⇀ (λx.head x)
(
nonempty (5 :: 7 :: nil)

)
(2)

We have formally proved, in Twelf, 1 that the type system of Strict is sound:

it essentially performs abstract interpretation conservatively to ensure that a well-

typed Strict program never tries to take the head or tail of an empty list. For

example, the two terms in (2) have the following typing derivations.

···
5 :: 7 :: nil : List Int 0 : Int

···
λx.head x : List+ Int → Int

indeed (5 :: 7 :: nil) 0 (λx.head x) : Int

(3)

···
λx.head x : List+ Int → Int

5 : Int

···
7 :: nil : List Int

nonempty (5 :: 7 :: nil) : List+ Int

(λx.head x)
(
nonempty (5 :: 7 :: nil)

)
: Int

(4)

The soundness of Strict relies on its distinguished typing rule: this is the only

introduction rule for the type List+ T . Values of that type can only be constructed

by attaching a special data constructor �nonempty� to a list. The typing rule of

Strict stipulates that �nonempty� must be attached to a manifestly nonempty list.

In contrast, the typing system of Lax permits attaching �nonempty� to any list;

therefore, the type system of Lax is not sound. For example, the term

head (nonempty nil) (5)

is typable but stuck. However, Lax has the advantage that it is trivial to embed

into a programming language like OCaml or Haskell, because it replaces Strict's

1 http://pobox.com/~oleg/ftp/Computation/safety.elf
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fancy typing rule for �nonempty� with a dull one. Clearly, �nonempty� is akin to a

newtype in Haskell and needs no run-time representation.

To relate these two languages, we de�ne a syntax-directed translation from Strict

to Lax. In this section, this relaxation map is simply the identity function on terms

and types. Relaxation preserves typing, valuehood, and (the transitive closure of)

transitions.

We call a Lax program sandboxed if it is typable using only those typing rules

shared between Strict and Lax (that is, it does not use �nonempty�). Clearly, every

(well-typed) sandboxed Lax program is the relaxation of some (well-typed) Strict

program. Because a well-typed Strict program does not get stuck, neither does a

well-typed sandboxed Lax program, even though the latter may well transition to a

non-sandboxed term such as (2), which uses �nonempty�.

When we embed Lax into Haskell or OCaml, the implementation of the rules (1)

becomes the security kernel. Sandboxing stipulates that the data constructor �non-

empty� may appear in the kernel only, not in the embedding of a sandboxed Lax

program. We enforce this stipulation using Haskell or OCaml's module system. The

security kernel is correct if it implements the reduction rules of (1). We can check

that the kernel is correct by inspecting it informally or verifying it formally.

3 Array-bound checking

We next illustrate our approach on the problem of array-bound checking in binary

search (Xi and Pfenning 1998). This example involves array-index arithmetic and

recursion. All indexing operations are statically guaranteed safe without run-time

overhead. We show OCaml code below; the same idea works in Haskell 98 with

higher-rank types. The type annotations we require are far simpler than those in

Dependent ML. Also, only the small security kernel needs annotations, not the rest

of the program.

Below is Xi and Pfenning's original code for the example in Dependent ML

(Xi and Pfenning 1998; Figure 3; see also http://www.cs.cmu.edu/~hwxi/DML/

examples/).

datatype 'a answer = NONE | SOME of int * 'a

assert sub <| {n:nat, i:nat | i < n } 'a array(n) * int(i) -> 'a
assert length <| {n:nat} 'a array(n) -> int(n)

fun('a){size:nat}
bsearch cmp (key, arr) =
let

fun look(lo, hi) =
if hi >= lo then

let
val m = lo + (hi - lo) div 2
val x = sub(arr, m)

in
case cmp(key, x) of LESS => look(lo, m-1)

| EQUAL => (SOME(m, x))
| GREATER => look(m+1, hi)

end
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else NONE
where look <| {l:nat, h:int | 0 <= l <= size /\ 0 <= h+1 <= size}

int(l) * int(h) -> 'a answer
in

look (0, length arr - 1)
end
where bsearch <| ('a * 'a -> order) ->

'a * 'a array(size) -> 'a answer

The text after <| are dependent-type annotations that the programmer must specify.

3.1 An attempt: parameterized modules

This example di�ers from the one in Section 2 in an important way. There, we

merely need to distinguish a nonempty list from a general list, so one abstract type

'a fullList is enough. Here, to ensure that an array of size n is only accessed

with non-negative indices less than n, we need two abstract types for each n: one

for arrays of size n and one for non-negative indices less than n. That is, we need

two in�nite type families, parameterized by the array size n. Because the value n is

only known at run-time, dependent types seem called for.

Even though OCaml is usually not considered dependently typed, we can build

such type families in OCaml, by encapsulating type declarations into a module

parameterized over a value signature, and instantiating such a module inside a let

expression (Frisch 2006). The interface and implementation of our trusted kernel

would then look like the following. 2

module TrustedKernel(A : sig val length : int end) : sig
type 'a barray
type bindex
val brand : 'a array -> 'a barray
...
val bget : 'a barray -> bindex -> 'a

end = struct
type 'a barray = 'a array
type bindex = int
let brand a = assert (Array.length a = A.length); a
...
let bget = Array.unsafe_get

end

let bsearch cmp (key, arr) =
let module BA = TrustedKernel

(struct let length = Array.length arr end) in
let arr = BA.brand arr in ...

A (non-bottom) value of type 'a BA.barray is an array of size n, and a (non-bottom)

value of type BA.bindex is a non-negative index less than n, where n is the size of

the array arr in scope for constructing the instance of module BA. Consequently, if

the expression BA.get a i is well typed and a and i are non-bottom values, then

2 The complete code is available online at http://pobox.com/~oleg/ftp/ML/eliminating-array-bound-
check-functor.ml
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the index i is within the bounds of the array a. 3

Because TrustedKernel is stateless, it can assure array-bound safety by relying

merely on the fact that instances of module BA for di�erent values of length are

type-incompatible in OCaml. However, in the general case where the kernel has

e�ects such as state, we need generative type abstraction: any two instantiations of

module BA should be type-incompatible, even with the same length (Dreyer et al.

2003). This generativity also corresponds to the �fresh region index� of Moggi and

Sabry (2001; Figure 4).

Alas, functors are not generative in OCaml. They are in SML, but most imple-

mentations (including SML/NJ) do not allow constructing a module inside let.

3.2 The solution: higher-rank types

Our solution is to emulate the generative module BA above using higher-rank types

(Mitchell and Plotkin 1988; Russo 1998; Shao 1999a,b; Shields and Peyton Jones

2001, 2002). The OCaml code below corresponds as closely to the Dependent ML

code above as possible, yet is more amenable to formalization. The emulation also

works in Haskell, which does not have local module expressions. 4

Our solution uses not only higher-rank but also higher-kind types. Rather than

using types like 'a barray and bindex, we parameterize them to form types like

('s,'a) barray and 's bindex. We call the extra type parameter 's a brand. 5

Each possible size is represented by a type: perhaps unit represents 0, unit list

represents 1, unit list list represents 2, and so on. Our kernel use these type-

level proxies to brand arrays of that size and indices within that range (Pa²ali¢

et al. 2002). We can think of these types as a separate kind Int. We do not care

which type represents which size; in fact, these types do not a�ect the run-time

representation of arrays and indices at all, and we use higher-rank polymorphism to

generate the types arbitrarily. Hence these types are called phantom types (Fluet

and Pucella 2006).

Suppose that some brand s represents some size n. We ensure that a (non-

bottom) value of type (s,'a) barray is an array of the length n, and a (non-bottom)

value of type s bindex is a non-negative index less than n. This way, a branded

index of the latter type is always in range for a branded array of the former type.

We also de�ne types 's bindexL and 's bindexH, so that a (non-bottom) value

of type s bindexL is a non-negative index, and a (non-bottom) value of the type

s bindexH is an index i less than n.

3 The code above has a small ine�ciency, in that the last three lines determine the length of the same
array twice: we determine the length of an array so as to instantiate the TrustedKernel; the brand function
will again obtain the run-time length of the array to make sure it matches the length associated with the
particular instantiation of TrustedKernel. We may try to parameterize the trusted kernel by the array itself
rather than by its length and so de�ne the kernel as

module TrustedKernel(A : sig type e val a : e array end) ...

However, we must explicitly set the type of the array elements when instantiating TrustedKernel. That
type cannot be polymorphic (Frisch 2006).
4 Our Haskell code is available online at http://pobox.com/~oleg/ftp/Haskell/eliminating-array-
bound-check-literally.hs. A slightly more general version at http://pobox.com/~oleg/ftp/Haskell/
eliminating-array-bound-check.lhs accounts for Haskell arrays with arbitrary lower and upper bounds.
5 �To burn a distinctive mark into or upon with a hot iron, to indicate quality, ownership, etc., or to mark
as infamous (as a convict).� �The Collaborative International Dictionary of English
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Our security kernel is a module with the following signature.

sig
type ('s,'a) barray
type 's bindex
type 's bindexL
type 's bindexH

type ('w,'a) brand_k =
{bk : 's . ('s,'a) barray * 's bindexL * 's bindexH -> 'w}

val brand : 'a array -> ('w,'a) brand_k -> 'w

val bmiddle : 's bindex -> 's bindex -> 's bindex
val index_cmp : 's bindexL -> 's bindexH ->

(unit -> 'w) -> (* if > *)
('s bindex -> 's bindex -> 'w) -> (* if <= *)
'w

val bsucc : 's bindex -> 's bindexL
val bpred : 's bindex -> 's bindexH

val bget : ('s,'a) barray -> 's bindex -> 'a
val unbi : 's bindex -> int

end

As in Section 2, we use continuation-passing style to avoid tagging overhead. The

branding operation brand has an essentially higher-rank type: because higher-rank

types in OCaml are limited to records, we de�ne a record type brand_k with a

universally quanti�ed type variable 's. Besides branding arrays and indices, the

kernel also performs range- (hence, brand-) preserving operations on indices: bsucc

increments an index; bpred decrements an index; and bmiddle averages two indices.

The operation index_cmp l h k1 k2 compares an indexL with an indexH. If the

former does not exceed the latter, we convert both values to bindex and pass them

to the continuation k2. Otherwise, we evaluate the thunk k1.

Given such a kernel, we can write the binary search function as follows.

let bsearch' cmp (key,(arr,lo,hi)) =
let rec look lo hi = index_cmp lo hi (fun () -> None)
(fun lo' hi' ->
let m = bmiddle lo' hi' in
let x = bget arr m in
let cmp_r = cmp (key,x) in
if cmp_r < 0 then look lo (bpred m)
else if cmp_r = 0 then Some (unbi m, x)
else look (bsucc m) hi)

in
look lo hi

let bsearch cmp (key, arr) =
brand arr {bk = fun arrb -> bsearch' cmp (key, arrb)}

The code follows Xi and Pfenning's Dependent ML code as literally as possible,

modulo syntactic di�erences between SML and OCaml. It is instructive to compare

their code with ours. Our algorithm is just as e�cient: each iteration involves

one middle-index computation, one element comparison, one index comparison, and

9
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one index increment or decrement. No type annotation is needed. In contrast, the

Dependent ML code requires complex dependent-type annotations, even for internal

functions such as look. The inferred types for our functions are below.

val bsearch' :
('a * 'b -> int) ->
'a * (('c, 'b) barray * 'c bindexL * 'c bindexH) ->
(int * 'b) option = <fun>

val bsearch :
('a * 'b -> int) -> 'a * 'b array -> (int * 'b) option = <fun>

To complete the code, we need to implement the trusted kernel as a module. The

full code is available online; 6 given below are a few notable excerpts. First, we need

a way to create values of the type ('s,'a) barray that ensure that a value of the

type (s,a) barray is an array of elements of type a whose size is represented by the

type proxy s. Thus we need to generate type proxies for array sizes encountered at

run time. McBride (2002) and Kiselyov and Shan (2004) show one such approach in

Haskell, which explicitly constructs a type to represent each value. Hayashi (1994),

Xi and Pfenning (1998), and Stone (2000; Stone and Harper 2000) also represent

values at the type level, using singleton types. These approaches better expose the

connection between branding and dependent types, but they are more general than

we need here. We simply generate a fresh type eigenvariable.

let brand a k = k.bk (a, 0, Array.length a - 1)

The function bmiddle is a brand- (that is, range-) preserving operation on

branded indices. Its type says that all indices involved have the same brand�that

is, the same value range.

val bmiddle : 's bindex -> 's bindex -> 's bindex
let bmiddle i1 i2 = i1 + (i2 - i1)/2

The type of bmiddle corresponds to the proposition

0 ≤ i1 < n ∧ 0 ≤ i2 < n → 0 ≤ bmiddle i1 i2 < n,

where n is the integer represented by the type proxy s. The implementation for

bmiddle delivers a certi�cate for the proposition.

let index_cmp i j ong onle = if i <= j then onle i j else ong ()
let bsucc = succ and bpred = pred

3.3 Formalization

As in Section 2.2, we can verify safety by a syntactic translation from a sound,

fancy language called Strict to an unsound, dull language called Lax. Figure 2

shows how we extend Strict and Lax from Figure 1 with constructs for array-bound

checking. We model an n-element array by an n-element list, whose �rst element has

the index 1. Crucially, we add types n̄ to Strict, which represent natural numbers

(array sizes) n. To maintain compatibility with Lax, these types n̄ are of kind ?

rather than a separate kind of type-level naturals.

6 http://pobox.com/~oleg/ftp/ML/eliminating-array-bound-check-literally.ml
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Additional typing rules shared between Strict and Lax

N : ? T : ?

ListN T : ?

N : ?

IntN : ?

N : ?

IntN
L : ?

N : ?

IntN
H : ?

E : List T E′ : ∀s.Lists T → Ints
L → Ints

H → W

brand E E′ : W

E1 : ListN T E2 : IntN

get E1 E2 : T

EL : IntN
L EH : IntN

H E1 : W E2 : IntN → IntN → W

compare EL EH E1 E2 : W

E1 : IntN E2 : IntN

middle E1 E2 : IntN

E : IntN

succ E : IntN
L

E : IntN

pred E : IntN
H

E : IntN

unbi E : Int

Additional typing rules in Strict

n̄ : ?

E1 : T . . . En : T

array E1 :: . . . En :: nil : Listn̄ T

1 ≤ m ≤ n

mI : Intn̄

1 ≤ m

mL : Intn̄
L

m ≤ n

mH : Intn̄
H

Additional typing rules in Lax

E : List T N : ?

array E : ListN T

N : ?

mI : IntN

N : ?

mL : IntN
L

N : ?

mH : IntN
H

Fig. 2. Formalizing array-bound checking

The dynamic semantics of Strict 7 follows the type system and is standard. For

example, it contains the following small-step transitions, which start to compute the

middle element of the list 5 :: 7 :: nil.

brand (5 :: 7 :: nil)
(
Λs. λxyz. compare y z 0 λyz. get x (middle y z)

)
⇀

(
Λs. λxyz. compare y z 0 λyz. get x (middle y z)

)
2̄ (array 5 :: 7 :: nil) 1L 2H

⇀∗ get (array 5 :: 7 :: nil) 1I

(6)

The type system of Strict is sound as before; in particular, a well-typed Strict

program never tries to access an array beyond its bounds. For example, the �rst

and last terms above have the following typing derivations.

···
5 :: 7 :: nil : List Int

···
Λs. λxyz. compare y z 0 λyz. get x (middle y z)

: ∀s.Lists Int → Ints
L → Ints

H → Int

brand (5 :: 7 :: nil)
(
Λs. λxyz. compare y z 0 λyz. get x (middle y z)

)
: Int

(7)

···
array 5 :: 7 :: nil : List2̄ Int

1 ≤ 1 ≤ 2

1I : Int2̄

get (array 5 :: 7 :: nil) 1I : Int

(8)

7 The Twelf formalization is available at http://pobox.com/~oleg/ftp/Computation/safety-array.elf
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As in Section 2.2, the soundness of Strict depends on its special typing rules for

the distinguished data constructors such as �array�. In contrast, the corresponding

typing rules in Lax remove the side conditions on array lengths and indices, and so

permit constructing values of the type ListN Int for any Lax type N whatsoever.

For example, the transition

brand (5 :: 7 :: nil)
(
Λs. λxyz. compare y z 0 λyz. get x (middle y z)

)
⇀

(
Λs. λxyz. compare y z 0 λyz. get x (middle y z)

)
N (array 5 :: 7 :: nil) 1L 2H.

(9)

is type-preserving in Lax for any Lax type N (say Int, but not 2̄ because 2̄ is

only a Strict type). Nothing in Lax prevents constructing well-typed values such as

array nil : ListN Int and 5I : IntN , which, when passed to �get�, cause the computation

to become stuck. Without restricting the use of �array� and index constructors, the

type system of Lax is unsound.

We introduce these restrictions by sandboxing Lax programs, as in Section 2.2.

Sandboxed programs must be typable in Lax using only the typing rules shared with

Strict. As before, we de�ne relaxation, a syntax-directed translation from Strict to

Lax. This time relaxation is not just identity, but maps n̄ to the N in (9). Still,

relaxation preserves typing, valuehood, and (the transitive closure of) transitions.

Because again every (well-typed) sandboxed Lax program is the relaxation of some

(well-typed) Strict program, a well-typed sandboxed Lax program does not get stuck,

even though it may well transition to a non-sandboxed term such as (9), which uses

�array�.

We have mechanized these type soundness arguments in Twelf, slightly less triv-

ially than in Section 2.2. One crucial lemma is that, if a Strict value has a type of

the form IntT (where T is any type), then T must be of the form n̄ (where n is a

natural number). Intuitively, this lemma means that the type system does not lose

any precision due to our not introducing a separate kind for type-level naturals.

3.4 Multiple arrays of various sizes

A more complex example 8 (suggested by a user and a reviewer) is folding over

multiple arrays of various sizes. Our goal is a Haskell function

marray_fold :: (Ix i, Integral i) =>
(seed -> [e] -> seed) -> seed -> [Array i e] -> seed

which folds over an arbitrary number of arrays, whose lower and upper bounds may

di�er. The index ranges of some arrays do not even have to overlap and may be

empty. Neither the number of arrays to process nor their bounds are statically

known, yet we guarantee that all array accesses are within bounds. The key func-

tion in this example brands multiple arrays with a type proxy that represents the

intersection of their index ranges:

brands :: (Ix i, Integral i) => [Array i e] ->
(forall s. ([BArray s i e], BLow s i, BHi s i) -> w) ->
w -> w

8 http://pobox.com/~oleg/ftp/Haskell/eliminating-mult-array-bound-check.lhs
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brands [arr] consumer onempty =
brand arr (\ (barr,bl,bh) -> consumer ([barr],bl,bh)) onempty

brands (a:arrs) consumer onempty =
brands arrs (\bbars -> brand_merge bbars a consumer onempty)

onempty

brand_merge :: (Ix i, Integral i) =>
([BArray s i e], BLow s i, BHi s i)
-> Array i e
-> (forall s'. ([BArray s' i e], BLow s' i, BHi s' i) -> w)
-> w -> w

brand_merge (bas,(BLow bl),(BHi bh)) (a :: Array i e) k kempty =
let (l,h) = bounds a

l' = max l bl
h' = min h bh

in if l' <= h' then
k (((BArray a)::BArray () i e) :

(map (\ (BArray a) -> BArray a) bas),
BLow l', BHi h')

else kempty

Typing this example in a genuinely dependent type system appears quite challenging.

4 Types as static capabilities

In the style just exempli�ed, the programmer begins veri�cation by building a

domain-speci�c kernel module that represents and defends the desired safety condi-

tion. This kernel provides capabilities to other modules so that they can work safely.

Many safety conditions can be expressed using types as proxies for values.

We now describe each step and the language support they need in turn.

4.1 A domain-speci�c kernel of trust

Program veri�cation typically begins by �xing an assertion language. Given a pro-

gram, its safety condition is then extracted automatically or speci�ed manually

before being proven. The soundness of the proof checker guarantees that a veri�ed

program will behave safely.

While this approach lets the designer of the veri�cation framework prove sound-

ness once and for all, the desired safety condition may not reside at the same level of

abstraction as the assertion language. Such a mismatch makes the safety assertion

burdensome to construct formally and brittle to prove automatically. For example,

if the assertions speak of bytes and registers, then it is hard to verify that modular

numbers of di�erent moduli are never mixed together. It takes a lot of work today

to translate among layers of representation and verify their correspondence, so this

approach works best at a �xed (often low) level of abstraction, as in proof-carrying

code (Necula 1997) and typed assembly language (Morrisett et al. 1999).

We let the programmer design more of the assertion language. For example, it is

uncontroversial to let the programmer specify a set of events that need to be checked

using temporal logic, rather than �xing a set of events (such as operating-system

calls) to track. This way, even given that the framework is sound, whoever uses
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the framework must ensure that the assertions soundly express the safety condition

desired. In exchange, the programmer can mold the assertion language, for example

to express the safety condition for an array index not as a conjunction of inequalities

but as an atomic assertion whose meaning is not known to the veri�er.

Now that the veri�cation framework no longer knows what the assertions mean,

it can no longer build in axioms to justify atomic assertions: because the program-

mer never de�nes events in terms of system calls, the framework needs to be told

when events occur; because the programmer never de�nes array bounds in terms of

inequalities, the framework needs to be told how to judge an array index in bounds.

We call this knowledge a kernel of trust, which the programmer creates to represent

domain-speci�c safety conditions.

By extending the kernel of trust, the programmer can verify new safety conditions

as needed. Each extension must be scrutinized closely to preserve soundness. In

exchange, we gain a �continuum of correctness� in which the programmer can verify

more safety conditions as needed.

An expressive programming language allows the user to de�ne and combine a

domain-speci�c library of components. In this regard, the kernel of trust is like

any other domain-speci�c language: its construction relies on succinct facilities for

higher-order abstraction.

4.2 Capabilities for extending trust

Our �veri�er�, the type system, does not track system calls or solve inequalities, but

propagates certi�cates of assertions from the user-de�ned kernel of trust. Safety

then extends from the kernel to the rest of the program. It turns out that type

systems are good at this propagation: we trust types.

More precisely, we represent trust by type eigenvariables. A type system that sup-

ports either higher-rank polymorphism or existential types generates a type eigen-

variable fresh in the universal introduction or existential elimination rule (Pierce and

Sumii 2000; Reynolds 1983; Rossberg 2003). An opaque type from another mod-

ule is another instance of a type eigenvariable (Mitchell and Plotkin 1988). Type

eigenvariables are good for representing trust to be propagated, because they are

• unforgeable (so only the kernel of trust can manufacture them),
• opaque (so their identity is the only information they convey), and
• propagated by type inference (so they extend trust from the kernel to the rest of

the application).

In other words, type eigenvariables turn a static language of types into a capability

language (Miller et al. 2000).

The notion of a capability (Miller et al. 2000; Section 3) originated in OS de-

sign. A capability is a �protected ability to invoke arbitrary services provided by

other processes� (Wulf et al. 1974). For a language system to support capabilities

(Miller et al. 2000), access to a particular functionality (for example, access to a

collection) must only be via an unforgeable, opaque, and propagated handle. For

a computation to use a handle, it must have created the handle, received it from

another computation, or looked it up in the initial environment. To use a handle,

a computation can only propagate it or perform a set of predetermined actions (for

14



Kiselyov and Shan

example, read an array).

We represent capabilities as types, so we express safety conditions in types, as

in dependent-type programming. If a program type-checks, then the type system

and the kernel of trust together verify that the safety conditions hold in any run

of the program. In most cases, this static assurance costs us no run-time overhead.

In the remaining cases, an optimizing compiler can discover and eliminate statically

apparent identity functions at compile time. By guaranteeing safety statically, we

can avoid (often excessive) run-time safety checks such as array bound checks.

A capability is commonly viewed as �a pairing of a designated process with a set

of services that the process provides� (Miller et al. 2000; Section 3). Hence a special

case of a capability, illustrated in Section 2, is an abstract data type. An abstract

data type certi�es the invariants internal to its implementation: if the implemen-

tation preserves the invariants, then the invariants are preserved throughout the

application because only the implementation can manipulate values of the abstract

type. In general, a capability to access an object certi�es the safety condition of

that object.

Another example is restricting the IO monad to a few actions. In Haskell, many

tasks require the IO monad: �le I/O, invoking foreign functions, asking the OS for

the time of day or a random number, and so on. The IO monad contains many

actions, so a piece of code that can use the IO monad to generate a random number

can also use IO to overwrite �les on disk and otherwise wreck any guarantee on the

code. Instead of providing the code with the IO monad directly, we can provide

an monad m, where m is a type eigenvariable, along with an action of type m Int

that generates a random integer. Although the program eventually instantiates m

with the IO monad, the opacity of the type eigenvariable m guarantees that the code

can only generate random numbers. This basic idea appears in the encapsulation of

mutable state by Moggi and Sabry (2001). It is also used realistically in the Zipper

�le-system project, to statically enforce process separation.

4.3 Static proxies for dynamic values

To express assertions involving run-time values, we associate each value with a type,

such that type equality entails value equality. We call these types proxies for the

values (Pa²ali¢ et al. 2002).

The same proxy appearing in the types of multiple values may make additional

operations available from the kernel. For example, the branding described in Sec-

tion 3.2 lets us access an array at an index that is within the bounds of the same

array. This availability is known as rights ampli�cation in the capabilities literature.

Miller et al. (2000) writes:

With rights ampli�cation, the authority accessible from bringing two references

together can exceed the sum of authorities provided by each individually. The

classic example is the can and the can-opener�only by bringing the two together

do we obtain the food in the can.
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5 Discussion

We have argued that the Hindley-Milner type system with higher-rank types is a

static capability language with rights ampli�cation. Our take on program veri�ca-

tion is not to prove the safety conditions from a �xed foundation but to rely on

the programmer's trust in a domain-speci�c kernel. Our technique works in exist-

ing languages like Haskell and OCaml, and is compatible with their facilities like

mutable cells, native arrays, and general recursion. It requires a modicum of type

annotations in the kernel only.

We use types to certify properties of values. For example, the type s bindex

in Section 3.2 certi�es that the index is a non-negative integer less than the array

size represented by s. The use of an abstract data type whose values can only

be produced by a trusted kernel, and the use of a type system to guarantee this

last property, is due to Robin Milner in the design of Edinburgh LCF back in the

early 1970s (Gordon 2000). (Incidentally, the language ML�whose early o�spring

OCaml we use in this paper�was originally designed as a scripting language for

the LCF prover.) Our branding technique builds on this fundamental idea using an

in�nite family of abstract data types, indexed by a type proxy for a run-time value.

Our approach still has the serious limitation that we do not produce independently

statically checkable certi�cates.

5.1 On trusting trust

Our lightweight approach depends on a trusted kernel. Because we expect this kernel

to vary across applications and change over time, it is harder to trust the kernel,

compared to a genuine dependent type system. We have only optimistic speculations

to o�er at this point.

On one hand, a small kernel may be more amenable to formal treatment than the

entire application at once. Even in our most complex examples, verifying imperative

and nonprimitively recursive code, our trusted kernel had no recursive functions (and

at most relied on simple arithmetic). Seen this way, delineating a kernel of trust

is simply a modular strategy towards complete veri�cation. This strategy straddles

the line between proof assistants and programming environments, calling for their

further integration.

On the other hand, programmers may be more productive, and veri�cation fail-

ures more informative, if the framework does not force verifying the part of cor-

rectness that is closest to the foundations �rst. After all, successive re�nement of

(sketches of) proofs is a time-tested technique. Moving along this �continuum of

correctness� may also give a better idea where the code tends to have bugs, and

hence where to concentrate veri�cation.

5.2 Dependent type systems

Altenkirch et al. (2005; Section 2) survey dependent type systems and their em-

ulations (Dybjer 1991; Martin-Löf 1984; Nordström et al. 1990). Our use of type

proxies and run-time veri�able certi�cates puts us near the dependently-typed sys-

tem MetaD (Pa²ali¢ et al. 2002). Our work may be thought of as yet another
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poor man's emulation of a dependent type system (Fridlender and Indrika 2000;

McBride 2002): instead of putting values in types, we put type proxies for values

in types; instead of trusting strongly normalizing terms in type theory, we trust a

kernel of uninterpreted capabilities; instead of embracing a new programming prac-

tice, we embed in existing programming systems. As Altenkirch et al. write, �many

programmers are already �nding practical uses for the approximants to dependent

types which mainstream functional languages (especially Haskell) admit, by hook

or by crook.� We are not just exploring a toy however: we can express complex

reasoning (such as multiple-array bound checking) on real-world applications (such

as interfacing to a database) in existing, well-supported language implementations.

Our lightweight approach reasons about the same topics that dependent type

systems and optimizing compilers tend to reason about: control �ow, aliasing, and

ranges. For example, optimizing compilers often perform range analysis to elimi-

nate run-time array-bound checking. However, our reasoning kernel is exposed as

a module, not tucked away in a compiler and hidden from the view of a regular

programmer.

5.3 Mixing static and dynamic checking

Static program analyses are rarely exact because they approximate program behavior

without knowing dynamic data. The approximation must be conservative, and so

the range analysis, for example, may worry that an index is out of bounds of an array

although in reality it is not. To reduce the approximation error, an analysis may

insert dynamic checks. Exactly the same is the case for lightweight static capabilities,

except the programmer rather than the compiler controls where to insert dynamic

checks. We would expect the programmer to understand the program better than

the compiler does, and hence to know better where dynamic checks are appropriate

and where they are excessive.

A good concrete example is using one index to access two arrays of the same size.

Suppose that we want to feed a branded array ba1 to an array-to-array function

compute_array, which we expect to return another array a2 of equal size. We then

want to access both arrays using one index. Because ba1 is branded before a2 is

created, we cannot brand the two arrays at the same time as in Section 3.4. Instead,

we can forget the branding of ba1, compute the array a2, and assign a2 the brand

of ba1 after a run-time test:

let a2 = compute_array (unbrand ba1)
in brand_as a2 ba1 on_mismatched_size (fun ba2 -> ...)

The arrays ba1 and ba2 now have the same brand. We assume the kernel has generic,

application-independent functions unbrand and brand_as.

If we can prove that compute_array yields an array of size equal to that of

its argument, then we can make the function return a branded array, and thus

eliminate the run-time size test. Because branding can only be done in the kernel,

we must put the function into the kernel, after appropriate rigorous (perhaps formal)

veri�cation. The programmer decides whether to expand the trusted kernel for a new

application, balancing the cost of the run-time check against the cost of verifying

the kernel extension.
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The brand_as approach is similar to the assert/cast dynamic test in MetaD

(Pa²ali¢ et al. 2002). Such a �cop-out� to deciding type equality is necessary any-

way in a dependent type system with general recursion, where type equality is not

decidable in general (Altenkirch et al. 2005; Section 3).

5.4 Syntactic sugar

Writing conditionals in continuation-passing-style, as we do here, makes for ungainly

code. We also miss pattern matching and deconstructors. These syntactic issues

arise because neither OCaml nor Haskell was designed for this kind of programs.

The ugliness is far from a show stopper, but an incentive to develop front ends to

improve the appearance of lightweight static capabilities in today's programming

languages.
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Appendix: Knuth-Morris-Pratt string matching in De-

pendent ML and Haskell

We borrow another involved example from Xi and Pfenning (1998), Knuth-Morris-

Pratt string matching (KMP). This algorithm uses mutable arrays whose elements'

values determine indices in turn. It also uses the deliberately one-o� index −1 as

a special �ag. Our Haskell code 9 using higher-rank types has the same run-time

costs and static guarantees as the Xi and Pfenning's Dependent ML code: all array

and string operations are veri�ed to be safe.

The Dependent ML code (http://www.cs.cmu.edu/~hwxi/DML/examples/kmpHard.

mini), is quoted below for the sake of reference. The code contains (after <|)

a fair amount of DML annotations: declarations of dependent types. The func-

tion sub is a DML array access operation with no bound check. The functions

arrayShift, subShift and updateShift are the creator, the accessor and the set-

ter for shiftArray, whose element type is dependent on the run-time value, the

length of the pattern string.

structure KMP =
struct
assert sub <| {size:nat, i:int | 0 <= i < size}

'a array(size) * int(i) -> 'a
and length <| {n:nat} 'a array(n) -> int(n)

9 http://pobox.com/~oleg/ftp/Haskell/KMP-deptype.hs
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fun{slen:nat, plen:nat}
kmpMatch(str, pat) =
let
type intShift = [i:int| 0 <= i+1 < plen ] int(i)

assert arrayShift <| {size:nat}
int(size) * intShift -> intShift array(size)

and subShift <| {size:nat, i:int | 0 <= i < size}
intShift array(size) * int(i) -> intShift

and updateShift <| {size:nat, i:int | 0 <= i < size}
intShift array(size) * int(i) * intShift -> unit

val slen = length(str)
and plen = length(pat)

val shiftArray = arrayShift(plen, ~1)

fun loopShift(i, j) = (* calculate the shift array *)
if (j = plen) then ()
else
if sub(pat, j) <> sub(pat, i+1) then
if (i >= 0) then

loopShift(subShift(shiftArray, i), j)
else loopShift(~1, j+1)

else ((if (i+1 < j)
then updateShift(shiftArray, j, i+1)
else ()) <| unit;
loopShift(subShift(shiftArray, j), j+1))

where loopShift <| {j:int | 0 < j <= plen}
intShift * int(j) -> unit

val _ = loopShift(~1, 1)

fun loop(s, p) = (* this the main search function *)
if p < plen then
if s < slen then
if sub(str, s) = sub(pat, p) then loop(s+1, p+1)
else
if (p = 0) then loop(s+1, p)
else loop(s, subShift(shiftArray, p-1)+1)

else ~1
else s - plen

where loop <| {s:nat, p:nat | s <= slen /\ p <= plen}
int(s) * int(p) -> int

in
loop(0, 0)

end
where kmpMatch <| int array(slen) * int array(plen) -> int

end

Our Haskell code extensively uses lightweight static capabilities with rights am-
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pli�cation. To properly model the DML code, we will be using array-like so-called

`packed' Haskell strings. We perform imperative computations in the ST monad and

use the mutable array data type STArray to realize shiftArray.

Our main function kmpMatch has no correspondence in the DML code, because

the latter does not seem to de�ne the handling of empty strings or patterns. It is not

clear what happens if the DML function kmpMatch is invoked with the empty pat-

tern; probably a compiler error is reported because the (dependent) type intShift

becomes unpopulated. Our approach however forces us to confront the issue; in par-

ticular, to resolve what happens when both the string and the pattern are empty.

kmpMatch str pat =
brandPS str
(\bstrlen ->
brandPS pat (\bpatlen -> runST (kmpMatch' bstrlen bpatlen))
0 -- empty pattern, matches the beginning of (nonempty) string

)
(-1) -- empty string, doesn't match any pattern

The KMP algorithm itself, for nonempty str and pat, is as follows. It rather closely

resembles the DML code:

kmpMatch' (bstr,slen) (bpat,plen) =
do
shiftArray <- arrayShift plen index_m1

let -- loopShift :: IntShift r -> BIndexP1 r -> ST s ()
loopShift i j = -- calculate the shift array
index_p_lt j plen (Else $ return ())
(\j' -> let i1 = intshift_succ i

in if bpat !. j' /= bpat !. i1
then index_m_gt i index_m1

(Else $ loopShift index_m1
(index_succ j'))

(\i' -> do
i'' <- subShift shiftArray i'
loopShift i'' j)

else do
index_lt i1 j'
(Else $ return ())
(updateShift shiftArray j')

i'' <- subShift shiftArray j'
loopShift i'' (index_succ j')

)
loopShift index_m1 index_p1

let -- loop :: Nat -> Nat -> ST s Int
loop s p = -- this the main search function

nat_p_lt p plen (Else $ return $ (unNat s) - (unP1 plen))
(\p' ->
nat_p_lt s slen (Else $ return (-1))
(\s' ->
if bstr !. s' == bpat !. p'
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then loop (nat_succ s) (nat_succ p)
else index_pred p' (Else $ loop (nat_succ s) p)

(\p1 -> do
i <- subShift shiftArray p1
loop s $ i2n (intshift_succ i))

)
)

loop nat_0 nat_0

It is instructive to compare the inferred type of loopShift or loop with the

annotations in the corresponding DML code. The annotations cannot be inferred

and must be speci�ed by the programmer. The appearance of the Haskell code

can be improved if we replace various comparison functions such as index_p_lt,

nat_p_lt, etc. with one (type-class) overloaded in�x operator, e.g., <.

We now describe the trusted kernel for our Haskell code; the kernel also imple-

ments functions that correspond to DML's dependently-typed built-ins sub, length,

arrayShift, etc. The kernel uses a number of wrapper types such as BIndex, which

represent various capabilities. These wrappers are newtypes and so have no run-time

cost. The data constructors of the wrappers must not be exported from the trusted

kernel; only the kernel should be allowed to create the capabilities.

The capabilities such as BIndex r or BPackedString r are tagged by a phan-

tom type r, which is a type proxy for a positive natural number plen (the length

of a nonempty string). The wrapper types assert particular propositions about the

wrapped values and plen (neither of which are known at compile time). The func-

tions creating wrapped values must be veri�ed to make sure the propositions hold.

newtype BIndex r = BIndex Int
newtype BPackedString r = BPackedString PackedString

The type BIndex r asserts that the wrapped integer i satis�es 0 <= i < plen

where plen is the integer represented by the proxy r. This newtype declaration

corresponds to DML's {j:int | 0 <= j < plen}. Likewise, BPackedString r is

a type proxy for a nonempty packed string of the size represented by r. Since the

type BIndex r assures that the index is de�nitely within the bounds of the string

BPackedString r, we could safely use unsafeIndexPS to access the element of the

packed string:

infixl 5 !.
(!.):: BPackedString r -> BIndex r -> Char
(BPackedString s) !. (BIndex i) = indexPS s i

We introduce two other type proxies, for o�set indices: BIndexP1 r asserts that

the wrapped integer j satis�es 0 < j <= plen; IntShift r is a type proxy for the

integer i such that 0 <= (i + 1) < plen. It is instructive to compare the latter with

the DML declaration of the dependent type intShift.

newtype BIndexP1 r = BIndexP1 Int
newtype IntShift r = IntShift Int

The type proxy r is actually an eigenvariable, introduced by the following func-

tion after a check that the packed string (whose length is plen) is indeed nonempty:

brandPS:: PackedString
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-> (forall r. (BPackedString r, BIndexP1 r) -> w) -> w -> w
brandPS str k kempty =

let l = lengthPS str
in if l > 0 then k (BPackedString str, BIndexP1 l)
else kempty

We also introduce the mutable shiftArray and its getters and setters. The type

BShiftArray makes it clear that the range of values of all the elements is bounded

by the positive integer represented by r. Therefore, we could have safely used

unsafeReadArray and unsafeWriteArray operations.

newtype BShiftArray r s = BShiftArray (STArray s Int (IntShift r))

arrayShift :: BIndexP1 r -> IntShift r -> ST s (BShiftArray r s)
arrayShift (BIndexP1 r) e = newArray (0,r) e >>= return . BShiftArray

subShift :: BShiftArray r s -> BIndex r -> ST s (IntShift r)
subShift (BShiftArray arr) (BIndex i) = readArray arr i

updateShift :: BShiftArray r s -> BIndex r -> IntShift r -> ST s ()
updateShift (BShiftArray arr) (BIndex i) v = writeArray arr i v

The rest of the kernel is a (quite general purpose) index operation library. To

save space, we elide repetitive fragments; the full code is available at http://pobox.

com/~oleg/ftp/Haskell/KMP-deptype.hs.

newtype Else w = Else w -- Just a syntactic sugar
unP1 (BIndexP1 i) = i -- forget the branding

index_m1 :: IntShift r
index_m1 = IntShift (-1)

index_p1 :: BIndexP1 r
index_p1 = BIndexP1 1

intshift_succ :: IntShift r -> BIndex r
intshift_succ (IntShift i) = BIndex (succ i)

index_succ :: BIndex r -> BIndexP1 r
index_succ (BIndex i) = BIndexP1 (succ i)

It is straightforward to verify the safety propositions associated with the above

terms. For example, -1 indeed satis�es i : int‖0 <= i + 1 < plen for any positive

plen represented by r, and so IntShift (-1) is justi�ed.

One of the interesting operations is the comparison of indices, e.g., the com-

parison of two BIndexP1. If the �rst is less than the second, we invoke the onless

continuation, passing the �rst BIndexP1 converted to BIndex. The safety proposition

takes the form

0 < i ≤ plen ∧ 0 < j ≤ plen ∧ i < j → 0 ≤ i < plen

whose conclusion justi�es the use of BIndex in the result:

index_p_lt :: BIndexP1 r -> BIndexP1 r ->
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Else w -> (BIndex r -> w) -> w
index_p_lt (BIndexP1 i) (BIndexP1 j) (Else onother) onless =

if i < j then onless (BIndex i) else onother

Another interesting operation is decrementing the index. If the index is already

zero, we invoke the onzero continuation. The safety proposition is

0 ≤ i < plen ∧ i 6= 0 → 0 ≤ i− 1 < plen

whose conclusion again justi�es the use of BIndex in the result:

index_pred :: BIndex r -> Else w -> (BIndex r -> w) -> w
index_pred (BIndex i) (Else onzero) onfurther =

if i == 0 then onzero else onfurther (BIndex (pred i))

The Haskell KMP code also uses the type proxy Nat for a non-negative integer.

We elide the corresponding operations.

We should stress again the opportunity of making the syntax better by using

overloaded functions and operators. The fact all these branded values have distinct

types facilitates such overloading.
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