Even Better Stream Fusion

Oleg Kiselyov

Tohoku University, Japan

Tensor seminar, 18 February 2022

▶ Introduction: What is Stream Processing

Stream Fusion

Strymonas

Case Study: FM Radio

Tabulating Machine

Punchcard

EB SB Ch Sy U Sh Hk Br Rm 10 On S Δ C E 0 4 . 3 C SY X Fp Cn R x AI Cg Kg 4 3 E 15 Off IS B D F b d 0 0 w 20 0 : 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 A 0 25 ۵ в 30 3 D C D 6 E H ь 9 9 9 C 9 9 9 9 9 9 9 0 9 9

Tabulating Machine

Stream Processing

- Sequential
- Incremental
- ▶ Unbounded amount of data
- ▶ Limited memory

The Michael Jackson Design Technique

The Michael Jackson Design Technique: A study of the theory with applications. C.A.R.Hoare, 1977

4.2 Text - Correspondence

The following is a simple problem involving two data structures - one input data structure and one output data structure.

'The stores section in a factory issues and receives parts. Each issue and each receipt is recorded on a punched card: the card contains the part-number, the movement type (I for issue, R for receipt) and the quantity. The cards have already been copied to magnetic tape and sorted into part-number order. The program to be written will produce a simple summary of the net movement of each part. The format of the summary is:

STORES MOVEMENTS SUMMARY

A5/132	NET	MOVEMENT	-450
A5/197	NET	MOVEMENT	1760
B41/728	NET	MOVEMENT	7

No attention need be paid to such refinements as skipping over the perforations at the end of each sheet of paper."

The first step of the design procedure, the data step, is to draw data structures of all the files in the problem. The result of the data step is:

Origins of streams in CS

Melvin E. Conway: Design of a Separable Transition-diagram Compiler. Commun. ACM, July 1963, 396–408

A COBOL compiler design is presented which is compact enough to permit rapid, one-pass compilation of a large sub- set of COBOL on a moderately large computer [10,000-16,000 words]. Versions of the same compiler for smaller machines require only two working tapes plus a compiler tape. The methods given are largely applicable to the construction of ALGOL compilers.

The compiler is written in Assembly by two people in less than a year

Coroutines and Separable Programs

That property of the design which makes it amenable to many segment configurations is its separability. A program organization is separable if it is broken up into processing modules which communicate with each other according to the following restrictions: (1) the only communication between modules is in the form of discrete items of information; (2) the flow of each of these items is along fixed, one-way paths; (3) the entire program can be laid out so that the input is at the left extreme, the output is at the right extreme, and everywhere in between all information items flowing between modules have a component of motion to the right.

Origins of streams in CS

Origins of streams in CS

Can you tell that Jackson wasn't an EE but Conway was?

Stream Processing

Box, with one input and one output

Sequential

- Incremental
- Unbounded amount of data
- ▶ Limited memory

Diagrams

- Connecting the above boxes
- ▶ Finite buffering

Sample Diagram

Event processing

NEXMark benchmark query 7

Query 7 monitors the highest price items currently on auction. Every ten minutes, this query returns the highest bid (and associated itemid) in the most recent ten minutes.

```
SELECT Rstream(B.price , B.itemid)
FROM
Bid [RANGE 10 MINUTE SLIDE 10 MINUTE] B
WHERE
B.price = (SELECT MAX(B1.price)
FROM BID [RANGE 10 MINUTE SLIDE 10 MINUTE] B1)
LIMIT 1;
```

Window processing

What is Stream Processing

- Record (punchcard) In/Record Out processing COBOL-like processing
- Co-routines
- Digital signal processing
- Event processing/correlation window processing

Can be represented as a diagram of connected boxes with dataflow left-to-right

What is Stream Processing

- Record (punchcard) In/Record Out processing COBOL-like processing
- ► Co-routines
- Digital signal processing
- Event processing/correlation window processing

Can be represented as a diagram of connected boxes with dataflow left-to-right

Intuitive design v. performance

Introduction: What is Stream Processing

▶ Stream Fusion

Strymonas

Case Study: FM Radio

Fusion

Fusion in 1963

Melvin E. Conway: Design of a Separable Transition-diagram Compiler. Commun. ACM, July 1963, 396–408

Pipes

cat simple.ml | tr -d "_" | tr "[A-Z]" "[a-z]" | grep flatmap | wc -l

Pipes

```
cat simple.ml | tr -d "_" | tr "[A-Z]" "[a-z]" |
grep flatmap | wc -l
```

```
cat simple.ml |
awk '/[Ff]_*[L1]_*[Aa]_*[Tt]_*[Mm]_*[Aa]_*[Pp]/ {c++}
END {print c}'
```

Pipes

```
cat simple.ml | tr -d "_" | tr "[A-Z]" "[a-z]" |
grep flatmap | wc -l
```

```
cat simple.ml |
awk '/[Ff]_*[L1]_*[Aa]_*[Tt]_*[Mm]_*[Aa]_*[Pp]/ {c++}
END {print c}'
```

Perl

 $\sum_{i=0}^{n-1} a_i^2$

$$\sum_{i=0}^{n-1} a_i^2$$

let $a = \dots$ let $a^2 = map \ sqr \ a$ sum a^2

where let sqr : float \rightarrow float = fun $\times \rightarrow \times *$. \times let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ array $\rightarrow \beta$ array = Array.map let sum : float array \rightarrow float = Array.fold_left (+.) 0.

$$\sum_{i=0}^{n-1} a_i^2$$

let $a = \dots$ sum (map sqr a)

where let sqr : float \rightarrow float = fun $\times \rightarrow \times *$. \times let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ array $\rightarrow \beta$ array = Array.map let sum : float array \rightarrow float = Array.fold_left (+.) 0.

$$\sum_{i=0}^{n-1} a_i^2$$

let
$$a = \dots$$

 $a \triangleright map sqr \triangleright sum$

where
let sqr : float
$$\rightarrow$$
 float = fun x \rightarrow x *. x
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ array $\rightarrow \beta$ array = Array.map
let sum : float array \rightarrow float = Array.fold_left (+.) 0.
let (\triangleright) x f = f x

$$\sum_{i=0}^{n-1} a_i^2$$

let $a = \dots$ a \triangleright filter Float.is_finite \triangleright map sqr \triangleright sum

where let sqr : float \rightarrow float = fun x \rightarrow x *. x let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ array $\rightarrow \beta$ array = Array.map let sum : float array \rightarrow float = Array.fold_left (+.) 0. let (\triangleright) x f = f x let filter : $(\alpha \rightarrow bool) \rightarrow \alpha$ array $\rightarrow \alpha$ array = fun f x \rightarrow x \triangleright Array.to_list \triangleright List.filter f \triangleright Array.of_list

```
type \alpha arr = A of int * (int\rightarrow \alpha)
let to_arr : \alpha array \rightarrow \alpha arr = fun a \rightarrow
A (Array.length a, Array.get a)
```

type
$$\alpha$$
 arr = A of int * (int $\rightarrow \alpha$)
let to_arr : α array $\rightarrow \alpha$ arr = fun a \rightarrow
A (Array.length a, Array.get a)
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, ix \triangleright f)
let (\triangleright) f g = fun x \rightarrow f x \triangleright g

▶ map is constant time and space

type
$$\alpha$$
 arr = A of int * (int $\rightarrow \alpha$)
let to_arr : α array $\rightarrow \alpha$ arr = fun a \rightarrow
A (Array.length a, Array.get a)
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, ix \triangleright f)
let sum : float arr \rightarrow float = fun (A (n,ix)) \rightarrow
let rec loop acc i = if i \geq n then acc else loop (acc +. ix i) (i+1)
in loop 0. 0


```
to_arr a \triangleright map sqr \triangleright sum
```

type
$$\alpha$$
 arr = A of int * (int $\rightarrow \alpha$)
let to_arr : α array $\rightarrow \alpha$ arr = fun a \rightarrow
A (Array.length a, Array.get a)
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, ix \triangleright f)
let sum : float arr \rightarrow float = fun (A (n,ix)) \rightarrow
let rec loop acc i = if i \geq n then acc else loop (acc +. ix i) (i+1)
in loop 0. 0

▶ map is constant time and space

▶ No longer any intermediary arrays created

to_arr a \triangleright map sqr \triangleright sum ??? to_arr a \triangleright filter Float.is_finite \triangleright map sqr \triangleright sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow \alpha$)
let to_arr : α array $\rightarrow \alpha$ arr = fun a \rightarrow
A (Array.length a, Array.get a)
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, ix \triangleright f)
let sum : float arr \rightarrow float = fun (A (n,ix)) \rightarrow
let rec loop acc i = if i \geq n then acc else loop (acc +. ix i) (i+1)

in loop 0. 0

▶ map is constant time and space

▶ No longer any intermediary arrays created

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

Arrays with missing elements type α option = None | Some of α type α arr = A of int * (int $\rightarrow \alpha$ option)

let to_arr : α array $\rightarrow \alpha$ arr = ...

to_arr a \triangleright filter Float.is_finite \triangleright map sqr \triangleright sum

type α arr = A of int * (int $\rightarrow \alpha$ option) let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow A(n, fun i \rightarrow match ix i with Some y \rightarrow Some (f y) | _ \rightarrow None)

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

type α arr = A of int * (int $\rightarrow \alpha$ option) let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow A(n, fun i \rightarrow match ix i with Some y \rightarrow Some (f y) | _ \rightarrow None) let sum : float arr \rightarrow float = ...

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow \alpha$ option)
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i \rightarrow match ix i with Some y \rightarrow Some (f y) | _ \rightarrow None)
let filter : $(\alpha \rightarrow bool) \rightarrow \alpha$ arr $\rightarrow \alpha$ arr = fun f (A (n,ix)) \rightarrow
A(n,fun i \rightarrow
match ix i with Some y when f y \rightarrow Some y | _ \rightarrow None)

Array Programming with Filtering and Fusion

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow \alpha$ option)
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i \rightarrow match ix i with Some y \rightarrow Some (f y) | _ \rightarrow None)
let filter : $(\alpha \rightarrow bool) \rightarrow \alpha$ arr $\rightarrow \alpha$ arr = fun f (A (n,ix)) \rightarrow
A(n,fun i \rightarrow
match ix i with Some y when f y \rightarrow Some y | _ \rightarrow None)

The fusion: no unbounded intermediate data structures

Array Programming with Filtering and Fusion

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow \alpha$ option)
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i \rightarrow match ix i with Some y \rightarrow Some (f y) | _ \rightarrow None)
let filter : $(\alpha \rightarrow bool) \rightarrow \alpha$ arr $\rightarrow \alpha$ arr = fun f (A (n,ix)) \rightarrow
A(n,fun i \rightarrow
match ix i with Some y when f y \rightarrow Some y | _ \rightarrow None)

The fusion is incomplete

- constant (de)construction of α option (per element)
- ▶ overhead of many function calls (per operator)
- ▶ higher-order: how to do it in first-order language

to_arr a \triangleright filter Float.is_finite \triangleright map sqr \triangleright sum

Arrays with missing elements, in CPS type α arr = A of int * (int $\rightarrow (\alpha \rightarrow \text{unit}) \rightarrow \text{unit})$

to_arr a \triangleright filter Float.is_finite \triangleright map sqr \triangleright sum

type α arr = A of int * (int \rightarrow ($\alpha \rightarrow$ unit) \rightarrow unit) let to_arr : α array $\rightarrow \alpha$ arr = fun a \rightarrow A (Array.length a, fun i k \rightarrow Array.get a i \triangleright k)

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow (\alpha \rightarrow \text{unit}) \rightarrow \text{unit})$
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i k \rightarrow ix i (f \triangleright k))

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow (\alpha \rightarrow \text{unit}) \rightarrow \text{unit})$
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i k \rightarrow ix i (f \triangleright k))
let sum : float arr \rightarrow float = fun (A (n,ix)) \rightarrow
let sum = ref 0. in
for i = 0 to n-1 do
ix i (fun y \rightarrow sum := !sum +. y)
done; !sum

to_arr a \triangleright filter Float.is_finite \triangleright map sqr \triangleright sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow (\alpha \rightarrow \text{unit}) \rightarrow \text{unit})$
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i k \rightarrow ix i (f \triangleright k))
let filter : $(\alpha \rightarrow \text{bool}) \rightarrow \alpha$ arr $\rightarrow \alpha$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i k \rightarrow ix i (fun y \rightarrow if f y then k y))

to_arr a \rhd filter Float.is_finite \rhd map sqr \rhd sum

type
$$\alpha$$
 arr = A of int * (int $\rightarrow (\alpha \rightarrow \text{unit}) \rightarrow \text{unit})$
let map : $(\alpha \rightarrow \beta) \rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i k \rightarrow ix i (f \triangleright k))
let filter : $(\alpha \rightarrow \text{bool}) \rightarrow \alpha$ arr $\rightarrow \alpha$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i k \rightarrow ix i (fun y \rightarrow if f y then k y))

The fusion is still incomplete, even got worse

```
Staged Arrays with missing elements
type \alpha cde = string
type \alpha arr =
A of int cde * (int cde \rightarrow (\alpha cde \rightarrow unit cde) \rightarrow unit cde)
```

type α arr = A of int cde * (int cde \rightarrow (α cde \rightarrow unit cde) \rightarrow unit cde) let to_arr : α array $\rightarrow \alpha$ arr = fun a \rightarrow A (Array.length a, fun i k \rightarrow Array.get a i \triangleright k)

Before (unstaged)

```
type \alpha arr =

A of int cde * (int cde \rightarrow (\alpha cde \rightarrow unit cde) \rightarrow unit cde)

let to_arr : \alpha array cde \rightarrow \alpha arr = fun a \rightarrow

A (sprintf "Array.length %s" a,

fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k)
```

Generate the code to evaluate Array.length and Array.get later

type
$$\alpha$$
 arr =
A of int cde * (int cde \rightarrow (α cde \rightarrow unit cde) \rightarrow unit cde)
let to_arr : α array cde $\rightarrow \alpha$ arr = fun a \rightarrow
A (sprintf "Array.length %s" a,
fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k)
let map : ($\alpha \rightarrow \beta$) $\rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow
A(n, fun i k \rightarrow ix i (f \triangleright k))

Before (unstaged)

type α arr = A of int cde * (int cde \rightarrow (α cde \rightarrow unit cde) \rightarrow unit cde) let to_arr : α array cde $\rightarrow \alpha$ arr = fun a \rightarrow A (sprintf "Array.length %s" a, fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k) let map : (α cde $\rightarrow \beta$ cde) $\rightarrow \alpha$ arr $\rightarrow \beta$ arr = fun f (A (n,ix)) \rightarrow A(n, fun i k \rightarrow ix i (f \triangleright k))

```
type \alpha arr =
      A of int cde * (int cde \rightarrow (\alpha cde \rightarrow unit cde) \rightarrow unit cde)
let to_arr : \alpha array cde \rightarrow \alpha arr = fun a \rightarrow
   A (sprintf "Array.length %s" a,
      fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k)
let sum : float arr \rightarrow float = fun (A (n,ix)) \rightarrow
   let sum = ref 0. in
   for i = 0 to n-1 do
      ix i (fun y \rightarrow sum := !sum +. y)
   done: !sum
```

Before (unstaged)

```
type \alpha arr =
      A of int cde * (int cde \rightarrow (\alpha cde \rightarrow unit cde) \rightarrow unit cde)
let to_arr : \alpha array cde \rightarrow \alpha arr = fun a \rightarrow
   A (sprintf "Array.length %s" a,
      fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k)
let sum : float arr \rightarrow float cde = fun (A (n,ix)) \rightarrow
   sprintf
   "let sum = ref 0. in
    for i = 0 to %s-1 do
      %s done: !sum" n
    (ix "i" (fun y \rightarrow sprintf "sum := !sum +. %s" y))
```

```
type \alpha arr =

A of int cde * (int cde \rightarrow (\alpha cde \rightarrow unit cde) \rightarrow unit cde)

let to_arr : \alpha array cde \rightarrow \alpha arr = fun a \rightarrow

A (sprintf "Array.length %s" a,

fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k)

let filter : (\alpha \rightarrowbool) \rightarrow \alpha arr \rightarrow \alpha arr = fun f (A (n,ix)) \rightarrow

A(n,fun i k \rightarrow ix i (fun y \rightarrow if f y then k y))
```

Before (unstaged)

```
type \alpha arr =

A of int cde * (int cde \rightarrow (\alpha cde \rightarrow unit cde) \rightarrow unit cde)

let to_arr : \alpha array cde \rightarrow \alpha arr = fun a \rightarrow

A (sprintf "Array.length %s" a,

fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k)

let filter : (\alpha cde \rightarrow bool cde) \rightarrow \alpha arr \rightarrow \alpha arr = fun f (A (n,ix))

\rightarrow

A(n,fun i k \rightarrow ix i (fun y \rightarrow sprintf "if %s then %s" (f y) (k y)))
```

```
type \alpha arr =
       A of int cde * (int cde \rightarrow (\alpha cde \rightarrow unit cde) \rightarrow unit cde)
let to_arr : \alpha array cde \rightarrow \alpha arr = fun a \rightarrow
   A (sprintf "Array.length %s" a,
       fun i k \rightarrow sprintf "(Array.get %s %s)" a i \triangleright k)
let filter : (\alpha cde \rightarrow bool cde) \rightarrow \alpha arr \rightarrow \alpha arr = fun f (A (n,ix))
\rightarrow
   A(n,fun i k \rightarrow ix i (fun y \rightarrow sprintf "if %s then %s" (f y) (k y)))
let app : (\alpha \rightarrow \beta) cde \rightarrow \alpha cde \rightarrow \beta cde = fun f x \rightarrow
   sprintf "(%s %s)" f x
```

to_arr a \triangleright filter Float.is_finite \triangleright map sqr \triangleright sum

Before (unstaged)

$$\begin{split} &\text{let is_finite} = \texttt{app "Float.is_finite"} \\ &\text{let sqr} = \texttt{app "sqr"} \\ &\text{let v2} = \texttt{to_arr "a"} \vartriangleright \textit{filter is_finite} \vartriangleright \textit{map sqr} \vartriangleright \textit{sum} \end{split}$$

```
let is_finite = app "Float.is_finite"
let sqr = app "sqr"
let w2 = to org "e" ▷ filter is finite ▷ mon org ▷ org
```

```
\mathsf{let} \ \mathsf{v2} = \mathsf{to}_{-}\mathsf{arr} \ "\mathsf{a}" \ \vartriangleright \ \mathsf{filter} \ \mathsf{is}_{-}\mathsf{finite} \ \vartriangleright \ \mathsf{map} \ \mathsf{sqr} \ \vartriangleright \ \mathsf{sum}
```

```
let sum = ref 0. in
for i = 0 to Array.length a-1 do
  if (Float.is_finite (Array.get a i)) then
    sum := !sum +. (sqr (Array.get a i))
done; !sum
```


Introduction: What is Stream Processing

Stream Fusion

Case Study: FM Radio

Examples of Strymonas

Sum of even squares: sum of squares with filtering Strymonas

generated code

```
fun arg1_49 →

let t_50 = (Stdlib.Array.length arg1_49) - 1 in

let v_51 = Stdlib.ref 0 in

for i_52 = 0 to t_50 do

(let el_53 = Stdlib.Array.get arg1_49 i_52 in

if (el_53 mod 2) = 0

then let t_54 = el_53 * el_53 in v_51 := ((! v_51) + t_54))

done;

! v_51
```

Combinators in two different namespaces

Another simple example

let $ex1 = iota C.(int 1) > map C.(fun e \rightarrow e * e)$ (* val $ex1 : int cstream = \langle abstr \rangle *$)

let sum_int = fold C.(+) C.(int 0) (* val sum_int : int cstream \rightarrow int cde = $\langle fun \rangle *$)

$$\begin{array}{ll} \mbox{let ex2} = \mbox{ex1} \vartriangleright \mbox{filter C.(fun e} \rightarrow \mbox{e mod (int 17)} > \mbox{int 7)} \\ \vartriangleright \mbox{take C.(int 10)} \vartriangleright \mbox{sum_int} \end{array}$$

generates

Another simple example

```
let sum_int = fold C.(+) C.(int 0)
(* val sum_int : int cstream \rightarrow int cde = \langle fun \rangle *)
```

```
\begin{array}{l} \mbox{let } ex2 = ex1 \vartriangleright \mbox{filter } C.(\mbox{fun } e \rightarrow e \mbox{ mod } (int \ 17) > int \ 7) \\ \rhd \mbox{ take } C.(int \ 10) \vartriangleright \mbox{sum.int } \end{array}
```

generates

```
\begin{array}{l} \mbox{let } v_{-}1 = \mbox{Stdlib.ref 0 in} \\ (\mbox{let } v_{-}2 = \mbox{Stdlib.ref 10 in} \\ \mbox{let } v_{-}3 = \mbox{Stdlib.ref 1 in} \\ \mbox{while } (! \ v_{-}2) > 0 \ \mbox{do} \\ \mbox{let } t_{-}4 = ! \ v_{-}3 \ \mbox{in} \\ \mbox{Stdlib.incr } v_{-}3; \\ (\mbox{let } t_{-}5 = t_{-}4 * t_{-}4 \ \mbox{in} \\ \mbox{if } (t_{-}5 \ \mbox{mod 17}) > 7 \ \mbox{then (Stdlib.decr } v_{-}2; \ \mbox{v}_{-}1 := ((! \ \v_{-}1) + t_{-}5))) \\ \mbox{done}); \\ \mbox{!} v_{-}1 \end{array}
```

Another simple example

```
let ex1 = iota C.(int 1) \triangleright map C.(fun e \rightarrow e * e)
(* val ex1 : int cstream = <abstr> *)
```

```
let sum_int = fold C.(+) C.(int 0)
(* val sum_int : int cstream \rightarrow int cde = \langle fun \rangle *)
```

```
\begin{array}{ll} \mbox{let ex2} = ex1 \vartriangleright \mbox{filter C.(fun } e \rightarrow e \mbox{ mod (int 17)} > int 7) \\ \rhd \mbox{ take C.(int 10)} \vartriangleright \mbox{sum\_int} \end{array}
```

generates

```
int cfun()

{ int v_1 = 0; int v_2 = 10; int v_3 = 1;

while (v_2 > 0)

{ int t_4; int t_5;

    t_4 = v_3;

    v_3++;

    t_5 = t_4 * t_4;

    if ((t_5 % 17) > 7)

    { v_2--; v_1 = v_1 + t_5; }

}

return v_1;}
```

Database join

 $T_1:$ string * int table, $T_2:$ int * float table select T_1.1, 2*T_2.2 from T_1, T_2 where T_1.2=T_2.1 and T_2.2 > 5.0

 $\begin{array}{l} \mbox{let cart (s1,s2)} = \\ s1 \vartriangleright \mbox{flat_map (fun e1 \rightarrow s2 \vartriangleright \mbox{Raw.map_raw'} (fun e2 \rightarrow (e1,e2))) in} \end{array}$

```
let join (t1,t2) =
cart (of_arr t1, of_arr t2) \triangleright
```

```
(* WHERE clauses *)
Raw.filter_raw C.(fun (e1,e2) \rightarrow snd e1 = fst e2) \triangleright
Raw.filter_raw C.(fun (e1,e2) \rightarrow truncate (snd e2) > int 5) \triangleright
```

(* SELECTion *) Raw.map_raw' C.(fun (e1,e2) \rightarrow pair (fst e1) (snd e2 *. float 2.)) \triangleright

```
(* Output *)
iter (fun (e1,e2) \rightarrow seq (print e1) (print_float e2))
```

A weird test

```
let square x = C.(x * x) and
    even x = C.(x \mod (int 2) = int 0) in
Raw.zip_raw
  (* First stream to zip *)
  ([|0;1;2;3|] > of_int_array
    \triangleright map square
    \triangleright take (C.int 12)
    \triangleright filter even
    \triangleright map square)
  (* Second stream to zip *)
  (iota (C.int 1)
    \triangleright flat_map (fun x \rightarrow
         iota C.(x+int 1) \triangleright take (C.int 3))
    \triangleright filter even)
  \triangleright iter C.(fun (x,y) \rightarrow seq (print_int x) (print_int y))
```

A weird test: result

```
let t_71 = [|0;1;2;3|] in
let v 70 = ref 12 in
let \sqrt{72} = ref 0 in
let v_73 = ref 1 in
while ((! v_70) > 0) \&\& ((! v_72) < 3) do
 let t_77 = ! v_73 in
 incr v_73:
 (let v_78 = ref 3 in
  let v_{-}79 = ref(t_{-}77 + 1) in
  while ((! v_78) > 0) && (((! v_70) > 0) && ((! v_72) < 3)) do
    decr v_78:
    (let t_80 = ! v_79 in)
    incr v_79:
     if (t_80 \mod 2) = 0
     then
      (let v_{-81} = ref true in
       while ! v_81 do
         (decr v_70;
          (let el_{82} = Array.get t_{71} (! v_{72}) in
          let t_83 = el_82 * el_82 in
          if (t_83 \mod 2) = 0
          then
            let t_84 = t_83 * t_83 in
            (v_81 := false;
             (Format.print_int t_84;
              Format.force_newline ()):
             Format.print_int t_80:
             Format.force_newline ()));
         incr v_72):
         v_{.81} := ((! v_{.81}) \&\& (((! v_{.70}) > 0) \&\& ((! v_{.72}) < 3))) done))
    done)
 done
```

Stateful Streams

Difference encoder

 $\begin{array}{l} \mbox{let diff : int cstream} \rightarrow \mbox{int cstream} = \mbox{fun st} \rightarrow \\ \mbox{initializing_ref C.(int 0) @@ fun z } \rightarrow \\ \mbox{map C.(fun e } \rightarrow \mbox{letl (e - dref z) @@ fun v} \rightarrow \mbox{seq } (z := e) \ v) \ \mbox{st} \end{array}$

take_while

```
let take_while : (\alpha cde \rightarrow bool cde) \rightarrow \alpha cstream \rightarrow \alpha cstream = fun f st \rightarrow initializing_ref C.(bool true) @@ fun zr \rightarrow st \triangleright map_raw C.(fun e k \rightarrow if_ (f e) (k e) (zr := bool false)) \triangleright guard C.(dref zr)
```

Results: JVM

Results: C

Introduction: What is Stream Processing

Stream Fusion

Strymonas

► Case Study: FM Radio

Software FM Radio

William Thies. PhD Thesis, MIT, 2009

Software FM Radio in Strymonas

```
let samplingRate = 250_{-}000_{-}000.
let cutoffFrequency = 108_{-}000_{-}000.
let numberOfTaps = 64
let maxAmplitude = 27_{-}000.
let bandwidth = 10_{-}000.
```

```
let numlters = C.int 1_000_000
```

```
let () =
```

```
C.newref C.(float 0.) (fun out \rightarrow
```

get_floats

- \triangleright lowPassFilter samplingRate cutoffFrequency numberOfTaps 4
- \triangleright fmDemodulator samplingRate maxAmplitude bandwidth
- \triangleright equalizer samplingRate bands eqCutoff eqGain numberOfTaps

```
\triangleright take numlters
```

```
\triangleright iter C.(fun e \rightarrow out:=e)
```

```
,
▷ C.print ~name:"fmradio"
```

```
let lowPassFilter : float → float → int → int → float cstream → float cstream =
fun rate cutoff taps decimation st →
    let mk_coeff_arr cutoff = ...
    in
    let (module Win) = Window1.make_window taps decimation in
    st
    ▷ Win.make_stream C.tfloat
    ▷ map_raw (fun win →
        C.letl (Win.dot C.tfloat (mk_coeff_arr cutoff) C.( +. ) C.( *. ) win))
```

Conclusions

- ▶ Stream processing is varied: EE, CS, MBA,...
- Stream fusion is important and nontrivial especially complete stream fusion
- ▶ Strymonas can do it

Team

Joint work with Aggelos Biboudis, Tomoaki Kobayashi, Nick Palladinos, and Yannis Smaragdakis