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Abstract
Variable environment is the time-honored way of making sense
of free variables, used in programming language theory as well
when writing interpreters and some compilers. Algebraic effects
give another way, as was pointed already at HOPE 2017. Although a
theoretical curiosity, it may have surprising practical benefits: a new
way of writing compilers, with the incremental type-checking, with
easy variable usage, leaf function analyses. This work-in-progress
report prototypes and illustrates the idea.

1 Introduction
Whenever one writes an interpreter or a compiler, or studies logic,
model theory, programming language theory – one soon has to
face variables. The well-known way to deal with them is by in-
troducing an environment, or variable assignment in logic. There
is, however, another, more general approach, related to algebraic
effects. One should not be too surprised. Algebraic effects originate
from studying terms with variables, and equations on them: free
algebras.

The algebraic effect approach was already described at HOPE
2017 [1] and elaborated at [2]. It was explored and scaled up in the
study of rigorous, realistic and interesting reasoning with effects
[3].

Here we look at an unexpected practical side, in interpreting
or compiling languages. It has occurred to me as I was teaching
compiler class developing the complete compiler to x68-64 assembly
feature-by-feature, and in tagless-final style.

The first benefit is the ability to evaluate intermediary expres-
sions and report errors soon, before the whole program is parsed –
hence reducing the amount of memory for intermediary data and
improving latency. The approach also facilities variable usage and
leaf function analyses, indispensable in compilation.

2 Interpreting Languages with Variables
To explain the idea, let’s write an interpreter, which we later turn
into a compiler by changing the domain of interpretation.1 In rough
strokes the development, however simplified, actually follows the
compiler class.

We start with the simplest interpreter: the source language has
only integers and addition. The language should hopefully be clear
from the grammar, in the (ocaml)yacc form.We borrowed this exam-
ple from the ocamllex/ocamlyacc chapter of the OCaml Reference
[4, §15.6].

exp: INT { int $1 }
| exp PLUS exp { add $1 $3 }
| LPAREN exp RPAREN { $2 } ;

The grammar defines the concrete syntax of the language. The
semantic actions int and add are arranged in a separate module

1The complete code accompanying the paper is available at https://okmij.org/ftp/
Computation/var-effect/

with the following signature, which in effect, defines the abstract
syntax.

module type LangInt = sig
type repr (∗ representation type ∗)

val int : int → repr
val add : repr → repr → repr

type obs (∗ observation type ∗)
val observe : repr → obs
end

Where repr is the domain of the interpretation.
Here is one implementation of the signature.
module EvalInt = struct
type dom = int
type repr = dom

let int x = x
let add x y = let s = x + y in printf "␣␣␣=>␣%d\n%!" s; s

type obs = unit
let observe x = string_of_int x |> print_endline
end

The value domain is int (OCaml integers), which is also the domain
of interpretation repr. The function observe is invoked after the
parsing is finished; it observes the repr value representing the result
of the whole program, by printing it. We also made the interpreter
to print the (intermediate) results, of each addition expression. As
we shall see, it is a good diagnostic for the evaluation order.2

Let’s add variables. We add the productions
| IDENT { var $1 }
| LET IDENT EQ exp IN exp { let_ ($2,$4) $6 }

to the parser, and likewise extend the abstract syntax. By ‘extending’
wemean creating a new version re-using the old code – in its already
compiled form, and without any copy-pasting or editing.
module type LangLet = sig
include LangInt

type name = string

val var : name → repr
val let_ : name ∗ repr → repr → repr
end

Its implementation also re-uses EvalInt, but re-defines all opera-
tions:3

module EvalEnv = struct
type dom = EvalInt.dom
type name = string
type env = (name ∗ dom) list

2as well as memory requirements: deferring a computation needs memory to store
what is to compute later.
3Here ≫ is left-to-right function composition
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type repr = env → dom

let ans : dom → repr = fun v → fun _env → v
let lift2 : (dom→dom→dom) → (repr→repr→repr) = fun op e1 e2 →
fun env → op (e1 env) (e2 env)

let int = EvalInt.int ≫ ans
let add = lift2 EvalInt.add
let var : name → repr = List.assoc
let let_ : name ∗ repr → repr → repr = fun (n,b) body →
fun env → body ((n,b env) :: env)

type obs = unit
let init_env : env = []
let observe x = x init_env |> EvalInt.observe
end

To handle variables, we introduce the variable environment env –
here, the associated list of variable names and their meanings –
as explained in every textbook about interpreters. The domain of
interpretation is now a function from env to the value domain, to
which the earlier semantic functions are lifted. Again, the interpre-
tation is completely standard and explained in every textbook on
this topic.

What the textbooks rarely point out is an undesirable change. In
the original EvalInt, the (intermediate) result of a sub-expression
is printed as soon as it is parsed. When we enter "1+2\n+3\n+4\n"
we see the partial sums printed as soon as we hit ‘Enter’. EvalInt
indeed works as the familiar desk calculator.4

EvalEnv is different: Aswe enter the same "1+2\n+3\n+4\n", noth-
ing is printed. It is only when we terminate the input and tell
the parser the whole program is finished that we see the results.
Whereas EvalInt interprets as the program is being parsed, EvalEnv
does the real work (summation) only after the whole program has
been parsed. It is not hard to see why.

The meaning of 1+2 in the EvalInt semantics is 3 (computed
compositionally). In the EvalEnv semantics, the same expression
has the meaning

let m12_env : EvalEnv.repr =
fun env → (fun _ → 1) env + (fun _ → 2) env

which is a function. Its body is not evaluated until it receives the
env argument – even if the argument is not needed. That argument,
the initial environment, is passed by observe only when the entire
program is parsed. One may notice that m12_env has the structure
of the corresponding source expression 1+2 – obviously, since the
meaning assignment is a homomorphism. The meaning is a func-
tion (closure) that references the meanings of 1 and 2, which are
also closures. In effect, m12_env is a parse tree of the source expres-
sion 1+2 – in a form of closures and taking hence more memory
compared to a data structure. This parse tree is interpreted upon
the final observation.

What EvalEnv gained, however, is handling programs with vari-
ables like (1+2)+x – which cannot be evaluated until we receive the
environment and look up the value of x. Still, the sub-expression
(1+2) could be interpreted on the spot. How to make it happen?

4In fact, it makes a simpler and clearer example than the one in the ocamlyacc’s
reference manual.

2.1 Variable as an Effect
When dealing with expressions like (1+2)+x, we need to know
what value corresponds to x. We can just ask. The meaning of an
expression is then either an answer A(v), or a question Q(n,k) about
the value of the variable n, to be continued as k, perhaps asking
further questions until the final answer. We hence introduce the
following variable effect (which is the Free monad implementation
of the Reader effect, and entirely standard):

module VarEff = struct
type name = string
type 𝛿 t = A of 𝛿 | Q of name ∗ (𝛿 → 𝛿 t)

let ans : 𝛿 → 𝛿 t = fun v → A v
let var : name → 𝛿 t = fun n → Q(n,ans)

let rec lift2 : (𝛿→𝛿→𝛿) → (𝛿 t → 𝛿 t → 𝛿 t) = fun op e1 e2 →
match (e1,e2) with
| (A v1, A v2) → A (op v1 v2)
| (Q (n,k), e2) → Q (n, (fun v → lift2 op (k v) e2))
| (e1, Q (n,k)) → Q (n, (fun v → lift2 op e1 (k v)))

let lift : (𝛿 → 𝛿 t) → (𝛿 t → 𝛿 t) = . . .

let handle_var : (𝛿 → 𝛿 t) → (name → 𝛿 option) → 𝛿 t → 𝛿 t = . . .
let letv : (name ∗ 𝛿) → 𝛿 t → 𝛿 t = fun (n,v) →
handle_var ans (function n' when n'=n → Some v | _ → None)
let top_hand : 𝛿 t → 𝛿 = function A v → v
end

A binary operation on two expressions lift2 op checks to see if
both operands have the answer. If so, the operation op can be per-
formed right away. Otherwise, lift2 propagates operand’s questions.
Eventually, the questions have to be answered, which is the job
of a handler. The handler handle_var is the mapping/fold over the
denotation (𝛿 t tree). Its particular instance letv replies to questions
only about the given name, propagating all others. The domain of
interpretation is now dom VarEff.t, to which the semantic functions
are lifted:

module EvalEff = struct
module V = VarEff
type dom = EvalInt.dom
type repr = dom V.t

let int = EvalInt.int ≫ V.ans
let add = V.lift2 EvalInt.add
let var = V.var

let let_ : name ∗ repr → repr → repr = fun (n,b) body →
V.lift (fun v → V.letv (n,v) body) b

type obs = unit
let observe x = V.top_hand x |> EvalInt.observe
end

As expected, let_ acts as a handler, answering questions about its
bound variable, and propagating all other questions up. One may
show, using the technique in [3], that EvalEff.repr has the same
equational theory as EvalEnv.repr – that is, EvalEff is extensionally
equivalent to EvalEnv. Still, "(1+2)\n+x\n" and "x+(1+2)\n+3" now
print the result of interpreting 1+2 right away, without waiting for
the whole program to be parsed. Furthermore, when we enter the
program
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let y = let x = 1 + 2
in x + x + 3 in

y + 1;;

we not only see 1+2 being evaluated right away, but also x+x+3 be-
ing evaluated as soon as it has been parsed, at the end of the second
line.5 Questions about local variables can therefore be answered
quickly, without waiting for the whole program be parsed.6

EvalEff offers further opportunities for optimization: if the body
of a let-expression has A v as its interpretation (denotation) – that
is, not a question – the body has not needed the value of the bound
variable. We have hence come upon an easy way to determine the
usage of bound variables, which is valuable in compilation, as we
shall see in the next section.

The variable-as-effect approach scales up to functions – as was
in effect shown already in [1]. Here are two sample programs7

let x = 1 in
let fun f(y) = x + y in
let x = 2 in f(2)

let x = 1 in
let fun f(y) = x + y in
let fun g(x) = f(x) in
g(2)

Since a variable dereference is an effect, to be handled by a dynami-
cally enclosed handler, one may wonder if we are really implement-
ing lexical rather than dynamic binding. As was shown already in
[1] and elaborated in [2], variable-dereference-as-effect does sup-
port lexical binding, with some work. Generally, a mechanism to
capture the current dynamic environment is needed. The current
implementation uses a simpler approach: handling the body of a
function in the handling environment of its definition rather than
of its invocation. Therefore, both sample programs evaluate to 3.

3 Compilation
The ability of EvalEff to evaluate as soon as possible, without wait-
ing for the whole program to be parsed is especially valuable in
compilation, where it translates to reporting type and other errors
early and reducing memory footprint. There is another benefit,
hinted earlier: the ease of variable use analyses, which are needed
for memory/register allocation. This section demonstrates both
benefits.

First, we turn our interpreter into a compiler, to Wasm. We
change the interpretation domain from int to a sequence of Wasm
instructions that leave the int result on the stack.
module EvalInt_wasm = struct
type dom = Wasm.instr
type repr = dom

let int = Wasm.I32.const
let add x y = Wasm.(exp [x; y; I32.add])

type obs = unit
let observe x =

let open Wasm in

5One can see that for themselves by compiling and running the code in the directories
step2 and step3 in the accompanying code. The former implements the environment
and the latter effect semantics for variables.
6However, straightened-out let-expressions are right-associated. Therefore, their pars-
ing finishes only at the end of the program.
7see step4 in the accompanying code.

wasm_module [func ~result:I32 [x]] |> observe
end

We rely on the module Wasm: tagless-final embedding of Wasm.8
The new EvalInt_wasm is quite like EvalInt, structurally. It inter-
prets "1+2+3" as:

i32.const 1 i32.const 2 i32.add i32.const 3 i32.add

Just as we lifted EvalInt to EvalEff in §2.1, we lift Eval_wasm; the
result, to be called Eval_var, is EvalEff with EvalInt replaced with
Eval_wasm. One may now compile programs with local variables;
for example,

let x=10+11 in 1+x+x+3

produces:
i32.const 1 i32.const 10 i32.const 11 i32.add i32.add
i32.const 10 i32.const 11 i32.add i32.add i32.const 3 i32.add

The variable x turns out substituted with its bound expression: the
let-binding got inlined. One should not be too surprised: after all,
variables are like named ‘holes’ in the domain, with let-expressions
telling how to fill the holes. Such behavior of let-expressions –
effecting sharing in the compiler rather than in the object code – is
well-known in code generation [5].

To properly compile let-expressions, allocating storage (Wasm
locals) for bound variables, we lift Eval_var one more time.9 In
other words, we generate Wasm with ‘holes’, to be filled with the
names of the allocated Wasm locals. The allocation is performed
after a let-expression is compiled and the variable usage in its body
is determined. Strictly speaking, the compilation becomes two-pass.
However, the first pass generates as much Wasm code as possible.
Local let-expressions can even be compiled entirely before the end
of parsing of the whole program.

The let-handler is particularly notable:
let letv : name ∗ dom → repr → repr = fun (n,v) b →
let cnt = ref 0 in (∗ usage count of n ∗)
let vars = ref [] in (∗ other variables used ∗)
let lkup = function
| n' when n = n' → incr cnt; Some (V.var n)
| n' → if List.mem n' !vars then () else vars := n' :: !vars; None

in
let ret res =
if !cnt = 0 then V.ans res (∗ no need to allocate anything ∗)
else if !cnt = 1 then V.ans (Eval_var.let_ (n,v) res) (∗ inline ∗)
else
(∗ request allocation, reporting n and the list of alive,
hence conflicted variables ∗)

in V.handle ret lkup b

As the handler answers questions about its bound variable, it counts
them. At the end, it knows how many times the bound variable has
been accessed. If zero, there is no need to allocate storage for the
variable. (If the source language has no side effects, as ours currently,
we may even skip compiling the bound expression). If the variable
was used only once, we substitute it with the bound expression,
using Eval_var’s let-machinery to do the substitution. Again, no
storage allocation is needed. The letv-handler also watches for other
variable requests, and learns of all free variables in its managed
expression. Their list is reported to the allocator: these are conflicts,
i.e., their storagemust be disjoint.We thus obtain all the information
8see the directory wasm in the accompanying code.
9see step7, in particular, eval.ml in that directory.
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(variable usage and conflicts) needed for storage allocation; see the
source code for details.

For example, the program
let x = 1 + 2 in let y = x + 1 in let z = y + x in z + z + y

compiles to the following Wasm module
(module (func (export "start" ) (result i32 )
(local $t_1 i32) (local $t_2 i32)
(i32.const 1) (i32.const 2) i32.add local.set $t_1 local.get $t_1
(i32.const 1) i32.add local.set $t_2 local.get $t_2 local.get $t_1 i32.add
local.set $t_1 local.get $t_1 local.get $t_1 i32.add local.get $t_2 i32.add))

The variables x and z share the same Wasm local t_1.
Let us add functions – for simplicity, second-class top-level func-

tions whose bodies have no free variables aside from the arguments
(since functions are second class, their names are distinct from
ordinary variable names).10 Here is an example:

let fun f(x) = x + 2 in
let fun g(x,y) = f(y) + x in
f(g(1,2))

Since functions may take several arguments, there comes the pos-
sibility of applying a function to a wrong number of arguments –
which is a type error. We should report it at the compilation time.

The language with top-level second-class functions Lang2Fun is
the extension of LangLet with function calls and function declara-
tions:

module type Lang2Fun = sig
include LangLet

val call : name → repr list → repr

type fundecl (∗ function declaration ∗)
val defun : name ∗ name list ∗ repr → fundecl

type defns (∗ a sequence of fundecl ∗)
val defn_empty : defns
val defn_add : defns → fundecl → defns

type topform
val top_exp : defns → repr → topform
val topf_observe : topform → obs
end

Here, defun interprets a declaration (the function name, the list of
argument names and the function body) as fundecl. Since functions
may only be declared at top-level and may not refer to outside
variables, all function declarations have to appear at the beginning
of the program, followed by the top-level expression (main program
body) – which is what topform signifies. The compilation for func-
tion bindings and function calls is not much different from what
we have seen for integer-type let-expressions. A question about a
function name is answered with its type (i.e., arity) and the Wasm
name11 (needed to generate the Wasm call instruction). We refer
to the accompanying code for details (see the directory step8).

We have claimed that the effect semantics for variable and func-
tion names enables incremental type checking and the early report-
ing of errors. Let us see. First, consider the OCaml code:
10Compiling functions with ‘open bodies’ is rather challenging: Wasm intentionally
prohibits accessing locals from a different function. To use locals as much as possible
we would need an extensive variable use analysis, which should be feasible in our
approach. This is the topic for future work.
11Function names may be re-defined but Wasm names are unique.

let f(x) = x + 2
let g(y) = f(y,1) + y
f(g(1XXX

with two problems. On line 2 the function f is invoked with a
wrong number of arguments. Then there is a parse error on line 3.
Although it occurs later in the code, it and only it is reported by
the OCaml compiler:

3 | f(g(1XXX
^^^^

Error: Invalid literal 1XXX

Indeed, an OCaml program must first be completely parsed, and
only then type-checked.Whenwriting or refactoring code, however,
one would have liked to type check fragments (definitions) as soon
as they are finished, before the whole program is completed.

In contrast, if we submit the similar code
let fun f(x) = x + 2 in
let fun g(y) = f(y,1) + y in
f(g(1XXXX

to our compiler, we get the compilation error about the first prob-
lem:

Function f requires 1 arguments but was invoked with 2

In fact, if we feed the code into the compiler line-by-line, we notice
that the error is reported right after the second line is entered –
before the third, ill-formed, line is even input.

4 Conclusions
In the environment semantics the meaning of an expression is a
function from the environment, which is opaque and cannot be
examined. We cannot tell which variables in the environment have
actually been used, and how many times. Algebraic effects make
the denotation more observable: a handler can watch questions and
find out which variables have been asked about, and how many
times. Thus we obtain the variable usage analysis in the ordinary
course of compilation, almost for free, so to speak.

It remains to be seen how this promise holds for a real compiler
for a realistic programming language. I intend to find it out by
trying this technique out in the new installment of the compiler
class (which is underway).
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