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Abstract
Scala shines in the construction of large-scale programs from sepa-
rately developed and tested, extensible components. Scalable com-
ponent programming comes from a particular combination of Scala
features: abstract type members, explicit self-types and modular
mixin composition. This combination has come to be known as
Scala Cake pattern. The pattern particularly proves its worth dur-
ing the evolution of large code bases. It becomes compelling in
complex cases of aggregating mutually dependent but separately
compiled extensible components.

What is this cake pattern, freed from the OO terminology? Why
haven’t we come across it before? Can we reproduce its success
in building extensible components in Haskell? Does it alleviate the
unabating library versioning problems? How convenient is scalable
component programming in Haskell and how to make it syntacti-
cally sweeter?

The paper answers these questions on two case studies demon-
strating how to reproduce the winning combination of Scala fea-
tures in Haskell. Although Haskell modules are not extensible com-
ponents, scalable component programming is nevertheless possi-
ble. We show how to use type classes as interfaces (component
signatures) and how to systematically replace hard links – refer-
ences to components and their types and values by name – with
references by interfaces. The Haskell Cake pattern is compelling in
sufficiently complex cases, especially mutually dependent extensi-
ble components; otherwise, ordinary closures suffice.

1. Introduction
Modularity is one of the key principles of software engineering [7].
Ideally a software system is put together from separately developed
and tested, and easily interchangeable parts with clear interface.
We call such parts, which provide a set of related data types and
operations on them, components. They are also called packages,
structures or modules – however, modules in Haskell have a spe-
cific meaning as a unit of compilation. A typical component is the
module Data.Dynamic, providing a data type Dynamic and several
operations on it such as toDyn and fromDynamic. The exact rep-
resentation, the data constructors, of Dynamic is not exposed and
so Dynamic values can only be created and transformed through
the functions provided by the component. Dynamic relies on data
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types and operations of another component, Data.Typeable. Com-
ponents like HTTP provide many datatypes, require many other
components for their functionality, and are comprised of many
modules.

Most of Haskell components however are not extensible and
composable. For example, to use Data.Dynamic with a different
version of Typeable we at the very least must recompile the former
(which may set off a cascade of further recompilations). The reason
is import Typeable in Dynamic, referring to the module Typeable
by its name. There is no other way: Typeable is described by what a
particular module Data.Typeable implements rather than by what
that module must conform to. In contrast, Scala Cake lets depen-
dencies between components be specified in terms of their inter-
faces. Therefore, a separately compiled component, as it is, may
be later linked with any implementation of the required interfaces.
Extending a Scala component with more types or operations will
not break its dependents. Not only are the sources of the dependent
components unaffected by the extension, but also their compiled
binaries. Using two different versions of a base component within
the same program is straightforward in Scala and nearly impossible
in Haskell.

The success of Scala in large-scale component development
comes about because, argued Odersky and Zenger [6], the language
has features to satisfy the necessary requirements for scalable com-
ponent programming:

• separate interface and implementation: The interface enumer-
ates the (abstract) types and operations supported by the com-
ponent. Several components may implement the same interface,
with their own internal operations and realization of the abstract
types.
• abstraction over required functionality: If a component needs

the functionality of other components, the latter should be re-
ferred to by their interfaces rather than by names.
• coarse-grained, largely implicit linking: The user should be able

to build programs by specifying components or large compo-
nent assemblies, wasting no time on matching each and every
required and provided operation.

The first requirement is the well-known encapsulation, ensuring
representation independence [8]: the ability to change the represen-
tation of an abstract data type without affecting the rest of the pro-
gram. The second requirement is less known. Odersky and Zenger
are to be credited for motivating, drawing attention to and clearly
stating the need to abstract over the required functionality.

Odersky and co-workers [5, 6] explain in detail which features
of Scala work to satisfy which requirement: nesting of classes for
aggregation and encapsulation; abstract type members with upper
bounds for abstracting provided data types; self-annotations for ab-
stracting the required functionality; mixin composition for match-
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ing provided and required functionality. This particular combina-
tion of features came to be called the Scala Cake pattern. Many ex-
planations of the cake pattern have been written in various blogs1 –
alas, Scala-specific, often using too simple examples, making the
pattern contrived and over-broad, and invariably making it appear
as a Scala trick. In the result, the pattern is hard to understand, espe-
cially outside Scala and object-oriented programming. How it can
be reproduced in Haskell is a good question.

Furthermore, it is not clear if Haskell can fulfill the requirements
for the scalable component programming at all. Haskell does not
separate module interface and implementation. Unlike ML, Haskell
has no notion of module signatures, or module types. Haskell sup-
ports ascribing a signature to a single definition but not to a mod-
ule (a collection of definitions and type declarations). Also unlike
ML, Haskell does not support parameterized modules (functors),
and so seemingly unable to abstract over the required functionality.
To refer to operations in other Haskell modules, we have to import
them by the name of the implementation file rather than by the
interface. Odersky [5, 6] calls such references “hard links”. Hard-
wiring of the module names is responsible for numerous version-
ing problems, an unremitting bane of Haskell installations2. What
self-types and mixins of Scala, the ingredients of the winning pat-
tern, may correspond to in Haskell is a puzzle. It may seem that
for large-scale development, for assembling programs from com-
ponents, Haskell is severely lacking.

Contributions We demystify the Scala Cake pattern and explain
it in terms of functional languages, showing its representation in
Haskell. We demonstrate the systematic way of eliminating hard
links among (mutually) dependent components, using type classes
for module interfaces and higher-rank types for linking by interface
rather by name, abstracting over implementation details and private
state. Mutually dependent components are structured into non-
recursive, separately compiled and extensible modules related only
by the common interface. We call this pattern Haskell Cake.

Like Odersky and Zenger [6], we use two case studies to demon-
strate scalable component programming. An alternative exposition
would prove that core Scala features that underlie the Cake pattern
are implementable in Haskell, by developing a formal translation
from the Scala core calculus νObj to a Haskell core calculus, and
proving its properties. We do not take this alternative since our goal
is not to encode OOP in Haskell but to demonstrate developing
scalable components in idiomatic Haskell.

Along the way we show why we have not come across the cake
pattern in Haskell before. This is because for simple extensible
components, ordinary closures suffice. It is only in complex case
like those in §5 or §6 that the cake pattern becomes compelling.
Therefore, we have to use a moderately complex running example,
making it even more complex at the end. Clarifying when closures
work to implement components, when they stop working and how
to retrofit them into the cake pattern, §4.6, is another contribution.

The end result, like in Scala, is scalable component program-
ming. The main ingredients of the Haskell cake pattern are:

• type classes with associated types as component’s interfaces
• higher-rank types (existentials or universals) to refer to a type

by its interface it satisfies rather than by its name

1 http://debasishg.blogspot.in/2013/02/
modular-abstractions-in-scala-with.html http://jonasboner.com/
2008/10/06/real-world-scala-dependency-injection-di/
http://blog.rintcius.nl/post/
di-on-steroids-with-scala-value-injection-on-traits.html

2 http://www.well-typed.com/blog/9 http://cdsmith.wordpress.com/
2011/01/16/haskells-own-dll-hell/ http://www.google-melange.com/
gsoc/proposal/review/google/gsoc2012/phischu/1 More articles can be
found by doing Haskell-Cafe or Google search for “Haskell dependency hell”

• Writing components as traits (mixins). The defining property of
a trait is being “upwards closed”: if an interface is specified by
a type class C and a component T implements C (that is, T is
an instance of C) then any aggregate T’ that incorporates T also
implements C. We call T’ as incorporating T if it is possible to
project out and update T from T’.

As any principles, when stated they appear trivial; the difficulty is
in applying them. The paper describes how to systematically apply
these principles, how to gradually eliminate hard links and develop
traits.

Scala Cake is a pattern: a way to write code. It is up to the pro-
grammer to follow the pattern; Scala per se does not automatically
lead to reusable and extensible components. Likewise, our set of
patterns is a style of writing Haskell code, to make libraries (com-
ponents) extensible and resilient to version changes.

The structure of the paper is as follows. §2 introduces the run-
ning example and shows how the ‘traditional’ implementation (the
implementation style seen in the standard and other libraries, e.g.,
Data.Data) leads to the reusability failure and versioning prob-
lems. A simple addition of a debug printing to one operation sets
off the massive cascading code duplication. We fix the problems
by gradually introducing the ingredients of the Cake pattern in §3
and §4, replacing hard links with soft ones. §3 explains writing a
separate interface specification and referring to a component by its
interface using universals. §4 finishes eliminating hard links, us-
ing existentials, and demonstrates component aggregation relating
it with traits. In §4.6 we investigate to which extent closures suffice
for component programming. §5 shows off the full power of traits
for building components by aggregation. The second case study of
mutually dependent and yet separately extensible components pro-
viding operations and types for each other is described in §6. This
example, extracted from the Scala compiler, was at the center of
[5, 6]. It turns out the Haskell Cake pattern lets us implement the
example in idiomatic Haskell, with no OO features.

The complete code accompanying the paper is available at
http://okmij.org/ftp/Haskell/ScalaCake/. Therefore, when
presenting code the paper will show only salient parts, referring to
the full code for details. The online code also includes a number of
files demonstrating features of Scala such as abstract classes, traits,
mixin composition, and their emulation in Haskell.

2. Hard links and the composability failure
This section introduces the running example and its idiomatic im-
plementation as two Haskell modules, depending on each other.
These modules fall short of reusable components. The module de-
pendence is expressed through hard links, by referencing the names
of the exported values and types. Therefore, when one module is
extended with debug printing while preserving the interface, the
code of the dependent module has to be duplicated. We will observe
the reusability failure and the all-to-common in Haskell versioning
problem. The follow-up sections will re-implement the example to
fix these problems.

2.1 Publish-subscribe example
Our running example is a publish-subscribe system comprised of
two components, subjects and observers. A subject accepts sub-
scriptions from observers whereas an observer accepts notifica-
tions from subjects. The operation publish on a subject will no-
tify all subscribed observers; the operation withdraw will cause an
observer to unsubscribe itself from all subjects it has subscribed
to previously. Subjects and observers are defined, quite symmetri-
cally, in terms of each other. After we implement the library for
publishing and subscribing, we use it to define sensors as concrete
subjects and displays as observers.
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The example is an extended version of the Scala cake case study
in [6, Sec 3], illustrating what some call family polymorphism (a
family of components, two in this case, which vary covariantly).
The case study in that paper is too simple to make the point in
Haskell: an observer with a single method notify can be repre-
sented as a simple closure. We keep to the design decisions of the
Scala example, and implement them in idiomatic Haskell. Publish-
subscribe idiom is quite common: e.g., it occurs in GHC run-time
system, GHC.Event. Our implementation in this section has many
similarities with the Event module.

We start with the module SubObs1 that exports the types
Subj and Obs of subjects and observers; the constructor func-
tions newSubj and newObs; the operations subscribe, publish and
withdraw. We describe the salient points of the module below; for
the complete code, see the accompanying file SubObs1.hs. The
reader may feel unease with our description of the module inter-
face: partly in English, spread out through the whole section and
intermingled with implementation. This is typical but not inherent
in Haskell; §3 tells how to write a component interface in Haskell
itself and have the compiler check the implementation’s compli-
ance.

EXERCISE 1. Subjects and Observers could be implemented in
separate modules, which have to be mutually dependent. What
additional operations should be exported then?

Before we can flesh out the interface of SubObs1 we have a de-
cision to make. The principle of representation independence dic-
tates that we hide the implementation of the subscription list and
export only the type Subj with publish and subscribe operations,
but not its realization. Concrete subjects, like the sensor below, have
richer structure (e.g., the state of the sensor) with more operations.
We have to decide how the bare Subj gets incorporated or extended
into concrete subjects. There are two ways: a concrete subject ei-
ther incorporates Subj, or is an instance of Subj. We will try both,
exploring their trade-offs. In this section, we choose Subj as a fam-
ily (a polymorphic data type) abstracting over concrete subjects and
their concrete data. (In other words, Subj is an extensible data type,
[2].) Subj operations such as subscribe will be polymorphic, uni-
formly applying to Subj a for any a. Such a design is conventional
in Haskell, see Data.Tree for example. (We will come to regret
this design of Subj; for example, it cannot express proxies, §5. §4
explores the alternative, less common design, part of the cake pat-
tern.)

We choose the straightforward representation for Subj a, the
type of a subject that accepts and maintains subscriptions from ob-
servers Obs a. (GHC.Event.EventManager has a similar imple-
mentation.)

data Subj a = Subj a (IORef [Obs a])

subjData :: Subj a → a
subjData (Subj x ) = x

Since the realization of Subj is not exposed, we have to export
subjData to extract the data of concrete subjects.

An observer of Subj a, when notified, receives the subject, from
which it can extract the concrete data. Obs therefore likewise define
a family of types, matching Subj. An observer, too, maintains the
subscription list, of subjects, to be able to unsubscribe from them.
An observer also has a name, to be used as an identifier when
subscribing or unsubscribing.

data Obs a = Obs{
obsName :: String,
notify :: Subj a → IO (),
obsSubjects :: IORef [Subj a]}

A state, private data of an observer, if any, is incorporated into the
closure notify. We stress that SubObs1 exports only the types Subj

and Obs but not their representation – giving us the freedom to
change the representation, e.g., to collect subscriptions in a data
structure other than list.

The internal operation subjSubscribe adds an observer to the
list of subscribed observers

subjSubscribe :: Subj a → Obs a → IO ()
subjSubscribe (Subj observers ) obs = modifyIORef observers (obs:)

and a similar subjUnSubscribe removes. The exported subscribe
links a subject and an observer together

subscribe :: Subj a → Obs a → IO ()
subscribe subj obs = do
subjSubscribe subj obs
modifyIORef (obsSubjects obs) (subj :)

publish :: Subj a → IO ()
publish subj@(Subj observers ) =

readIORef observers �= mapM (\obs → notify obs subj)

and publish notifies all subscribed observers; withdraw is similar
to publish, only applied to an observer. Since the representation
of Subj and Obs is not exposed, we have to export functions to
construct them:

newSubj :: a → IO (Subj a)
newObs :: String → (Subj a → IO ()) → IO (Obs a)

An example of using the SubObs1 library is the module
SensorReader1, which implements a Sensor as a concrete subject
and Display as a concrete observer.

module SensorReader1 (
Sensor, Display ,
newSensor, newDisplay, changeValue,
subscribe , withdraw) where −− re−export from SubObs1

import SubObs1

type Sensor = Subj Sensed
type Display = Obs Sensed

where the sensor state is
type Label = String
data Sensed = Sensed{label :: Label,

senVal :: IORef Double}
The module SensorReader1 has to import SubObs1 since it refers,
by their name, to the types Subj and Obs and functions defined
therein.

Besides the operations common to all Subj, Sensor also lets us
change its value, notifying all subscribed observers:

changeValue :: Sensor → Double → IO ()
changeValue subj nv = do

Sensed{senVal= vr} ←subjData subj
writeIORef vr nv
publish subj

Once notified, Display prints the current value of the sensor:
newDisplay :: String → IO Display
newDisplay l = newObs l notify
where notify subj = do

let sdata = subjData subj
v ← readIORef (senVal sdata)
putStrLn $ unwords [”display ”, l , ”sensor”, label sdata,

”has value”, show v]

The main module SRTest1 imports only SensorReader1 and
creates a few sample sensors and displays, subscribing them and
changing the sensors’ values.

2.2 Extending the publish-subscribe example
To demonstrate version problems, let us extend SubObs1 with de-
bug printing: the publish operation will print the name of each ob-
server before notifying it. The original version is not to be dis-
carded; we even want to use it in the same project alongside the
debugging version. The new version, called SubObs1d will be a
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nearly duplicate of SubObs1. The duplication is inevitable since
SubObs1 hides the subscription list. We pay for representation
independence with duplication. More annoyingly, by duplicating
SubObs1 we duplicated the implementation of Obs, which had
nothing to do with the the change in publish.

EXERCISE 2. Had we implemented subject and observer in sepa-
rate, mutually dependent modules as in Ex. 1 we would still need to
duplicate the observer code when we extend the subject code. Why?

EXERCISE 3. To print the name of a notified observer, we could
have added the debug printing to notify instead. Does this alterna-
tive design avoid the duplication problems?

Recall that the name SubObs1 was hard-wired, in the import
statement, in the implementation of the sensor library, SensorReader1.
If the sensors are to use the debugging version of subjects, we have
to change the source code of SensorReader1. If we wish to keep
the original library, we are forced to make a copy. The debugging
version SensorReader1d is identical to SensorReader1, differing
only in the name of the imported SubObs1d.

On the bright side, the old SensorReader1 and the debugging
SensorReader1d may be used side-by-side in the same application
as Test1d demonstrates. We import both versions, with qualifica-
tions:

import SensorReader1 as SR
import SensorReader1d as SRd

Moreover, the type checker enforces the isolation. Sensors and
observers created by different versions of the library cannot be
confused: we cannot use SR.subscribe to subscribe sensors or
displays created by SRd. On the downside, we cannot use displays
created by SR to observe sensors of SRd – even though the sensor
interface has not changed and the implementation of observers is
identical between the two versions of the library.

We saw how a simple change, adding debug printing, had a rip-
ple effect of code duplication. Because of hard links, making a new
version of a module forces changes in all transitively-dependent
modules. A large part of code base has to be duplicated.

3. Separating interface and implementation
Although the common way of writing Haskell libraries fails to pro-
duce flexible, reusable components, Haskell nevertheless has facil-
ities for scalable component programming. We describe them by
gradually fixing the problems with the running example we have
just seen. This section explains how to write a separate interface
specification for a Haskell component and refer to a component by
its interface using universals. §4 finishes eliminating hard links be-
tween our subjects and observers, using existentials. It demonstrate
component aggregation and relates them with traits.

We have seen that the reusability failure arises from referring
to types and values of another library directly by their name rather
than indirectly by their properties identified by interfaces. At first
blush referring to another library by its type, or interface, seems
impossible since Haskell modules, unlike, say, ML modules, do
not have types. Seemingly we cannot write a specification for a
library and then ask the compiler if a purported implementation
conforms to it. The export list of a module is a poor abstraction: it
has no types, no constraints, and is inseparable from the module.
And yet, Haskell does let us write a library interface and check
the implementation’s conformance to it, and does let us refer to a
library by its interface. Admittedly, the library interface in Haskell
is more roundabout compared to signatures of ML.

Haskell type classes, with associated types, provide all we need
from an interface, or a module signature: the ability to bundle type
and value signatures, hence to abstract over a collection of type
and value definitions. As an example, here is the interface of the

publish-subscribe library SubObs1 from §2.1. Recall that the li-
brary defines subjects that accept subscriptions from observers, and
observers that can be subscribed to, withdrawn from, and notified
by subjects. The following pair of type classes abstract from con-
crete types of subjects and observers and state the operations in
terms of so abstracted types.

class SUBJ subj where
type Observer subj :: ∗ → ∗
subjData :: subj a → a
newSubj :: a → IO (subj a)
publish :: subj a → IO ()
subscribe :: subj a → Observer subj a → IO ()

class OBS obs where
type Subject obs :: ∗ → ∗
obsName :: obs a → String
newObs :: String → (Subject obs a → IO ()) → IO (obs a)
withdraw :: obs a → IO ()
notify :: obs a → Subject obs a → IO ()

The method signatures are quite like the signatures of the func-
tions exported from SubObs1, only instead of the concrete types
Subj and Obs with the hidden implementation, the methods use
type-class–constrained type variables subj and obs. In other words,
SUBJ and OBS abstract over all possible implementations of the
publish-subscribe functionality and define a family of implemen-
tations. The earlier Subj and Obj were actually type constructors,
describing a family of subjects and observers parameterized by the
state of a concrete subject. The type variables subj and obs are
likewise type constructor variables. Thus SUBJ and OBS repre-
sent double-abstraction, over the implementation of the publish-
subscribe mechanism and over the concrete state of subjects.

EXERCISE 4. The associated types Observer subj and Subject
obs establish one-to-one correspondence between the types of sub-
jects and their observers. Such a design reflects the Scala example
from [6, Sec 3] and SubObs1. Is such one-to-one correspondence
necessary? Why couldn’t we define the method subscribe with the
signature OBS obs ⇒ subj a → obs a → IO ()? Or could we?

The type classes SUBJ and OBJ are placed in their own module
SubObsCl, which will play the role of the publish-subscribe inter-
face. One implementation for the library is in the module SubObs2,
which defines the same data types and operations as SubObs1. The
module SubObs2 now constructively proves that these operations
conform to the ‘declared’ publish-subscribe interface, by import-
ing SubObsCl and defining the instances for SUBJ and OBS. For
example:

instance SUBJ Subj where
type Observer Subj = Obs
subjData (Subj x ) = x
newSubj x = Subj x 8fmap8 newIORef []
publish subj@(Subj observers ) =

readIORef observers �= mapM (\obs → notify obs subj)
subscribe subj obs = ...

and the similar instance OBS Obs. The module SubObs2 exports
just the types Subj and Obs – and overtly nothing else. The in-
stances are exported implicitly.

EXERCISE 5. Can we separate the implementation of SUBJ and
OBJ into non-mutually dependent modules, perhaps after small
adjustments to the SUBJ and OBJ interface?

The new way of writing the publish-subscribe library, with the
explicit interface specification, has hardly affected the dependent
sensor-display library. In fact, the only change between the new
SensorReader2 and the SensorReader1 from §2.1 concerns the
import-export list and type signatures. Whereas SensorReader1
imported the implementation SubObs1 (by its name), SensorReader2
imports only the interface, SubObsCl. A Sensor is now a family
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of types, parameterized by the concrete implementation of subject
(Display is similar):

type Sensor subj = subj Sensed
type Display obs = obs Sensed

The operations on Sensor and Display are polymorphic, with type
class constraints spelling out the required interfaces:

newSensor :: SUBJ subj ⇒ Label → IO (subj Sensed)
changeValue :: SUBJ subj ⇒ subj Sensed → Double → IO ()
newDisplay :: (SUBJ (Subject obs), OBS obs) ⇒

String → IO (Display obs)

For example, newDisplay will construct a Display given any im-
plementation obs of the OBS interface provided that the corre-
sponding subj is an implementation of the SUBJ interface. Again,
the code for the above three functions is the same as the one in
SensorReader1.

We stress that the required functionality, values and types, is
now referred to indirectly, by the interface. We have called a hard
link a direct reference to a type or a non-overloaded function by
name. We may call a reference to a function or a type through in-
terface, or type-class constraint CTX, ‘a soft link’. In other words, a
soft link, rather than referring to a particular type name T, contains
∀t. CTX t ⇒ t.

The concrete implementation of the publish-subscribe interface,
SubObs2, is imported only in the main module, SRTest2, which
does the final assembly of components.

main = do
s1 ← newSensor ”sensor1” :: IO (Sensor Subj)
d1 ← newDisplay ”d1”
subscribe s1 d1
...

Our Sensor subj and Display obs are polymorphic over the con-
crete implementation. Eventually we have to specify which imple-
mentation we want – by giving the type annotations as in the code
above. Luckily Haskell saves us from writing such annotations all
over the place: for example, we did not have to annotate the con-
struction of a Display obs in the above code because GHC inferred
the concrete type of the obs. One may wish the type of subj were
inferred too, since there is only one suitable type in scope that sat-
isfies the needed constraint of being an instance of SUBJ – namely
Subj. (The language G of concept-generic programming [10] could
do such an inference.) One could further wish GHC determine
which types in scope fit the constraints; and if several found, ask
the user to choose one.

The pay-off comes when building a new implementation of the
publish-subscribe library, with debug printing. As before, §2.2 we
copy SubObs2 to SubObs2d and change the implementation of
publish to print out the name of each observer as it is notified.
Unlike §2.2 we no longer copy the dependent code, SensorReader2
in our case, since it is polymorphic over the publish-subscribe
implementation, and, hence, imports no concrete implementation
module.

EXERCISE 6. If the answer to Ex. 5 is yes, could we finally avoid
duplicating the observer implementation when we add debug print-
ing to the subject implementation?

The main module, SRTest2d may mix-and-match the plain
SubObs2 and debug SubObs2d versions by importing both of them
(with the different qualifications, SO vs SOd) and using the type
annotations to indicate which version is desired:

test = do
s ← newSensor ”sensor1” :: IO (Sensor SO.Subj)
sd ← newSensor ”sensor1d” :: IO (Sensor SOd.Subj)
d ← newDisplay ”d1”
dd ← newDisplay ”d2”

subscribe s d −− non−debug version of sensor and display

subscribe sd dd −− debug version of sensor and display
−− subscribe s dd −− version confusion: type error

Some annotations (on Displays) can be omitted since they are in-
ferred. As before, the type checker enforces the isolation, prevent-
ing an observer from one version of the library to subscribe to a
differently-versioned subject.

Thus separating interface and implementation and referring to
required libraries by their interface (soft links) predictably elimi-
nated the version problems. Although the common way of writing
Haskell libraries may indicate otherwise, Haskell is not deficient
when it comes to scalable component programming. We shall see
more evidence below as we continue improving our design.

4. Traits
We have demonstrated one way of writing composable compo-
nents. The sensor library SensorReader2 can be composed with
any implementation of the publish-subscribe interface SubObsCl.
There is still much room for improvement. Although SensorReader2
is no longer tightly coupled with the implementation of subjects
and observers, the latter remain coupled among themselves. There-
fore, building the debug version of Subj forced a new version of
Obs, with the resulting code duplication. Further, a single observer
cannot subscribe to two differently-typed subjects but with the
same type of data to observe. In this section, we solve these re-
maining composability challenges and illustrate the cake pattern in
full. Incidentally, the Scala case study of publish-subscribe [6, Sec
3] has the same problems, which are overcome in the second case
study of that paper.

4.1 Untangling the observer interface
The tight coupling of subject and observer implementations has
already become clear if you did Ex. 5. The operation subscribe that
links a subject and an observer together has to have access to the
internal representations of both. If we make subjects and observers
separate components (which hide their internal representation), we
have to add an operation subscribed to the OBS interface and
likewise modify Subj. OBS will now read:

class OBS obs where
type Subject obs :: ∗ → ∗
obsName :: obs a → String
newObs :: String → (Subject obs a → IO ()) → IO (obs a)
subscribed :: obs a → Subject obs a → IO ()
withdraw :: obs a → IO ()
notify :: obs a → Subject obs a → IO ()

The method subscribed implements observer’s part of linking, re-
membering the reference to the subject being subscribed to.

EXERCISE 7. How come we did not have such a method before?
Hint: check the implementation of SubObs2.subscribe.

The addition of subscribed to OBS and the corresponding
changes to Subj let us separate their implementations into non-
recursive modules – as you must have done when solving Ex. 5. The
remaining problem is the tight coupling in their interfaces, which
is apparent from the signature of subscribed and notify. Both OBS
methods receive a subject as the second argument, whose concrete
type is uniquely determined from the concrete type of obs. A par-
ticular observer hence refers to the concrete subject type. The hard
links prevent an observer from subscribing to two subjects that pub-
lish the same data but have different types of their state or different
implementations, or versions.

EXERCISE 8. How come adding debugging printing to a subject
changes its type? Hint: a new version of a Haskell module has types
incompatible from the types of the old version.
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The signature of notify betrays another flaw: notify receives the
complete subject and hence may observe its entire concrete state
and arbitrarily modify its mutable parts. The interface offers no way
to restrict access to subject’s state.

To avoid the hard link, we introduce the existential (to be refined
in §4.2, that’s why the name is primed)

data ASubj’ a = ∀ subj . SUBJ subj ⇒ ASubj’ (subj a)

which lets us re-write the subscribed and notify signatures as
subscribed :: obs a → ASubj’ a → IO ()
notify :: obs a → ASubj’ a → IO ()

EXERCISE 9. Can we eliminate the hard link to a subject type with-
out existentials, thus avoiding annoying packing/unpacking opera-
tions?

As the name suggests, ASubj’ dat is a subject with the concrete
state a. The method subscribed refers to the subject by the inter-
face, by the SUBJ subj constraint. Since the concrete type of the
subject is hidden within the existential, the same observer may sub-
scribe to subjects of different representations. We call ASubj’ a a
“generic subject”.

A few easy improvements spring to mind. First, notify is in-
voked to let the observer know of the changed state of the subject.
The method receives the complete subject, from which it should
extract the subject’s state and then published data (and avoid look-
ing let alone modifying other parts of the subject). Since notify
should only apply the subjData operation on the received subject,
this application may just as well be carried out by the caller of
notify; the existential is hence eliminated, replaced with the result
of subjData subj:

notify :: obs a → a → IO ()

The caller of notify can also extract the part of subject’s state
relevant for the observer. In other words, notify will receive not
the entire state of the subject but only a (small) view of this state
– the published data. We no longer have to worry of notify seeing
too much of subject state or modifying it. Finally, the polymorphic
a in notify’s signature indicates that an observer processes the
published data uniformly, regardless of their type – which is a
restriction. For example, an observer that logs the notified data has
to require a to be in the Show class. For the sake of flexibility,
we no longer parameterize the observer by the type of published
data; we merely state that the type of the observer determines the
type of data (cf. the design of Haskell collections, which was one
of the motivations for associated types [1]). We thus arrive at the
following new OBS interface (see file SubObsTr.hs):

class OBS obs where
type ObsData obs :: ∗
obsName :: obs → String
subscribed :: obs → ASubj (ObsData obs) → IO ()
withdraw :: obs → IO ()
notify :: obs → ObsData obs → IO ()

The type of observers is no longer parameterized by the concrete
state of subjects. Rather, associated with each obs type is the type
ObsData obs of observed data – the data that a subject lets observe.
There is no newObs method any more (the reason becomes clear
only in §5, but the reader is encouraged to guess).

We have eliminated hard links from an observer type to the
subject type. The new observer refers to the subscribed subject by
the SUBJ interface and by the type of data it publishes, that is, by
a public view of the subject state.

4.2 Untangling the subject interface
Having softened the links from observers to subjects, we do the
same for the links from subjects to observers. As the changes mirror
those in §4.1 we show only the final result, the new SUBJ class,

which is quite symmetric to the new OBS and is also part of the
SubObsTr module:

class SUBJ subj where
type SubjData subj :: ∗
publish :: subj → SubjData subj → IO ()
subscribe ’ :: subj → AnObs (SubjData subj) → IO ()
unsubscribe’ :: subj → AnObs (SubjData subj) → IO ()

The old subscribe is replaced with subscribe’ and unsubscribe’.
The method subscribe’ differs in semantics from subscribe: whereas
the latter links a subject and its observer together, subscribe’ only
affects the subject, adding a new observer to its subscription list.
The operation unsubscribe’ does the reverse.

EXERCISE 10. How come we did not have these methods before?
Hint: we didn’t? Hint: answer Ex. 7.

The methods subscribe’ and unsubscribe’ take an observer as an
argument – a generic observer, which refers to an observer by its
interface rather than the concrete type:

data AnObs dat =
∀ obs. (OBS obs, ObsData obs ˜ dat) ⇒ AnObs obs

Any observer that accepts dat can subscribe to a subj that publishes
dat.

Recall that in §2.1 we defined the subject type to be a family
of types subj a polymorphic over the concrete state a of the sub-
ject. Each member of the family has the same realization (of the
subscription list and operations on it) but a different state type. The
new observers in §4.1 are no longer interested in the whole con-
crete subject state: an implementation of OBS refers to a subject
only by the type of the published data. Therefore, the new subj ex-
poses only that type, as SubjData subj. The full concrete state is
an implementation detail and should be hidden.

This seemingly small change of perspective – the subject inter-
face exposing only the type of published data – is momentous. First,
the subjData method from SUBJ of §3 that returned the concrete
state is gone.

EXERCISE 11. Why was newSubj a method of SUBJ before, but
not now?

Since a subj is no longer parameterized by the concrete state it does
not have to incorporate any concrete state, reversing the implemen-
tation decision made in §2.1. The new subj could stand only for the
implementation of the subscription list and operations on it. Con-
crete subjects will incorporate subj, rather than being incorporated
into it. ‘Subject’ became a trait, as we shall see next. This alter-
native design is more expressive, permitting subjects with several
subscription lists. It also lets us implement proxies, subscription ag-
gregators (see §5). The main attraction of the alternative design for
us here is that it lets us distinguish subjects by the data they publish
rather than by the data they possess.

Following the changes to the SUBJ interface we refine the
definition of a generic subject:

data ASubj dat =
∀ subj . (SUBJ subj, SubjData subj ˜ dat) ⇒ ASubj subj

which literally says that ASubj dat is a subject that publishes data
of the type dat.

The operation to link a subject and an observer together can be
generically defined as

subscribe ::
(SUBJ subj, OBS obs, SubjData subj ˜ ObsData obs) ⇒
subj → obs → IO ()

subscribe subj obs = do
subscribe ’ subj (AnObs obs)
subscribed obs (ASubj subj)

linking any subject with any observer provided they agree on the
published data.
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We have thus decoupled the subject and observer interfaces. Al-
though subjects and observers mutually refer to each other, these
references are not to concrete types but to interfaces. Hard links
are gone, and both the provided and required functionality is ab-
stracted, in the form of SUBJ and OBS classes.

EXERCISE 12. We called ASubj dat a generic subject. Is it really?
Can your make it an instance of SUBJ? Dually, can you write
instance OBS (AnObs dat)?

EXERCISE 13. Recall that compared to §3, class OBS no longer
has the constructor method newObs. How does this exclusion re-
late to instance OBS (AnObs dat)?

4.3 Sensors and Displays
As before, the basic publish-subscribe library is used to implement
sensors and their displays. Since subjects and observers are decou-
pled now, so can be sensors and displays. They can be indepen-
dently implemented and separately compiled. They merely need to
agree on the data to publish, i.e., on the observation interface. The
module SensorCl defines such an interface:

type Label = String
data SensedView = SensedView{

svLabel :: Label,
svVal :: Double}

that describes what a Display observed from a Sensor before: its
label and the current value.

The module Sensor3 implements sensors. Although the func-
tionality remains as it was in §3, the implementation is quite dif-
ferent now. The module imports the observation interface SensorCl
and the publish-subscribe library interface SubObsTr. As before, a
sensor has a label and a mutable Double value. That sensor state
used to be a part of the subj. Now a subj is a part of the Sensor,
which is hence parameterized by the subj implementation.

data Sensor subj = Sensor{
label :: Label,
senVal :: IORef Double,
subj :: subj}

The construction of sensors is likewise polymorphic over subj,
not caring which implementation of subj to use or how it was
constructed.

newSensor :: subj → Label → IO (Sensor subj )
newSensor s l = do

v ← newIORef 0
return $ Sensor{label= l, senVal = v, subj = s}

Recall that in §3, a publish-subscribe library implemented a
family of subjects subj a parameterized by the concrete subject
state. A sensor was a particular instance of the subj family, and
as such automatically implements the SUBJ interface and provides
methods for publishing and subscribing. Now a sensor contains an
implementation of the SUBJ interface rather than being contained
it it. Therefore, Sensor subj does not automatically becomes an
instance of SUBJ. We have to write such an instance ourselves if a
Sensor is to support publishing and subscribing:

instance SUBJ subj ⇒ SUBJ (Sensor subj) where
type SubjData (Sensor subj) = SubjData subj
publish = publish ◦ subj
subscribe ’ = subscribe’ ◦ subj
unsubscribe’ = unsubscribe’ ◦ subj

The end result is the same as in §3: a Sensor has the state (the label
and the mutable value) and is-a subject. This result is achieved
differently however. The above instance demonstrates that subj
became a trait, which implements only the publish subscription
functionality. Anything that contains, or “mixes in”, a subj is itself
a SUBJ – provided that we write the boilerplate instance like the

above.3 We will address this drawback in §6. (Boilerplate can be
eliminated with closed type families just added to GHC.)

We stress that whereas the sensor’s value is mutable, the ob-
servable value, the one offered in SensedView, is not. A sensor lets
observers see its value but not change it. We have easily expressed
the access control we could not do before. The following internal
function maps the private state to the public view:

sensedView :: Sensor subj → IO SensedView
sensedView sen = do

val ← readIORef ◦ senVal $ sen
return $ SensedView (label sen) val

We now implement the remaining part of the Sensor interface,
changing the value of the sensor and notifying all subscribed ob-
servers.

changeValue :: (SUBJ subj, SubjData subj ˜ SensedView) ⇒
Sensor subj → Double → IO ()

changeValue sen@Sensor{senVal= vr, subj= s} nv = do
writeIORef vr nv
publish sen =� sensedView sen

The signature is instructive: the subj implementation included in
the sensor must support publishing of SensedView data (and sub-
scriptions by observers of that data).

The implementation for sensor observers, displays, has not
changed much from §3. The first notable difference is that the im-
plementation is in a separate module Reader3. A display no longer
directly accesses private sensor state. All it gets is a public view of
a sensor. The second difference is the signature of newDisplay

newDisplay ::
(String → (SensedView → IO ()) → IO (AnObs SensedView)) →
String → IO (AnObs SensedView)

newDisplay newObs l = newObs l notify
where
notify sdata = do
putStrLn $ unwords [”display ”, l , ”sensor”, svLabel sdata,

”has value”, show (svVal sdata)]

Now newDisplay constructs a generic observer of SensedView
using whatever way of constructing an observer: newDisplay is
parameterized by the observer constructor, received as the first
argument.

EXERCISE 14. The function changeValue is polymorphic over the
sensor implementation. Could we likewise make newDisplay poly-
morphic over the observer implementation and avoid the existential
AnObs? What are the trade-offs?

We have implemented sensors and their displays in a sepa-
rately compiled modules, related only by the common interface,
SensedView, the public view of a sensor. The private state of the
sensor is different and is not directly accessible. Although a sensor
is a subject and a display is an observer, they do not depend on the
implementation of the publish-subscribe library. They are written
entirely in terms of that library interface. To run the tests, however,
we have to implement the library.

4.4 Implementing the untangled subjects and observers
The significant changes in the publish-subscribe interface com-
pared to §3 and the untangling of subjects and observers have not
affected their implementation that much. The most important dif-
ference is that concrete subjects and observers are now in separate,
separately compiled, mutually independent modules.

Subjects are implemented in Sub3. The only notable change is
that Subj is no longer parameterized by the type of the concrete
subject state and does not include such state. It is parameterized by
the published data.

3 mixins.hs in the accompanied code illustrates in more detail how Scala
mixins correspond to Haskell type classes.
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newtype Subj dat = Subj (IORef [AnObs dat])

instance SUBJ (Subj dat) where
type SubjData (Subj dat) = dat
...

The subject implementation type Subj is newtype now. It encapsu-
lates only the subscription list, which contains ‘generic observers’
AnObs dat. The concrete type of observers may differ (and is hid-
den anyway); it matters only that they support the OBS interface
and accept published data of the type dat. As before, the data con-
structor Subj is not exported and the realization of the subscription
list stays private. In other respects, the code is quite like that in
SubObs1, with different type signatures.

The implementation of observers, in Obs3.hs, is even more
quite like that of SubObs1. Instead of concrete subject type subj
it now refers to ‘generic’ subjects ASubj dat:

data Obs dat =
Obs{ obsName :: String ,

notify :: dat → IO (),
obsSubjects :: IORef [ASubj dat]}

Even in the implementation of subjects and observers, the hard
links are gone, replaced by interface references. The module Obs3
no longer exports Obs, not even the type. Rather, it exports the
constructor function, which hides Obs within the generic observer.

newObs :: String → (dat → IO ()) → IO (AnObs dat)

The test module SRTest3 is hardly different from SRTest2. It
imports, now separately, sensors Sensor3 and displays Reader3,
and imports the concrete implementation of subjects Sub3 and ob-
servers Obs3, again separately. It seems we can easily use a dif-
ferent subject implementation without changing the other compo-
nents. This is indeed so, as we demonstrate next.

4.5 Extending the subject
The moment of truth for the new design is seeing how much code
breaks and has to be duplicated and recompiled when we add the
debug printing to the subject library. Luckily, Sub3d – the version
of Sub3 with the debug printing in the publish method – can
be used with the old implementations of observers, sensors and
displays as they were. The test SRTest3d imports the plain Sub3
as S and the debug version Sub3d as Sd, along with the unchanged
Sensor3, Reader3 and Obs3. The most interesting test

test = do
s ← S.newSubj �= \s → newSensor s ”sensor1”
sd ← Sd.newSubj �= \s → newSensor s ”sensor1d”
d ← newDisplay newObs ”d1”
subscribe s d
subscribe sd d

constructs two sensors s and sd – the former with the plain subjects
and the latter with the debug subjects. Recall that newSensor takes
as the argument the implementation of subj; any implementation
works so long as it supports publishing of SensedView. The test
then creates a display, with the Obs3.Obs implementation of ob-
servers. The same display can subscribe to the plain sensor and the
debug sensor. Although the two sensors have different types, both
publish SensedView – which is all the display requires.

The test code showed a simple version of linking required and
provided functionality. A Sensor component required an imple-
mentation of SUBJ, which newSensor received as the first argu-
ment. This ‘positional’ linking does not scale to component requir-
ing many others. The test code also showed off linking that hap-
pened automatically. Recall that subjects and observers are mutu-
ally dependent and an implementation of one needs an implementa-
tion of the other. The test code did nothing special to tell a subject-
sensor which implementation of observer to use. The observer type
was determined by the type inference, when type checking the calls

to subscribe. §6 gives a larger example of flexible, implicit link-
ing – which does scale.

The new design has fixed all the problems noted at the beginning
of §4. Adding the debug printing to the subject implementation
no longer forces a new version of observers. Old observers work
as before, with the plain and debug version of sensors. Further, a
single observer can now subscribe to two differently-typed subjects
that have the same type of data to observe. We have attained the
characteristic application of the cake pattern: mutually dependent,
extensible components with no hard links.

EXERCISE 15. Is it possible to implement a sensor that supports
several observable interfaces?

EXERCISE 16. In §3, an observer received the whole subject
(rather than a view to its state) and could therefore unsubscribe
itself after a notification. Implement a Display that unsubscribes
itself after the first notification. How much of the code can be
reused?

EXERCISE 17. Make a Sensor and Display reusable components
themselves by defining their interface.

4.6 Would a closure have sufficed?
One may wonder if our approach to mutually dependent extensible
components is contrived. Can such components be implemented
simpler, with a record of closures, with no type classes and exis-
tentials? The answer is almost. Closures come tantalizingly close –
which explains why the cake pattern is obscure: it only becomes
necessary in sufficiently complex cases.

A generic subject ASubj dat of §4.1 is essentially
∃ t. {publish :: t → dat → IO (),

subscribe ’, unsubscribe’ :: t → AnObs dat → IO ()}
when the SUBJ dictionary is made explicit. This existential looks
exactly as the result of the typed closure-conversion [3] of the
record of closures

data RSubj dat = RSubj {
publish :: dat → IO (),
subscribe ’, unsubscribe’ :: RObs dat → IO () }

(We have tacitly replaced AnObs with the isomorphic RObs.)

EXERCISE 18. Constructively prove that ASubj dat is isomorphic
to RSubj dat and likewise AnObs dat is isomorphic to RObs dat.

We now re-implement the running example using only records
of closures like RSubj dat and a similar RObs dat, in the simplest
Haskell with no type classes, type functions or existentials: see
the module SubObsRc in the accompanying code. It starts off
easily: the basic subject Sub3 is re-written to produce the closure
RSubj dat, see module Sub4. It is even easier to turn the basic
observer and the extended one, Display, into RObs dat. As before,
these are reusable, swappable components, with no hard links. They
are even extensible, to a point, as Display shows. The Sensor is
a show-stopper. Recall that a Sensor is-a subject, with operations
for subscription and publishing. That is, a sensor, in the present
approach, must be a value of type RSubj SensedView, a record
of three closures. A sensor has an extra operation, changeValue,
updating the private sensor state and publishing the updated view.
There is no place in RSubj SensedView to put this private data and
let changeValue use it, or to put the changeValue closure.

Implementing a sensor thus requires extensible records and row-
polymorphism – in essence, the emulation of objects. All these
features, and the full OOP, can be emulated in Haskell [2]. Type
classes like SUBJ and OBS however emulate just enough of exten-
sible records as needed for component programming, in idiomatic
way.
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Bringing back SUBJ and OBS lets us complete the example,
using Sensor3 with the RSubj implementation of the basic subject,
and the RObs implementation of Display.

EXERCISE 19. Make RSubj dat an instance of SUBJ and RObs dat
an instance of OBS.

The test module SRTest4 differs from the earlier SRTest3 only in
imports, of the subjects and observers implementations.

Thus extensible and swappable components, so-called ‘depen-
dency injection’, can indeed in many cases be implemented in
higher-order languages with simple closures4 Only in sufficiently
complex examples, especially like the one below, does the cake
pattern becomes indispensable.

5. Proxy: an observer-subject
The extended running example in this section will show the need
for the SUBJ and OBS type classes. We see again that SUBJ and
OBS behave like traits; an aggregate with an instance of SUBJ
itself becomes a subject. The extended example implements a
‘proxy’ – which is both a subject and an observer. As a subject,
it accepts subscriptions from other observers; as an observer, it
can be subscribed to a subject and would relay the notifications to
proxy’s own observers.

There is no easy way to implement such a proxy with the design
of §3 or with records of closures of §4.6. In §4.6, a subject was a
record RSubj dat and an observer was a distinct record RObs dat.
A subject cannot hence be an observer.

EXERCISE 20. The basic publish-subscribe implementation SubObs2
from §3 likewise had different types for subjects and observers. Can
we write another implementation of the SubObsCl, in which sub-
jects and observers have the same type?

In contrast, with traits of §4, a proxy is not only possible, it is
trivial. It is just a pair of a generic subject and a generic observer:

data Proxy dat = Proxy{
prSubj :: ASubj dat,
prObs :: AnObs dat }

EXERCISE 21. Could we avoid existentials and parameterize
Proxy by implementation types subj and obs, as we did for sen-
sors in §4.3)? Hint: see Ex. 14.

Recall that §4.3 showed that a sensor is a subject, an instance of
SUBJ, because it contains a subject. For the same reason, Proxy is
a subject:

instance SUBJ (Proxy dat) where
type SubjData (Proxy dat) = dat
publish = publish ◦ prSubj
subscribe ’ = subscribe’ ◦ prSubj
unsubscribe’ = unsubscribe’ ◦ prSubj

Likewise, Proxy dat is an instance of OBS. The Proxy is indeed
both a subject and an observer. These two personalities of a proxy
are linked when the proxy is constructed:

newProxy :: (String → (dat → IO ()) → IO (AnObs dat)) →
ASubj dat → IO (Proxy dat)

newProxy newObs subj = mfix $ \self → do
obs ← newObs ”proxy” (publish self )
return (Proxy subj (AnObs obs))

Like newDisplay, newProxy takes a constructor of observers;
like newSensor it takes a constructed subject. Proxy’s notify
method publishes the received data to proxy’s subscribers, using

4 http://stackoverflow.com/questions/14327327/
dependency-injection-in-haskell-solving-the-task-idiomatically,
see also cake_currency.hs in the accompanying code.

publish self. The implementation of the notify method therefore
needs a reference to the proxy itself. The function

mfix :: MonadFix m ⇒ (self → m self ) → m self

provides just the needed self-reference for the value constructed as
the result of the m self action.

The module ProxyTest demonstrates that proxy indeed can
subscribe (to a Sensor) and be subscribed to (by Displays). It truly
acts both as a subject and an observer. We have thus seen an
example of building a component by aggregation, by composing
two smaller components, two smaller traits. Scalable component
programming is at hand.

EXERCISE 22. Define a trait that implements a single-linked list.
Combine the two instances of the trait to obtain a double-linked
list.

6. The complete cake
The Scala Cake pattern comes into its own in large applications
with numerous mutually dependent components – such as the Scala
compiler. A small part of the Scala compiler was the second, full-
fledged case study in the paper [6, Sec 4] and the main motivat-
ing example in the lecture [5, slides 12–18]. The authors argued
that implementing such a set of dependent and extensible compo-
nents required the combination of functional and object-oriented
programming features like those in Scala. In this section we demon-
strate that the example in all its complexity is implementable in id-
iomatic Haskell using the patterns explained §4. A functional pro-
gramming language alone with higher-rank types and Haskell-like
type classes is sufficient.

Scala compiler has to track (term) identifiers such as variables
and constants, and their types. Scala is an OO language, and its
types are class types, characterized by a set of methods, which are
identifiers – hence a mutual dependence between identifiers and
types. The example thus is to implement two mutually dependent
components, Terms and Types, which extend the common com-
ponent SymbolTable. Associated with each instance of Terms is
an abstract type TermID of identifiers, which can be compared
and displayed. Likewise, the Types component provides the ab-
stract type TypeID of class types. Terms should let us associate and
find out the TypeID of a given TermID, and Types should provide
an operation to find all methods, TermIDs, of a given class type
TypeID. Both components need an operation to intern a name (a
text string), that is, associate the string with a quickly comparable
token. This operation should be factored out in a separate compo-
nent SymbolTable.

We hence have to implement separately compilable, indepen-
dently extensible and reusable components. We must maintain en-
capsulation, to be able to seamlessly replace one implementation by
another. The test is adding debug printing to SymbolTable with-
out breaking or even recompiling Terms and Types components.
Likewise we should be able to extend the Types component, e.g.,
with more debug printing. Another requirement, from the real Scala
compiler, is to use several instances of Terms and Types within
the same program, without mixing them up: attempts to compare
TermIDs from different instances of Terms should raise a type er-
ror. Different Terms instances should be independent, meaning our
implementation should not use any global mutable state.

In the Scala implementation [6], Terms is a class and TermID is
a field of that class: classes in Scala are akin to first-class modules
of ML, aggregating both types and values. Different instances of
Terms will have incompatible TermID types, the consequence of
so-called path-dependent typing in Scala. Further, Scala uses so-
called selftype annotations to let an implementation of Terms to
use the methods of Types and refer to TypeID without mentioning
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any concrete Types implementation. How do we emulate all these
features in Haskell?

The Haskell Cake described in §4 gives the answer. The present
terms-and-types example is actually an extension of our earlier run-
ning example of subjects and observers. New is the common de-
pendency SymbolTable, which does not present any conceptual
problem. Emulating Scala path-dependent types is also straightfor-
ward, using higher-rank types (see ex2 in the code). In the rest of
the section we illustrate the salient new feature: Terms and Types
providing not only operations but also abstract types TermID and
TypeID to each other, without any hard links. We will also see how
Scala self-types look in Haskell. Along the way we demonstrate
how to avoid the boilerplate instances for traits seen in §4 and §5
(that is, defining instances proving that each aggregate including,
say, a Terms is Terms itself.)

Like before, the interfaces of Terms and Types components are
specified as type classes. Although the interfaces are mutually re-
cursive (here and in Scala), they are implemented in non-recursive,
separately compiled modules TT/Terms.hs and TT/Types.hs.
Recall that associated with each implementation of Terms is a
type TermID of term identifiers maintained by that implementa-
tion. Type-class–associated types express such a relation between
Terms and TermID precisely:

type Name = String −− concrete name
class Terms repr where
type Vt repr :: ∗
vnew :: Name → repr → (VT repr, repr )
...

Here, repr is the type of a particular implementation of Terms
interface, and Vt repr is the corresponding type of its identifiers,
which we earlier called TermID. The operation vnew returns an
identifier with a given name, along with the updated Terms. We
have seen this pattern many times in §4. We will modify it however,
by separating out the type family Vt from the class Terms. The
reason will become clear soon. The Terms component interface
thus becomes

type family Vt repr :: ∗ −− corresponds to TermID
type family Tt repr :: ∗ −− corresponds to TypeID
type MTyp repr = (Tt repr, Tt repr ) −− class method type

class Terms repr vt where
vnew :: Name → repr → (vt, repr )
typeof :: vt → repr → MTyp repr
...

where Tt repr is TypeID associated with an implementation repr
of the Types component. MTyp repr describes the type of Scala
methods as a pair whose first component is the class type of the
implicit this argument of a method. Terms became a two-parameter
class, defining the relation between the implementation repr of
Terms and the type of its identifiers. We shall see how this design
avoids the boilerplate of traits. The complete interface for terms
below reflects the requirement that term identifiers be comparable
and showable

type TermsCtx repr =
(Terms repr (Vt repr ), Eq (Vt repr ), Show (Vt repr))

The complete interface of Types is similar:
type TypesCtx repr =

(Types repr (Tt repr ), Eq (Tt repr), Show (Tt repr))

The implementation of the Terms component (see TT/Terms.hs
in the accompanying code) demonstrates defining a trait without
the boilerplate and the analogue of Scala selftype annotations in
Haskell. We now describe notable parts of the implementation.
First, Terms depends on the SymbolTable component providing
the type of Symbols, with the following interface

class SymbolTable repr where
type Symbol repr :: ∗ −− the type of the symbol

intern :: Name → repr → (Symbol repr, repr )
...

type SymbolCtx repr = (SymbolTable repr, Show (Symbol repr),
Eq (Symbol repr), Ord (Symbol repr))

The implementation of Terms imports the above interface as well
as the interface of Types. Again, Terms refers to the required
components by their interfaces only. We realize the Terms interface
as a map VTable from symbols (representing identifiers) to their
method types.

data VTable s = VTable (M.Map (Symbol s) (MTyp s))
newtype VN s = VN (Symbol s)

VTable s is a concrete type of a Terms instance and VN s is meant
as the corresponding TermID type of its identifiers. Since VTable
is intended to be incorporated into a larger component, it is pa-
rameterized by the type s of that larger component. (One is re-
minded of two-level types, [9].) We wish to state that VTable real-
izes the Terms interface; moreover, any aggregate that incorporates
a VTable also realizes the Terms interface. The type class Lens
makes the notion of ‘incorporation’ precise:

class Lens part whole where
extract :: whole → part
update :: part → whole → whole

extr :: Lens (part repr ) repr ⇒ repr → part repr
extr = extract

upd :: Lens (part repr ) repr ⇒ part repr → repr → repr
upd = update

specifying a relation between a part and the whole. We can now
write that anything from which we can extract VTable implements
the Terms interface, with the identifier type VN.

instance (SymbolCtx repr, TypesCtx repr, Lens (VTable repr) repr ) ⇒
Terms repr (VN repr) where

−− typeof :: vt → repr → MTyp repr
typeof (VN key) repr =

let (VTable m) = extr repr in
M.findWithDefault (error ”typeof: can’t find ”) key m

−− vnew :: Name → repr → (vt, repr )
vnew name repr =
let (key, r1) = intern name repr

VTable m1 = extr r1
in case M.lookup key m1 of

Just → (VN key, r1) −− name already seen
Nothing →
let (tclass , r2) = tvar r1

(tresult , r3) = tvar r2
VTable m2 = extr r3

in (VN key,
upd (VTable (M.insert key (tclass , tresult ) m2)) r3)

The instance constraints SymbolCtx and TypesCtx let us use the
operations of SymbolMap such as intern and the operations of
Types and the type TypeID of class types – without referring to
any specific implementation of these components. The dependent
components are mentioned entirely by their interfaces. It is instruc-
tive compare the above instance with the Scala Cake [6, Slide 17]”

trait Symbols { this : Types with Symbols ⇒
trait Symbol { def tpe: Type }
}

(we call Symbols as Terms.) The type annotation on this is the
‘selftype annotation’, telling that the self type of Symbols should
also implement Types. The first line of our Terms instance says
exactly the same: anything that incorporates VTable should also
implement the Types interface. Haskell does realize selftypes an-
notations of Scala, in a straightforward way.

EXERCISE 23. All operations of our Terms also take a TermID.
Wouldn’t adding a Terms operation debug print :: repr → String
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with the type not mentioning TermID, break this whole design?
How to fix it?

With the implementation of Terms above and similar for Types
and a simple SymbolTable, we can write the example to test all the
desired features of the terms and types components from [6, §4].
We have demonstrated that Haskell Cake – type classes with as-
sociated types and higher-rank types – reproduce the characteristic
features of the Scala Cake.

7. Discussion and Conclusions
We have seen that scalable component programming is possible in
Haskell and is relatively straightforward. We can build programs
from separately developed and compiled components, with clearly
defined interfaces expressed in Haskell rather than in English. The
compiler checks that any component implementation conforms to
the interface. The components may be mutually dependent and
yet are separately extensible. Extending an implementation while
maintaining the interface – producing a new version with differ-
ent algorithms, debugging facilities or new operations – does not
require any changes in the dependent components, not even recom-
pilation. Furthermore, two versions of a component may co-exist
within the same program. The library versioning problem is thus
solvable.

Scalable component programming is a programming pattern,
a certain style of writing code. Odersky and Zenger [6] called
this pattern Scala Cake and identified its ingredients: abstract type
members, explicit selftypes, and symmetric mixin composition.
We have demonstrated what these ingredients mean in Haskell
terms. It turns out the pattern is realizable in a functional language
with no OO. Type classes and higher-rank types are sufficient. In
particular, type classes like SUBJ and OBS in §4 emulate just
enough of extensible records (objects) as needed for component
programming, in idiomatic way.

The recipe for the Haskell Cake is:

• Define an interface for a component in the form of a type class,
and place it in a separate module: Type classes emulate ML
module signatures. If the interface also calls for abstract types
besides operations, use associated type synonyms to introduce
those.
• Program a component as a ‘trait’, to be combined with user data

and other components at the final program assembly.
• An implementation of a component should define an instance

of the interface type class and export only the corresponding
types and their (smart) constructors. (The instances are exported
implicitly.)
• Refer to operations and types of other components solely by

their interfaces, never by concrete names. Use higher-rank types
to implement the references by interfaces.

Together, these ingredients ensure the abstraction over the provided
and required functionality of a component. Haskell instance selec-
tion mechanism matches up the required and provided features.

Haskell Cake generalizes the well-known pattern of using
records of closures to realize abstract data types. Closures indeed
suffice for many simple components – that’s why we have not come
across the Haskell Cake earlier. Closures fall short when compo-
nents export not only operations but also types and have to be
extended with more operations or private data.

We have demonstrated a systematic procedure of replacing hard
links (references to concrete types of other components) with soft
links, references through interfaces. Informally, if a type T imple-
ments an interface Ctx – T is an instance of the type class Ctx –
then any reference to T should be replaced with a quantified type

variable t subject to the constraint Ctx. There are two ways of car-
rying this out. In §4.1, the function subscribed referred to an imple-
mentation of SUBJ using an existential ASubj. On the other hand,
in the signature of changeValue in §4.3, the generic subject was
a polymorphic type variable subj with the SUBJ constraint. Like-
wise, the proxy data type in §5 aggregated two existentials AnObs
and ASubj.

EXERCISE 24. Implement Proxy in §5 with universals instead.

Using existentials and universals for soft links parallels to univer-
sals and existentials as two alternatives to represent abstract data
types described in [4, §3.8]. Mitchell and Plotkin also briefly dis-
cuss the trade-offs. We should add that universals let us implement
binary methods but cause the proliferation of type parameters to
data types and operations. Existentials have the opposite trade-off;
also, a type class dictionary carried in each value of the existential
type may be a significant overhead.

Developing traits requires certain amount of boilerplate: if a
type class SUBJ specifies the interface for a component (trait) and
Subj1 is one of its implementation, to prove that any value that
incorporates Subj1 is also an implementation of SUBJ we have to
write an instance of SUBJ. That instance is boilerplate and could
be mechanically derived, e.g., using Template Haskell. Closed type
families just added to GHC could let us state once and for all that
anything that incorporates a Subj1 is a SUBJ itself, thus avoiding
the boilerplate. §6 showed a different way around the boilerplate,
requiring more type class parameters. We need more experience
with developing traits to clarify the trade-offs of these approaches.

Abstraction has cost. Implicit linking of components adds a
level of indirection – via the virtual method dispatch in Scala
or the dictionary method look-up in Haskell. Luckily for Scala,
which compiles to JVM, just-in-time compilers well optimize vir-
tual method invocations. Higher-rank types seem to make it diffi-
cult to eliminate the overhead of type class method calls, although a
whole-program analysis may help: an implementation of concepts
in C++ suffers from the same indirection overhead, which can be
eliminated however by static analysis [10].

In conclusion, we can write scalable component in Haskell right
now. We should really try following the Haskell Cake in various
projects, despite the fair amount of boilerplate in some cases. Only
then we gather experience that will suggest what sort of sugar has
to be added to Haskell to make the cake sweeter.
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