Number-parameterized types

Oleg Kiselyov
oleg@okmij.org

Fleet Numerical Meteorology and Oceanography Center, Monterey, CA 93943

Abstract. This paper describes practical programming with types parameterized
by numbers: e.g., an array type parameterized by the array’s size or a modular
group type Z, parameterized by the modulus. An attempt to add, for example,
two integers of different moduli should result in a compile-time error with a clear
error message. Number-parameterized types let the programmer capture more in-
variants through types and eliminate some run-time checks.

We review several encodings of the numeric parameter but concentrate on the
phantom type representation of a sequence of decimal digits. The decimal encod-
ing makes programming with number-parameterized types convenient and error
messages more comprehensible. We implement arithmetic on decimal number-
parameterized types, which lets us statically typecheck operations such as array
concatenation.

Overall we demonstrate a practical dependent-type-like system that is just a
Haskell library. The basics of the number-parameterized types are written in
Haskell98.

Keywords: Haskell, number-parameterized types, type arithmetic, decimal types,
type-directed programming.

1 Introduction

Discussions about types parameterized by values — especially types of arrays or finite
groups parameterized by their size — reoccur every couple of months on functional
programming languages newsgroups and mailing lists. The often expressed wish is to
guarantee that, for example, we never attempt to add two vectors of different lengths. As
one poster said [12], “This [feature] would be helpful in the crypto library where 1 end
up having to either define new length Words all the time or using lists and losing the ca-
pability of ensuring | am manipulating lists of the same length.” Number-parameterized
types as other more expressive types let us tell the typechecker our intentions. The type-
checker may then help us write the code correctly. Many errors (which are often trivial)
can be detected at compile time. Furthermore, we no longer need to litter the code with
array boundary match checks. The code therefore becomes more readable, reliable, and
fast. Number-parameterized types when expressed in signatures also provide a better
documentation of the code and let the invariants be checked across module boundaries.

In this paper, we develop realizations of number-parameterized types in Haskell
that indeed have all the above advantages. The numeric parameter is specified in deci-
mal rather than in binary, which makes types smaller and far easier to read. Type error
messages also become more comprehensible. The programmer may write or the com-
piler can infer equality constraints (e.g., two argument vectors of a function must be of

the same size), arithmetic constraints (e.g., one vector must be larger by some amount),
and inequality constraints (e.g., the size of the argument vector must be at least one).
The violations of the constraints are detected at compile time. We can remove run-time
tag checks in functions like vhead, which are statically assured to receive a non-empty
vector.

Although we come close to the dependent-type programming, we do not extend
either a compiler or the language. Our system is a regular Haskell library. In fact, the
basic number-parameterized types can be implemented entirely in Haskell98. Advanced
operations such as type arithmetic require commonly supported Haskell98 extensions
to multi-parameter classes with functional dependencies and higher-ranked types.

Our running example is arrays parameterized over their size. The parameter of the
vector type is therefore a non-negative integer number. For simplicity, all the vectors
in the paper are indexed from zero. In addition to vector constructors and element ac-
cessors, we define a zipWi th-like operation to map two vectors onto the third, element
by element. An attempt to map vectors of different sizes should be reported as a type
error. The typechecker will also guarantee that there is no attempt to allocate a vector
of a negative size. In Section 6 we introduce operations vhead, vtail and vappend
on number-parameterized vectors. The types of these operations exhibit arithmetic and
inequality constraints.

The present paper describes several gradually more sophisticated number-
parameterized Haskell libraries. We start by paraphrasing the approach by Chris
Okasaki, who represents the size parameter of vectors in a sequence of data construc-
tors. We then switch to the encoding of the size in a sequence of type constructors.
The resulting types are phantom and impose no run-time overhead. Section 3 describes
unary encoding of numerals in type constructors, Sections 4 and 5 discuss decimal
encodings. Section 4 introduces a type representation for fixed-precision decimal num-
bers. Section 5 removes the limitation on the maximal size of representable numbers, at
a cost of a more complex implementation and of replacing commas with unsightly dol-
lars signs. The decimal encoding is extendible to other bases, e.g., 16 or 64. The latter
can be used to develop practical realizations of number-parameterized cryptographi-
cally interesting groups.

Section 6 describes the first contribution of the paper. We develop addition and
subtraction of “decimal types”, i.e., of the type constructor applications representing
non-negative integers in decimal notation. The implementation is significantly different
from that for more common unary numerals. Although decimal numerals are notably
difficult to add, they make number-parameterized programming practical. We can now
write arithmetic equality and inequality constraints on number-parameterized types.

Section 7 briefly describes working with number-parameterized types when the nu-
meric parameter, and even its upper bound, are not known until run time. We show one,
quite simple technique, which assures a static constraint by a run-time check — witness-
ing. The witnessing code, which must be trustworthy, is notably compact. The section
uses the method of blending of static and dynamic assurances that was first described
in [6].

Section 8 compares our approach with the phantom type programming in SML by
Matthias Blume, with a practical dependent-type system of Hongwei Xi, with statically-

sized and generic arrays in Pascal and C, with the shape inference in array-oriented
languages, and with C++ template meta-programming. Section 9 concludes.

2 Encoding the number parameter in data constructors

The first approach to vectors parameterized by their size encodes the size as a series
of data constructors. This approach has been used extensively by Chris Okasaki. For
example, in [9] he describes square matrixes whose dimensions can be proved equal at
compile time. He digresses briefly to demonstrate vectors of statically known size. A
similar technique has been described by McBride [8]. In this section, we develop a more
naive encoding of the size through data constructors, for introduction and comparison
with the encoding of the size via type constructors in the following sections.

Our representation of vectors of a statically checked size is reminiscent of the fa-
miliar representation of lists:

data List a = Nil | Cons a (List a)

List aisarecursive datatype. Lists of different sizes have the same recursive type. To
make the types different (so that we can represent the size, too) we break the explicit
recursion in the datatype declaration. We introduce two data constructors:

module UnaryDS where
data VZero a = VZero deriving Show

infixr 3 :+:
data Vecp tail a = a :+: (tail a) deriving Show

The constructor VZero represents a vector of a zero size. A value of the type Vecp
tail a is a non-empty vector formed from an element of the type a and (a smaller
vector) of the type tail a. We place our vectors into the class Show for expository
purposes. Thus vectors holding one element have the type Vecp VZero a, vectors with
two elements have the type Vecp (Vecp VZero) a, with three elements Vecp (Vecp
(Vecp VZero)) a, etc. We should stress the separation of the shape type of a vector,
Vecp (Vecp VZero) in the last example, from the type of vector elements. The shape
type of a vector clearly encodes vector’s size, as repeated applications of a type con-
structor Vecp to the type constructor VZero, i.e., as a Peano numeral. We have indeed
designed a number-parameterized type.

To generically manipulate the family of differently-sized vectors, we define a class
of polymorphic functions:

class Vec t where
vlength:: t a -> Int
vat:: ta->Int > a
vzipWith:: (a->b->c) >t a ->tb ->1tc

The method vlength gives us the size of a vector; the method vat lets us retrieve
a specific element, and the method vzipWith produces a vector by an element-by-
element combination of two other vectors. We can use vzipWith to add two vectors
elementwise. We must emphasize the type of vzipWith: the two argument vectors
may hold elements of different types, but the vectors must have the same shape, i.e.,
size.

The implementation of the class Vec has only two instances:

instance Vec VZero where
vlength = const 0
vat = error "null array or index out of range"
vzipWith f a b = VZero

instance (Vec tail) => Vec (Vecp tail) where
vlength (_ :+: t) = 1 + vlength t
vat (a :+:) 0 = a
vat (_ :+: ta) n = vat ta (n-1)
vzipWith f (a :+: ta) (b :+: th) =
(f ab) :+: (vzipWith f ta tb)

The second instance makes it clear that a value of a type Vecp tail a is a vector
Vec if and only if tail a is a vector Vec. Our vectors, instances of the class Vec, are
recursively defined too. Unlike lists, our vectors reveal their sizes in their types.

That was the complete implementation of the number-parameterized vectors. We
can now define a few sample vectors:

v3c = ’a’ :+: 'b’ :+: ’c’ :+: VZero
v3i =1 :+: 2 :+: 3 :+: VZero
vdi =1 :+: 2 :+: 3 :+: 4 :+: VZero

and a few simple tests:

testl = vlength v3c
test2 = [vat v3c 0, vat v3c 1, vat v3c 2]

We can load the code into a Haskell system and run the tests. Incidentally, we can ask
the Haskell system to tell us the inferred type of a sample vector:

*UnaryDS> :t v3c
Vecp (Vecp (Vecp VZero)) Char

The inferred type indeed encodes the size of the vector as a Peano numeral. We can try
more complex tests, of element-wise operations on two vectors:

test3 vzipWith (\c i -> (toEnum $ fromEnum c + fromIntegral i)
v3c v3i

testd4 = vzipWith (+) v3i v3i

*UnaryDS> test3

b’ i+ Cd’ :+: Cf :+: VZero))

: :Char)

In particular, test3 demonstrates an operation on two vectors of the same shape but of
different element types.
An attempt to add, by mistake, two vectors of different sizes is revealing:

test5 = vzipWith (+) v3i v4i

Couldn’t match ‘VZero’ against ‘Vecp VZero’
Expected type: Vecp (Vecp (Vecp VZero)) a
Inferred type: Vecp (Vecp (Vecp (Vecp VZero))) al
In the third argument of ‘vzipWith’, namely ‘v4i’
In the definition of ‘test5’: vzipWith (+) v3i v4i

We get a type error, with a clear error message (the quoted message, here and else-
where in the paper, is by GHCi. The Hugs error message is essentially the same). The
typechecker, at the compile time, has detected that the sizes of the vectors to add ele-
mentwise do not match. To be more precise, the sizes are off by one.

For vectors described in this section, the element access operation, vat, takes 0(n)
time where n is the size of the vector. Chris Okasaki [9] has designed more sophis-
ticated number-parameterized vectors with element access time 0(log n). Although
this is an improvement, the overhead of accessing an element adds up for many oper-
ations. Furthermore, the overhead of data constructors, :+: in our example, becomes
noticeable for longer vectors. When we encode the size of a vector as a sequence of
data constructors, the latter overhead cannot be eliminated.

Although we have achieved the separation of the shape type of a vector from the
type of its elements, we did so at the expense of a sequence of data constructors, :+:, at
the term level. These constructors add time and space overheads, which increase with
the vector size. In the following sections we show more efficient representations for
number-parameterized vectors. The structure of their type will still tell us the size of
the vector; however there will be no corresponding term structure, and, therefore, no
space overhead of storing it nor run-time overhead of traversing it.

3 Encoding the number parameter in type constructors, in unary

To improve the efficiency of number-parameterized vectors, we choose a better run-time
representation: Haskell arrays. The code in the present section is in Haskell98.

module UnaryT (..elided..) where
import Data.Array

First, we need a type structure (an infinite family of types) to encode non-negative
numbers. In the present section, we will use an unary encoding in the form of Peano
numerals. The unary type encoding of integers belongs to programming folklore. It is
also described in [2] in the context of a foreign-function interface library of SML.

data Zero = Zero
data Succ a = Succ a

That is, the term Zero of the type Zero represents the number 0. The term (Succ
(Succ Zero)) of the type (Succ (Succ Zero)) encodes the number two. We call
these numerals Peano numerals because the number n is represented as a repeated ap-
plication of n type (data) constructors Succ to the type (term) Zero. We observe a
one-to-one correspondence between the types of our numerals and the terms. In fact, a
numeral term looks precisely the same as its type. This property is crucial as we shall
see on many occasions below. It lets us “lift” number computations to the type level.
The property also makes error messages lucid.*

We place our Peano numerals into a class Card, which has a method c2num to
convert a numeral into the corresponding number.

class Card c where
c2num:: (Num a) => ¢ -> a -- convert to a number

cpred::(Succ ¢) -> c
cpred = undefined

instance Card Zero where
c2num _ = 0

instance (Card c) => Card (Succ c) where
c2num x = 1 + c2num (cpred x)

The function cpred determines the predecessor for a positive Peano numeral. The def-
inition for that function may seem puzzling: it is undefined. We observe that the callers
do not need the value returned by that function: they merely need the type of that value.
Indeed, let us examine the definitions of the method c2num in the above two instances.
In the instance Card Zero, we are certain that the argument of c2num has the type
Zero. That type, in our encoding, represents the number zero, which we return. There
can be only one non-bottom value of the type Zero: therefore, once we know the type,
we do not need to examine the value. Likewise, in the instance Card (Succ c), we
know that the type of the argument of c2num is (Succ c), where c is itself a Card nu-
meral. If we could convert a value of the type c to a number, we can convert the value
of the type (Succ <) as well. By induction we determine that c2num never examines
the value of its argument. Indeed, not only c2num (Succ (Succ Zero)) evaluates to
2, but so does c2num (undefined:: (Succ (Succ Zero))).

The same correspondence between the types and the terms suggests that the numeral
type alone is enough to describe the size of a vector. We do not need to store the value
of the numeral. The shape type of our vectors could be phantom [2].

newtype Vec size a = Vec (Array Int a) deriving Show

That is, the type variable size does not occur on the right-hand size of the Vec decla-
ration. More importantly, at run-time our Vec is indistinguishable from an Array, thus

1 We could have declared Succ asnewtype Succ a = Succ asothat Succ is just atag and all
non-bottom Peano numerals share the same run-time representation. As we shall see however,
we hardly ever use the values of our numerals.

incurring no additional overhead and providing constant-time element access. As we
mentioned earlier, for simplicity, all the vectors in the paper are indexed from zero. The
data constructor Vec is not exported from the module, so one has to use the following
functions to construct vectors.

listVec’:: (Card size) => size -> [a] -> Vec size a
listVec’ size elems = Vec $ listArray (0, (c2num size)-1) elems

listVec:: (Card size) => size -> [a] -> Vec size a

listVec size elems | not (c2num size == length elems) =
error "listVec: static/dynamic sizes mismatch"

listVec size elems = listVec’ size elems

vec:: (Card size) => size -> a -> Vec size a
vec size elem = listVec’ size § repeat elem

The private function 1istVec’ constructs the vector of the requested size initialized
with the given values. The function makes no check that the length of the list of the
initial values elems is equal to the length of the vector. We use this non-exported func-
tion internally, when we have proven that elems has the right length, or when truncating
such a list is appropriate. The exported function 1istVec is a safe version of 1istVec’.
The former assures that the constructed vector is consistently initialized. The function
vec initializes all elements to the same value. For example, the following expression
creates a boolean vector of two elements with the initial values True and False.

*UnaryT> listVec (Succ (Succ Zero)) [True,False]
Vec (array (0,1) [(0,True),(1l,False)])

A Haskell interpreter created the requested value, and printed it out. We can confirm
that the inferred type of the vector encodes its size:

*UnaryT> :type listVec (Succ (Succ Zero)) [True,False]
Vec (Succ (Succ Zero)) Bool

We can now introduce functions to operate on our vectors. The functions are similar to
those in the previous section. As before, they are polymorphic in the shape of vectors
(i.e., their sizes). This polymorphism is expressed differently however. In the present
section we use just the parametric polymorphism rather than typeclasses.

vlength_t:: Vec size a -> size
vlength_t _ = undefined

vlength:: Vec size a -> Int

vlength (Vec arr) = let (0,last) = bounds arr in last+1l

velems:: Vec size a -> [a]
velems (Vec v) = elems v

vat:: Vec size a -> Int -> a
vat (Vec arr) i = arr ! i
vzipWith:: Card size =>
(a->b->c) -> Vec size a -> Vec size b -> Vec size c
vzipWith f va vb =
listVec’ (vlength_t va) $ zipWith f (velems va) (velems vb)

The functions vlength_t and vlength tell the size of their argument vector. The
function vat returns the element of a vector at a given zero-based index. The func-
tion velems, which gives the list of vector’s elements, is the left inverse of 1istVec.
The function vzipWith elementwise combines two vectors into the third one by apply-
ing a user-specified function £ to the corresponding elements of the argument vectors.
The polymorphic types of these functions indicate that the functions generically oper-
ate on number-parameterized vectors of any size. Furthermore, the type of vzipWith
expresses the constraint that the two argument vectors must have the same size. The
result will be a vector of the same size as that of the argument vectors. We rely on the
fact that the function zipWith, when applied to two lists of the same size, gives the list
of that size. This justifies our use of listVec’.

We have introduced two functions that yield the size of their argument vector. One is
the function vlength_t: it returns a value whose type represents the size of the vector.
We are interested only in the type of the return value — which we extract statically from
the type of the argument vector. The function vlength_t is a compile-time function.
Therefore, it is no surprise that its body is undefined. The type of the function is
its true definition. The function vlength in contrast retrieves vector’s size from the
run-time representation as an array. If we export listVec from the module UnaryT
but do not export the constructor Vec, we can guarantee that c2num . vlength_t is
equivalent to vlength: our number-parameterized vector type is sound.

From the practical point of view, passing terms such as (Succ (Succ Zero)) to
the functions vec or 1istVec to construct vectors is inconvenient. The previous section
showed a better approach. We can implement it here too: we let the user enumerate the
values, which we accumulate into a list, counting them at the same time:

infixl 3 &+
data VC size a = VC size [a]

vs:: VC Zero a; vs = VC Zero []

(&+):: VC size a -> a -> VC (Succ size) a

(&+) (VC size 1st) x = VC (Succ size) (x:1st)
vc:: (Card size) => VC size a -> Vec size a
vc (VC size 1lst) = listVec’ size (reverse lst)

The counting operation is effectively performed by a typechecker at compile time. Fi-
nally, the function vc will allocate and initialize the vector of the right size — and of the
right type. Here are a few sample vectors and operations on them:

vic = vc $ vs &+ ’a’ &+ 'b’ &+ 'C’

v3i =vc $ vs &+ 1 &+ 2 &+ 3
v4i = vc $ vs &+ 1 &+ 2 &+ 3 &+ 4

testl = vlength v3c; testl’ = vlength_t v3c

test2 = [vat v3c 0, vat v3c 1, vat v3c 2]

test3 = vzipWith (\c¢ i -> (toEnum $ fromEnum c + fromIntegral i)
v3c v3i

testd4 = vzipWith (+) v3i v3i

We can run the tests as follows:

*UnaryT> test3

Vec (array (0,2) [(0,’b’),(1,’d"),(2,7f)]1)
*UnaryT> :type test3

Vec (Succ (Succ (Succ Zero))) Char

The type of the result bears the clear indication of the size of the vector. If we attempt
to perform an element-wise operation on vectors of different sizes, for example:

test5 = vzipWith (+) v3i v4i
Couldn’t match ‘Zero’ against ‘Succ Zero’
Expected type: Vec (Succ (Succ (Succ Zero))) a
Inferred type: Vec (Succ (Succ (Succ (Succ Zero)))) al
In the third argument of ‘vzipWith’, namely ‘v4i’
In the definition of ‘test5’: vzipWith (+) v3i v4i

we get a message from the typechecker that the sizes are off by one.

4 Fixed-precision decimal types

Peano numerals adequately represent the size of a vector in vector’s type. However, they
make the notation quite verbose. We want to offer a programmer a familiar, decimal
notation for the terms and the types representing non-negative numerals. This turns
out possible even in Haskell98. In this section, we describe a fixed-precision notation,
assuming that a programmer will never need a vector with more than 999 elements. The
limit is not hard and can be readily extended. The next section will eliminate the limit
altogether.

We again will be using Haskell arrays as the run-time representation for our vectors.
In fact, the implementation of vectors is the same as that in the previous section. The
only change is the use of decimal rather than unary types to describe the sizes of our
Vectors.

module FixedDecT (..export list elided..) where
import Data.Array

Since we will be using the decimal notation, we need the terms and the types for all ten
digits:

: :Char)

data D® = DO
data D1 = D1
data D9 = D9

For clarity and to save space, we elide repetitive code fragments. The full code is avail-
able from [3]. To manipulate the digits uniformly (e.g., to find out the corresponding
integer), we put them into a class Digit. We also introduce a class for non-zero digits.
The latter has no methods: we use NonZeroDigit as a constraint on allowable digits.

class Digit d where -- class of digits
d2num:: (Num a) =>d -> a -- convert to a number
instance Digit D® where d2num _ = 0
instance Digit D1 where d2num _ =1
instance Digit D9 where d2num _ = 9

class Digit d => NonZeroDigit d
instance NonZeroDigit D1
instance NonZeroDigit D2

instance NonZeroDigit D9

We define a class of non-negative numerals. We make all single-digit numerals the
members of that class:

class Card c where
c2num:: (Num a) => ¢ -> a -- convert to a number

-- Single-digit numbers are non-negative numbers

instance Card DO® where c2num _ = 0
instance Card D1 where c2num _ = 1
instance Card D9 where c2num _ = 9

We define a two-digit number, a tuple (d1,d2) where d1 is a non-zero digit, a member
of the class Card. The class NonZeroDigit makes expressing the constraint lucid. We
also introduce three-digit decimal numerals (d1,d2,d3):

instance (NonZeroDigit d1,Digit d2) => Card (d1,d2) where
c2num ¢ = 10*(d2num $§ t12 c) + (d2num $ t22 c)

instance (NonZeroDigit dl1,Digit d2,Digit d3) =>
Card (d1,d2,d3) where
c2num ¢ = 100*(d2num $ t13 c) + 10*(d2num $ t23 c)
+ (d2num $ t33)

The instance constraints of the Card instances guarantee the uniqueness of our repre-
sentation of numbers: the major decimal digit of a multi-digit number is not zero. It will
be a type error to attempt to form such an number:

*FixedDecT> vec (DO®,D1) ’a’
<interactive>:1:
No instance for (NonZeroDigit DO)

The auxiliary compile-time functions t12...t33 are tuple selectors. We could have
avoided them in GHC with Glasgow extensions, which supports local type variables.
We feel however that keeping the code Haskell98 justifies the extra hassle:

undefined
undefined

tl2::(a,b) -> a; tl2
t22::(a,b) -> b; t22

t33::(a,b,c) -> c; t33 = undefined
The rest of the code is as before, e.g.:

newtype Vec size a = Vec (Array Int a) deriving Show

listVec’:: Card size => size -> [a] -> Vec size a
listVec’ size elems = Vec $ listArray (0, (c2num size)-1) elems

The implementations of the polymorphic functions listVec, vec, vlength_t,
vlength, vat, velems, and vzipWith are precisely the same as those in Section 3.
We elide the code for the sake of space. We introduce a few sample vectors, using the
decimal notation this time:

vl2c listVec (D1,D2) $ take 12 [’a’..’z’]
v12i = listVec (D1,D2) [1..12]
v13i listVec (D1,D3) [1..13]

The decimal notation is so much convenient. We can now define long vectors without
pain. As before, the type of our vectors — the size part of the type — looks precisely the
same as the corresponding size term expression:

*FixedDecT> :type vl2c
Vec (D1, D2) Char

We can use the sample vectors in the tests like those of the previous section, [3]. If we
attempt to elementwise add two vectors of different sizes, we get a type error:

test5 = vzipWith (+) v12i v13i

Couldn’t match ‘D2’ against ‘D3’

Expected type: Vec (D1, D2) a

Inferred type: Vec (D1, D3) al
In the third argument of ‘vzipWith’, namely ‘v13i’
In the definition of ‘test5’: vzipWith (+) v12i v13i

The error message literally says that 12 is not equal to 13: the typechecker expected a
vector of size 12 but found a vector of size 13 instead.

5 Arbitrary-precision decimal types

From the practical point of view, the fixed-precision number-parameterized vectors of
the previous section are sufficient. The imposition of a limit on the width of the decimal
numerals — however easily extended — is nevertheless intellectually unsatisfying. One
may wish for an encoding of arbitrarily large decimal numbers within a framework that
has been set up once and for all. Such an SML framework has been introduced in [2],
to encode the sizes of arrays in their types. It is interesting to ask if such an encoding is
possible in Haskell. The present section demonstrates a representation of arbitrary large
decimal numbers in Haskell98. We also show that typeclasses in Haskell have made
the encoding easier and precise: our decimal types are in bijection with non-negative
integers. As before, we use the decimal types as phantom types describing the shape of
number-parameterized vectors.
We start by defining the types for the ten digits:

module ArbPrecDecT (..export list elided..) where
import Data.Array

data DO a
data D1 a

DO a
D1 a

data D9 a = D9 a

Unlike the code in the previous section, D® through D9 are type constructors of one
argument. We use the composition of the constructors to represent sequences of digits.
And so we introduce a class for arbitrary sequences of digits:

class Digits ds where
ds2num:: (Num a) => ds -> a -> a

with a method to convert a sequence to the corresponding number. The method ds2num
is designed in the accumulator-passing style: its second argument is the accumulator.
We also need a type, which we call Sz, to represent an empty sequence of digits:

data Sz = Sz -- zero size (or the Nil of the sequence)
instance Digits Sz where
ds2num _ acc = acc

We now inductively define arbitrarily long sequences of digits:

instance (Digits ds) => Digits (DO ds) where
ds2num dds acc = ds2num (t22 dds) (10*acc)

instance (Digits ds) => Digits (D1 ds) where
ds2num dds acc = ds2num (t22 dds) (10*acc + 1)

instance (Digits ds) => Digits (D9 ds) where
ds2num dds acc = ds2num (t22 dds) (1®*acc + 9)

t22::(f %) -> x; t22 = undefined

The type and the term Sz is an empty sequence; D9 Sz — that is, the application of
the constructor D9 to Sz — is a sequence of one digit, digit 9. The application of the
constructor D1 to the latter sequence gives us D1 (D9 Sz), a two-digit sequence of
digits one and nine. Compositions of data/type constructors indeed encode sequences
of digits. As before, the terms and the types look precisely the same. The compositions
can of course be arbitrarily long:

*ArbPrecDecT> :type D1$ D2$ D3$ D4$ D5$ D6$ D7$ D8$ D9$ DO$ DI$
D8% D7$ D6$ D5% D4$ D3$ D2$ D1$ Sz

D1 (2 (3 (M4 (O5 (D6 (D7 (D8 (D9 (D® (D9 (D8 (D7
(M6 (D5 (@4 D3 (M2 (D1 52))))3))))1)))00)))
*ArbPrecDecT> ds2num (D1$ D2$ D3$ D4$ D5% D6$ D7$ D8% D9$ DOS$ DI$
D8$ D7$ D6%$ D5$ D4$ D3$ D2$ D1§ Sz) O

1234567890987654321

We should point out a notable advantage of Haskell typeclasses in designing of so-
phisticated type families — in particular, in specifying constraints. Nothing prevents a
programmer from using our type constructors, e.g., D1, in unintended ways. For exam-
ple, a programmer may form a value of the type D1 Bool: either by applying a data
constructor D1 to a boolean value, or by casting a polymorphic value, undefined, into
that type:

*ArbPrecDecT> :type D1 True

D1 Bool

*ArbPrecDecT> :type (undefined::D1 Bool)
D1 Bool

However, such types do not represent decimal sequences. Indeed, an attempt to pass
either of these values to ds2num will result in a type error:

*ArbPrecDecT> ds2num (undefined::D1 Bool) 0
No instance for (Digits Bool)
arising from use of ‘ds2num’ at <interactive>:1
In the definition of ‘it’: ds2num (undefined :: D1 Bool) ®

In contrast, the approach in [2] prevented the user from constructing (non-bottom) val-
ues of these types by a careful design and export of value constructors. That approach
relied on SML’s module system to preclude the overt mis-use of the decimal type sys-
tem. Yet the user can still form a (latent, in SML) bottom value of the “bad” type, e.g.,
by attaching an appropriate type signature to an empty list, error function or other suit-
able polymorphic value. In a non-strict language like Haskell such values would make

our approach, which relies on phantom types, unsound. Fortunately, we are able to elim-
inate ill-formed decimal types at the type level rather than at the term level. Our class
Digits admits those and only those types that represent sequences of digits.

To guarantee the bijection between non-negative numbers and sequences of dig-
its, we need to impose an additional restriction: the first, i.e., the major, digit of a se-
guence must be non-zero. Expressing such a restriction is surprisingly straightforward
in Haskell, even Haskell98.

class (Digits c¢) => Card c where
c2num:: (Num a) => ¢ -> a
c2num ¢ = ds2num c 0

instance Card Sz
instance (Digits ds) => Card (D1 ds)
instance (Digits ds) => Card (D2 ds)

instance (Digits ds) => Card (D9 ds)

As in the previous sections, the class Card represents non-negative integers. A non-
negative integer is realized here as a sequence of decimal digits — provided, as the
instances specify, that the sequence starts with a digit other than zero. We can now
define the type of our number-parameterized vectors:

newtype Vec size a = Vec (Array Int a) deriving Show
which looks precisely as before, and polymorphic functions vec, listVec,

vlength_t, vlength, velems, vat, and vzipWith — which are identical to those in
Section 3. We can define a few sample vectors:

vl2c = 1listVec (D1 $ D2 Sz) § take 12 [’a’..’z’]
v12i = listVec (D1 $ D2 Sz) [1..12]
v13i = listVec (D1 $ D3 Sz) [1..13]

we should note a slight change of notation compared to the corresponding vectors of
Section 4. The tests are not changed and continue to work as before:

test4 = vzipWith (+) v12i v12i

*ArbPrecDecT> :type test4

Vec (D1 (D2 Sz)) Int

*ArbPrecDecT> test4

Vec (array (0,11) [(0,2),(1,4),(2,6),...(11,24)1)

The compiler has been able to infer the size of the result of the vzipWith operation.
The size is lucidly spelled in decimal in the type of the vector. Again, an attempt to
elementwise add vectors of different sizes leads to a type error:

test5 = vzipWith (+) v12i v13i
Couldn’t match ‘D2 Sz’ against ‘D3 Sz’
Expected type: Vec (D1 (D2 Sz)) a
Inferred type: Vec (D1 (D3 Sz)) al
In the third argument of ‘vzipWith’, namely ‘v13i’
In the definition of ‘test5’: vzipWith (+) v12i v13i

The typechecker complains that 2 is not equal to 3: it found the vector of size 13 whereas
it expected a vector of size 12. The decimal types make the error message very clear.

We must again point out a significant difference of our approach from that of [2].
We were able to state that only those types of digital sequences that start with a non-
zero digit correspond to a non-negative number. SML, as acknowledged in [2], is un-
able to express such a restriction directly. The paper [2], therefore, prevents the user
from building invalid decimal sequences by relying on the module system: by export-
ing carefully-designed value constructors. The latter use an auxiliary phantom type to
keep track of “nonzeroness” of the major digit. Our approach does not incur such a
complication. Furthermore, by the very inductive construction of the classes Digits
and Card, there is a one-to-one correspondence between types, the members of Card,
and the integers in decimal notation. In [2], the similar mapping holds only when the
family of decimal types is restricted to the types that correspond to constructible values.
A user of that system may still form bottom values of invalid decimal types, which will
cause run-time errors. In our case, when the digit constructors are misapplied, the result
will no longer be in the class Card, and so the error will be detected statically by the
typechecker:

*ArbPrecDecT> vec (D1$ DO$ DOS$ True) O
No instance for (Digits Bool)
arising from use of ‘vec’ at <interactive>:1
In the definition of ‘it’: vec (D1 § (DO $ (DO® § True))) O

*ArbPrecDecT> vec (DO$ D1$ DO Sz) O
No instance for (Card (D® (D1 (DO Sz))))
arising from use of ‘vec’ at <interactive>:1
In the definition of ‘it’: vec (DO $ (D1 $§ (DO Sz))) ©

6 Computationswith decimal types

The previous sections gave many examples of functions such as vzipWi th that take two
vectors statically known to be of equal size. The signature of these functions states quite
detailed invariants whose violations will be reported at compile-time. Furthermore, the
invariants can be inferred by the compiler itself. This use of the type system is not par-
ticular to Haskell: Matthias Blume [2] has derived a similar parameterization of arrays
in SML, which can express such equality of size constraints. Matthias Blume however
cautions one not to overstate the usefulness of the approach because the type system can
express only fairly simple constraints: “There is still no type that, for example, would
force two otherwise arbitrary arrays to differ in size by exactly one.” That was written in

the context of SML however. In Haskell with common extensions we can define vector
functions whose type contains arithmetic constraints on the sizes of the argument and
the result vectors. These constraints can be verified statically and sometimes even in-
ferred by a compiler. In this section, we consider the example of vector concatenation.
We shall see that the inferred type of vappend manifestly affirms that the size of the
result is the sum of the sizes of two argument vectors. We also introduce the functions
vhead and vtail, whose type specifies that they can only be applied to non-empty
vectors. Furthermore, the type of vtail says that the size of the result vector is less by
one than the size of the argument vector. These examples are quite unusual and almost
cross into the realm of dependent types.

We must note however that the examples in this section require the
Haskell98 extension to multi-parameter classes with functional dependencies.
That extension is activated by flags -98 of Hugs and -fglasgow-exts
-fallow-undecidable-instances of GHCI.

We will be using the arbitrary precision decimal types introduced in the previous
section. We aim to design a ‘type addition” of decimal sequences. Our decimal types
spell the corresponding non-negative numbers in the conventional (i.e., big-endian) dec-
imal notation: the most-significant digit first. However, it is more convenient to add such
numbers starting from the least-significant digit. Therefore, we need a way to reverse
digital sequences, or more precise, types of the class Digits. We use the conventional
sequence reversal algorithm written in the accumulator-passing style.

class DigitsInReverse’ df w dr | df w -> dr

instance DigitsInReverse’ Sz acc acc
instance (Digits (d drest), DigitsInReverse’ drest (d acc) dr)
=> DigitsInReverse’ (d drest) acc dr

We introduced the class DigitsInReverse’ df w dr where df is the source se-
quence, dr is the reversed sequence, and w is the accumulator. The three digit sequence
types belong to DigitsInReverse’ if the reverse of df appended to w gives the digit
sequence dr. The functional dependency and the two instances spell this constraint out.
We can now introduce a class that relates a sequence of digits with its reverse:

class DigitsInReverse df dr | df -> dr, dr -> df

instance (DigitsInReverse’ df Sz dr, DigitsInReverse’ dr Sz df)
=> DigitsInReverse df dr

Two sequences of digits df and dr belong to the class DigitsInReverse if they are
the reverse of each other. The functional dependencies make the “each other” part clear:
one sequence uniquely determines the other. The typechecker will verify that given df,
it can find dr so that both DigitsInReverse’ df Sz dr and DigitsInReverse’
dr Sz df are satisfied. To test the reversal process, we define a function digits_rev:

digits_rev:: (Digits ds, Digits dsr, DigitsInReverse ds dsr)
=> ds -> dsr
digits_rev = undefined

It is again a compile-time function specified entirely by its type. Its body is therefore
undefined. We can now run a few examples:

*ArbArithmT> :t digits_rev (D1$D2$D3 Sz)

D3 (D2 (D1 Sz))

*ArbArithmT> :t (\v -> digits_rev v ‘asTypeOf‘ (D1$D2$D3 Sz))
D3 (D2 (D1 Sz)) -> D1 (D2 (D3 Sz))

Indeed, the process of reversing sequences of decimal digits works both ways. Given
the type of the argument to digits_rev, the compiler infers the type of the result.
Conversely, given the type of the result the compiler infers the type of the argument.

A sequence of digits belongs to the class Card only if the most-significant digit is
not a zero. To convert an arbitrary sequence to Card we need a way to strip leading
zZeros:

class NoLeadingZeros d d® | d -> dO

instance NolLeadingZeros Sz Sz

instance (NoLeadingZeros d d’) => NoLeadingZeros (DO d) d’
instance NolLeadingZeros (D1 d) (D1 d)

instance NoLeadingZeros (D9 d) (D9 d)

We are now ready to build the addition machinery. We draw our inspiration from the
computer architecture: the adder of an arithmetical-logical unit (ALU) of the CPU is
constructed by chaining of so-called full-adders. A full-adder takes two summands and
the carry-in and yields the result of the summation and the carry-out. In our case, the
summands and the result are decimal rather than binary. Carry is still binary.

class FullAdder dl d2 cin dr cout
| d1 d2 cin -> cout, dl1 d2 cin -> dr,
dl dr cin -> cout, dl dr cin -> d2
where
_unused:: (dl1 xd1) -> (d2 xd2) -> cin -> (dr xdr)
_unused = undefined

The class FullAdder establishes a relation among three digits d1, d2, and dr and two
carry bits cin and cout: d1 + d2 + cin = dr + 10*cout. The digits are repre-
sented by the type constructors D® through D9. The sole purpose of the method _unused
is to cue the compiler that d1, d2, and dr are type constructors. The functional depen-
dencies of the class tell us that the summands and the input carry uniquely determine
the result digit and the output carry. On the other hand, if we know the result digit, one
of the summands, d1, and the input carry, we can determine the other summand. The
same relation FullAdder can therefore be used for addition and for subtraction. In the
latter case, the carry bits should be more properly called borrow bits.

data Carry®
data Carryl

instance FullAdder DO DO® Carry® DO Carry®
instance FullAdder D® DO Carryl D1 Carry®
instance FullAdder DO D1 Carry® D1 Carry®

instance FullAdder D9 D8 Carryl D8 Carryl
instance FullAdder D9 D9 Carry® D8 Carryl
instance FullAdder D9 D9 Carryl D9 Carryl

The full code [3] indeed contains 200 instances of FullAdder. The exhaustive enumer-
ation verifies the functional dependencies of the class. The number of instances could be
significantly reduced if we availed ourselves to an overlapping instances extension. For
generality however we tried to use as few Haskell98 extensions as possible. Although
200 instances seems like quite many, we have to write them only once. We place the
instances into a module and separately compile it. Furthermore, we did not write those
instances by hand: we used Haskell itself:

make_full_adder
= mapM_ putStrLn
[unwords $ doit d1 d2 cin | di<-[®..9],
d2<-[0..9], cin<-[0..1]]
where
doit d1 d2 cin
= ["instance FullAdder", tod d1, tod d2, toc cin,
tod d12, toc cout]
where
(d12,cout) = let sum = d1 + d2 + cin
in if sum >= 10 then (sum-10,1) else (sum,®)
todn | (n>=0 &% 9 > n) = "D" ++ (show n)
toc 0 = "Carry0"; toc 1 = "Carryl"

That function is ready for Template Haskell. Currently we used a low-tech approach of
cutting and pasting from an Emacs buffer with GHCi into the Emacs buffer with the
code.

We use FullAdder to build the full adder of two little-endian decimal sequences
ds1 and ds2. The relation DigitsSum ds1 ds2 cin dsr holds if ds1+ds2+cin =
dsr. We add the digits from the least significant onwards, and we propagate the carry. If
one input sequence turns out shorter than the other, we pad it with zeros. The correctness
of the algorithm follows by simple induction.

class DigitsSum dsl ds2 cin dsr | dsl ds2 cin -> dsr

instance DigitsSum Sz Sz Carry® Sz

instance DigitsSum Sz Sz Carryl (D1 Sz)

instance (DigitsSum (D® Sz) (d2 d2rest) cin (d12 dl2rest)) =>
DigitsSum Sz (d2 d2rest) cin (dl12 dl2rest)

instance (DigitsSum (dl dlrest) (DO Sz) cin (d12 dl2rest)) =>
DigitsSum (dl dlrest) Sz cin (d12 dl2rest)

instance (FullAdder dl1 d2 cin d12 cout,
DigitsSum dlrest d2rest cout dl2rest) =>
DigitsSum (dl dlrest) (d2 d2rest) cin (d12 dl2rest)

We also need the inverse relation: DigitsDif dsl ds2 cin dsr holds on precisely
the same condition as DigitsSum. Now, however, the sequences ds1, dsr and the input
carry cin determine one of the summands, ds2. The input carry actually means the
input borrow bit. The relation DigitsDif is defined only if the output sequence dsr
has at least as many digits as ds1 — which is the necessary condition for the result of
the subtraction to be non-negative.

class DigitsDif dsl ds2 cin dsr | dsl dsr cin -> ds2
instance DigitsDif Sz ds Carry® ds
instance (DigitsDif (DO Sz) (d2 d2rest) Carryl (d12 dl2rest)) =>
DigitsDif Sz (d2 d2rest) Carryl (d12 dl2rest)
instance (FullAdder dl d2 cin d12 cout,
DigitsDif dlrest d2rest cout dl2rest) =>
DigitsDif (dl dlrest) (d2 d2rest) cin (d12 dl2rest)

The class CardSum with a single instance puts it all together:

class (Card cl1, Card c2, Card cl2) =>
CardSum cl1 c2 cl12 | ¢l c2 -> cl12, cl1 cl12 -> c2
instance (Card cl, Card c2, Card cl2,
DigitsInReverse cl clr,
DigitsInReverse c2 c2r,
DigitsSum clr c2r Carry® cl2r,
DigitsDif clr c2r’ Carry® cl2r,
DigitsInReverse c2r’ c2’, NolLeadingZeros c2’ c2,
DigitsInReverse cl2r cl12)
=> CardSum cl c2 cl2

The class establishes the relation between three Card sequences c1, c2, and c12 such
that the latter is the sum of the formers. The two summands determine the sum, or the
sum and one summand determine the other. The class can be used for addition and
subtraction of sequences. The dependencies of the sole CardSum instance spell out the
algorithm. We reverse the summand sequences to make them little-endian, add them
together with the zero carry, and reverse the result. We also make sure that the subtrac-
tion and summation are the exact inverses. The addition algorithm DigitsSum never
produces a sequence with the major digit zero. The subtraction algorithm however may
result in a sequence with zero major digits, which have to be stripped away, with the help
of the relation NoLeadingZeros. We introduce a compile-time function card_sum so
we can try the addition out:

card_sum:: CardSum cl c2 cl2 => cl -> c2 -> cl2
card_sum = undefined

*ArbArithmT> :t card_sum (D1 Sz) (D9$D9 Sz)

D1 (DO (DO Sz))

*ArbArithmT> :t \v -> card_sum (D1 Sz) v ‘asTypeOf‘ (D1DOSDO® Sz)

D9 (D9 Sz) -> D1 (D® (D® Sz))

*ArbArithmT> :t \v -> card_sum (D9$D9 Sz) v ‘asTypeOf‘ (D1$DOSDO Sz)
D1 Sz -> D1 (D® (DO Sz))

The typechecker can indeed add and subtract with carry and borrow. Now we define the
function vappend to concatenate two vectors.

vappend va vb = listVec (card_sum (vlength_t va) (vlength_t vb))
$ (velems va) ++ (velems vb)

We could have used the function 1istVec’; for illustration, we chose however to per-
form a run-time check and avoid proving the theorem about the size of the list concate-
nation result. We did not declare the type of vappend; still the compiler is able to infer
it:

*ArbArithmT> :t vappend
vappend :: (CardSum size sizel cl2) =>
Vec size a -> Vec sizel a -> Vec cl2 a

which literally says that the size of the result vector is the sum of the sizes of the argu-
ment vectors. The constraint is spelled out patently, as part of the type of vappend. The
sizes may be arbitrarily large decimal numbers: for example, the following expression
demonstrates the concatenation of a vector of 25 elements and a vector of size 979:

*ArbArithmT> :t vappend (vec (D2$D5 Sz) 0) (vec (D9$D7$D9 Sz) 0)
(Num a) => Vec (D1 (D® (DO (D4 Sz)))) a

We introduce the deconstructor functions vhead and vtail. The type of the latter is
exactly what was listed in [2] as an unattainable wish.

vhead:: CardSum (D1 Sz) sizel size => Vec size a -> Vec (D1 Sz) a
vhead va = listVec (D1 Sz) $ [head (velems va)]
vtail:: CardSum (D1 Sz) sizel size => Vec size a -> Vec sizel a
vtail va = result

where result = listVec (vlength_t result) $§ tail (velems va)

Although the body of vtail seem to refer to that function result, the function is not
divergent and not recursive. Recall that vlength_t is a compile-time, ‘type’ function.
Therefore the body of vtail refers to the statically known type of result rather than
to its value. The type of vhead is also noteworthy: it essentially specifies an inequality
constraint: the input vector is non-empty. The constraint is expressed via an implicitly
existentially quantified variable sizel: the type of vhead says that there must exist a
non-negative number size1 such that incrementing it by one should give the size of the
input vector.

We can now run a few examples. We note that the compiler could correctly infer the
type of the result, which includes the size of the vector after appending or truncating it.

*ArbArithmT> let v = vappend (vec (D9 Sz) 0) (vec (D1 Sz) 1)
*ArbArithmT> :t v

Vec (D1 (DO® Sz)) Integer

*ArbArithmT> v

Vec (array (0,9) [(0,0),(1,0),...,(8,0),09,DDD)
*ArbArithmT> :type vhead v

Vec (D1 Sz) Integer

*ArbArithmT> :type vtail v

Vec (D9 Sz) Integer

*ArbArithmT> vtail v

Vec (array (0,8) [(0,0),(1,0),...,(7,0),(8,1D])
*ArbArithmT> :type (vappend (vhead v) (vtail v))
Vec (D1 (DO® Sz)) Integer

The types of vhead and vtail embed a non-empty argument vector constraint. Indeed,
an attempt to apply vhead to an empty vector results in a type error:

*ArbArithmT> vtail (vec Sz 0)
<interactive>:1:0:
No instances for (DigitsInReverse’ c2’ Sz c2r’,
DigitsInReverse’ c2r’ Sz c2’,
DigitsDif (D1 Sz) c2r’ Carry® Sz,
DigitsSum (D1 Sz) c2r Carry® Sz,
DigitsInReverse’ c2r Sz sizel,
DigitsInReverse’ sizel Sz c2r)
arising from use of ‘vtail’ at <interactive>:1:0-4

The error message essentially says that there is no such decimal type c2r such that
DigitsSum (D1 Sz) c2r Carry® Sz holds. That is, there is no non-negative num-
ber that gives zero if added to one.

We can form quite complex expressions from the functions vappend, vhead, and
vtail, and the compiler will infer and verify the corresponding constraints on the sizes
of involved vectors. For example:

testcl =
let va = vec (D1$D2 Sz) ©
vb = vec (D5 Sz) 1
vc = vec (D8 Sz) 2
in vzipWith (+) va (vappend vb (vtail vc))
*ArbArithmT> testcl
Vec (array (0,11) [(0,1),...,(4,1),(5,2),(6,2),...,(11,2)D

The size of the vector va must be the sum of the sizes of vb and vc minus one. Fur-
thermore, the vector vc must be non-empty. The compiler has inferred this non-trivial
constraint and checked it. Indeed, if we by mistake write ve = vec (D9 Sz) 2,aswe
actually did when writing the example, the compiler will instantly report a type error:

Couldn’t match ‘D9 Sz’ against ‘D8 Sz’
Expected type: D9 Sz
Inferred type: D8 Sz
When using functional dependencies to combine
DigitsSum (D1 Sz) c2r Carry® (D9 Sz),
arising from use of ‘vtail’ at ArbArithmT.hs:420:34-38
DigitsSum (D1 Sz) c2r Carry® (D8 Sz),
arising from use of ‘vtail’ at ArbArithmT.hs:411:34-38

Theresult 12 - 5 + 1 isexpected to be 8 rather than 9.

We can define other operations that extend or shrink our vectors. For example, Sec-
tion 3 introduced the operator &+ to make the entering of vectors easier. It is straight-
forward to implement such an operator for decimally-typed vectors.

We must point out that the type system guarantees that vhead and vtail are applied
to non-empty vectors. Therefore, we no longer need the corresponding run-time check.
The bodies of vhead and vtail may safely use unsafe versions of the library functions
head and tail, and hence increase the performance of the code without compromising
its safety.

7 Statically-sized vectorsin a dynamic context

In the present version of the paper, we demonstrate the simplest method of handling
number-parameterized vectors in the dynamic context. The method involves run-time
checks. The successful result of a run-time check is marked with the appropriate static
type. Further computations can therefore rely on the result of the check (e.g., that the
vector in question definitely has a particular size) and avoid the need to do that test over
and over again. The net advantage is the reduction in the number of run-time checks.
The complete elimination of the run-time checks is quite difficult (in general, may not
even be possible) and ultimately requires a dependent type system.

For our presentation we use an example of dynamically-sized vectors: reversing a
vector by the familiar accumulator-passing algorithm. Each iteration splits the source
vector into the head and the tail, and prepends the head to the accumulator. The sizes
of the vectors change in the course of the computation, to be precise, on each iteration.
We treat vectors as if they were lists. Most of the vector processing code does not have
such a degree of variation in vector sizes. The code is quite simple:

vreverse v = listVec (vlength_t v) §$ reverse § velems v
whose inferred type is obviously

*ArbArithmT> :t vreverse
vreverse :: (Card size) => Vec size a -> Vec size a

The use of 1listVec implies a dynamic test — as a witness to ‘acquire’ the static type
size, the size type of the input vector. We do this test only once, at the conclusion of
the algorithm. We can treat the result as any other number-parameterized vector, for
example:

testv = let v = vappend (vec (D3 Sz) 1) (vec (D1 Sz) 4)
Vr = vreverse Vv
in vhead (vtail (vtail vr))

using the versions of vhead and vtail without any further run-time size checks.

8 Related work

This paper was inspired by Matthias Blume’s messages on the newsgroup
comp.lang.functional in February 2002. Many ideas of this paper were first developed
during the USENET discussion, and posted in a series of three messages at that time.
In more detail Matthias Blume described his method in [2], although that paper uses
binary rather than decimal types of array sizes for clarity. The approaches by Matthias
Blume and ours both rely on phantom types to encode additional information about a
value (e.g., the size of an array) in a manner suitable for a typechecker. The paper [2]
exhibits the most pervasive and thorough use of phantom types: to represent the size of
arrays and the constness of imported C values, to encode C structure tag names and C
function prototypes.

However, the paper [2] was written in the context of SML, whereas we use Haskell.
The language has greatly influenced the method of specifying and enforcing complex
static constraints, e.g., that digit sequences representing non-negative humbers must
not have leading zeros. The SML approach in [2] relies on the sophisticated module
system of SML to restrict the availability of value constructors so that users cannot build
values of outlawed types. Haskell typeclasses on the other hand can directly express
the constraint, as we saw in Section 5. Furthermore, Haskell typeclasses let us specify
arithmetic equality and inequality constraints — which, as admitted in [2], seems quite
unlikely to be possible in SML.

Arrays of a statically known size — whose size is a part of their type — are a fairly
popular feature in programming languages. Such arrays are present in Fortran, Pascal,
C 2. Pascal has the most complete realization of statically sized arrays. A Pascal com-
piler can therefore typecheck array functions like our vzipWith. Statically sized arrays
also contribute to expressiveness and efficiency: for example, in Pascal we can copy
one instance of an array into another instance of the same type by a single assignment,
which, for small arrays, can be fully inlined by the compiler into a sequential code
with no loops or range checks. However, in a language without the parametric poly-
morphism statically sized arrays are a great nuisance. If the size of an array is a part
of its type, we cannot write generic functions that operate on arrays of any size. We
can only write functions dealing with arrays of specific, fixed sizes. The inability to
build generic array-processing libraries is one of the most serious drawbacks of Pascal.
Therefore, Fortran and C introduce “generic” arrays whose size type is not statically
known. The compiler silently converts a statically-sized array into a generic one when
passing arrays as arguments to functions. We can now build generic array-processing

2 C does permit truly statically-sized arrays like those in Pascal. To achieve this, we should make
a C array a member of a C structure. The compiler preserves the array size information when
passing such a wrapped array as an argument. It is even possible to assign such “arrays”.

libraries. We still need to know the size of the array. In Fortran and C, the programmer
must arrange for passing the size information to a function in some other way, e.g.,
via an additional argument, global variable, etc. It becomes then the responsibility of
a programmer to make sure that the size information is correct. The large number of
Internet security advisories related to buffer overflows and other array-management is-
sues testify that programmers in general are not to be relied upon for correctly passing
and using the array size information. Furthermore, the silent, irreversible conversion of
statically sized arrays into generic ones negate all the benefits of the former.

A different approach to array processing is a so-called shape-invariant program-
ming, which is a key feature of array-oriented languages such as APL or SaC [11].
These languages let a programmer define operations that can be applied to arrays of
arbitrary shape/dimensionality. The code becomes shorter and free from explicit itera-
tions, and thus more reusable, easier to read and to write. The exact shape of an array
has to be known, eventually. Determining it at run-time is greatly inefficient. Therefore,
high-performance array-oriented languages employ shape inference [10], which tries
to statically infer the dimensionalities or even exact sizes of all arrays in a program.
Shape inference is, in general, undecidable, since arrays may be dynamically allocated.
Therefore, one can either restrict the class of acceptable shape-invariant programs to
a decidable subset, resort to a dependent-type language like Cayenne [1], or use “soft
typing.” The latter approach is described in [10], which introduces a non-unique type
system based on a hierarchy of array types: from fully specialized ones with the stati-
cally known sizes and dimensionality, to a type of an array with the known dimension-
ality but not size, to a fully generic array type whose shape can only be determined at
run-time. The system remains decidable because at any time the typechecker can throw
up hands and give to a value a fully generic array type. Shape inference of SaC is spe-
cific to that language, whose type system is otherwise deliberately constrained: SaC
lacks parametric polymorphism and higher-order functions. Using shape inference for
compilation of shape-invariant array operations into a highly efficient code is presented
in [7]. Their compiler tries to generate as precise shape-specific code as possible. When
the shape inference fails to give the exact sizes or dimensionalities, the compiler emits
code for a dynamic shape dispatch and generic loops.

There is however a great difference in goals and implementation between the shape
inference of SaC and our approach. The former aims at accepting more programs than
can statically be inferred shape-correct. We strive to express assertions about the array
sizes and enforcing the programming style that assures them. We have shown the def-
initions of functions such as vzipWith whose the argument and the result vectors are
all of the same size. This constraint is assured at compile-time — even if we do not stati-
cally know the exact sizes of the vectors. Because SaC lacks parametric polymorphism,
it cannot express such an assertion and statically verify it. If a SaC programmer applies
a function such as vzipWith to vectors of unequal size, the compiler will not flag that
as an error but will compile a generic array code instead. The error will be raised at run
time during a range check.

The approach of the present paper comes close to emulating a dependent type sys-
tem, of which Cayenne [1] is the epitome. We were particularly influenced by a practical
dependent type system of Hongwei Xi [14] [15], which is a conservative extension of

SML. In [14], Hongwei Xi et al. demonstrated an application of their system to the
elimination of array bound checking and list tag checking. The related work section of
that paper lists a number of other dependent and pseudo-dependent type systems. Using
the type system to avoid unnecessary run-time checks is a goal of the present paper too.

C++ templates provide parametric polymorphism and indexing of types by true in-
tegers. A C++ programmer can therefore define functions like vzipWith and vtail
with equality and even arithmetic constraints on the sizes of the argument vectors.
Blitz++ [13] was the first example of using a so-called template meta-programming
for generating efficient and safe array code. The type system of C++ however presents
innumerable hurdles to the functional style. For example, the result type of a function
is not used for the overloading resolution, which significantly restricts the power of the
type inference. Templates were introduced in C++ ad hoc, and therefore, are not well
integrated with its type system. Violations of static constraints expressed via templates
result in error messages so voluminous as to become incomprehensible.

McBride [8] gives an extensive survey of the emulation of dependent type systems
in Haskell. He also describes number-parameterized arrays that are similar to the ones
discussed in Section 2. The paper by Fridlender and Indrika [4] shows another example
of emulating dependent types within the Hindley-Milner type system: namely, emu-
lating variable-arity functions such as generic zipWith. Their technique relies on ad
hoc codings for natural numbers which resemble Peano numerals. They aim at defining
more functions (i.e., multi-variate functions), whereas we are concerned with making
functions more restrictive by expressing sophisticated invariants in functions’ types.
Another approach to multivariate functions — multivariate composition operator — is
discussed in [5].

9 Conclusions

Throughout this paper we have demonstrated several realizations of number-
parameterized types in Haskell, using arrays parameterized by their size as an exam-
ple. We have concentrated on techniques that rely on phantom types to encode the size
information in the type of the array value. We have built a family of infinite types so
that different values of the vector size can have their own distinct type. That type is a
decimal encoding of the corresponding integer (rather than the more common unary,
Peano-like encoding). The examples throughout the paper illustrate that the decimal
notation for the number-parameterized vectors makes our approach practical.

We have used the phantom size types to express non-trivial constraints on the sizes
of the argument and the result arrays in the type of functions. The constraints include the
size equality, e.g., the type of a function of two arguments may indicate that the argu-
ments must be vectors of the same size. More importantly, we can specify arithmetical
constraints: e.g., that the size of the vector after concatenation is the sum of the source
vector sizes. Furthermore, we can write inequality constraints by means of an implicit
existential quantification, e.g., the function vhead must be applied to a non-empty vec-
tor. The programmer should benefit from more expressive function signatures and from
the ability of the compiler to statically check complex invariants in all applications
of the vector-processing functions. The compiler indeed infers and checks non-trivial

constraints involving addition and subtraction of sizes — and presents readable error
messages on violation of the constraints.

References

10.

11.
12.

13.

14,

15.

Augustsson, L. Cayenne — a language with dependent types. Proc. ACM SIGPLAN Interna-
tional Conference on Functional Programming, pp. 239—250, 1998.

Matthias Blume: No-Longer-Foreign: Teaching an ML compiler to speak C “natively.” In
BABEL’01: First workshop on multi-language infrastructure and interoperability, September
2001, Firenze, Italy. http://people.cs.uchicago.edu/~blume/pub.html

The complete source code for the article. August 9, 2005.
http://pobox.com/~oleg/ftp/Haskell/number-param-vector-code.tar.gz
Daniel Fridlender and Mia Indrika: Do we Need Dependent Types? BRICS Report Series
RS-01-10, March 2001. http://www.brics.dk/RS/01/10/

Oleg Kiselyov: Polyvariadic composition. October 31, 2003.
http://pobox.com/~oleg/ftp/Haskell/types. scm#polyvar-comp

Oleg Kiselyov: Polymorphic stanamically balanced AVL trees. April 26, 2003.
http://pobox.com/~oleg/ftp/Haskell/types.scm#stanamic-AVL

Dietmar Kreye: A Compilation Scheme for a Hierarchy of Array Types. Proc. 3th Interna-
tional Workshop on Implementation of Functional Languages (IFL’01).

Conor McBride: Faking it—simulating dependent types in Haskell.
Journal of Functional Programming, 2002, v.12, pp. 375-392
http://www.cs.nott.ac.uk/~ctm/faking.ps.gz

Chris Okasaki: From fast exponentiation to square matrices: An adventure in
types. Proc. fourth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’99), Paris, France, September 27-29, pp. 28 - 35, 1999
http://www.eecs.usma.edu/Personnel/okasaki/pubs.html#icfp99

Sven-Bodo Scholz: A Type System for Inferring Array Shapes. Proc. 3th In-
ternational Workshop on Implementation of Functional Languages (IFL’01).
http://homepages. feis.herts.ac.uk/~comgss/research.html

Singe-Assignment C homepage. http://www.sac-home.org/

Dominic Steinitz: Re: Polymorphic Recursion / Rank-2 Confu-
sion. Message posted on the Haskell mailing list on Sep 21 2003.
http://www.haskell.org/pipermail /haskell/2003-September/012726.html
Todd L. Veldhuizen: Arrays in Blitz++. Proc. 2nd International Scientific Computing
in Object-Oriented Parallel Environments (ISCOPE’98). Santa Fe, New Mexico, 1998.
http://www.oonumerics.org/blitz/manual/blitz.html

Hongwei Xi, Frank Pfenning: Eliminating Array Bound Checking Through Dependent
Types. Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 249257, 1998. http://www-2.cs. cmu. edu/~hwxi/

Hongwei Xi: Dependent Types in Practical Programming. Ph.D thesis, Carnegie Mellon Uni-
versity, September 1998. http://www.cs.bu.edu/~hwxi/

