
Lazy v. Yield
Incremental, Linear Pretty-printing

Oleg Kiselyov Simon Peyton-Jones Amr Sabry

APLAS 2012
Kyoto, Japan Dec 12, 2012

Incremental stream processing, pervasive in practice, makes the best
case for lazy evaluation. Lazy evaluation promotes modularity, letting
us glue together separately developed stream producers, consumers
and transformers. Lazy list processing has become a cardinal feature
of Haskell. It also brings the worst in lazy evaluation: its
incompatibility with effects and unpredictable and often
extraordinary use of memory. Much of the Haskell programming lore
are the ways to get around lazy evaluation.

We propose a programming style for incremental stream processing

based on typed simple generators. It promotes modularity and

decoupling of producers and consumers just like lazy evaluation.

Simple generators, however, expose the implicit suspension and

resumption inherent in lazy evaluation as computational effects, and

hence are robust in the presence of other effects. Simple generators let

us accurately reason about memory consumption and latency. The

remarkable implementation simplicity and efficiency of simple

generators strongly motivates investigating and pushing the limits of

their expressiveness.

To substantiate our claims we give a new solution to the notorious

pretty-printing problem. Like earlier solutions, it is linear,

backtracking-free and with bounded latency. It is also modular,

structured as a cascade of separately developed stream transducers,

which makes it simpler to write, test and to precisely analyze latency,

time and space consumption. It is compatible with effects including

IO, letting us read the source document from a file, and format it as

we read.

2

Outline

1. The splendors and miseries of lazy evaluation
I Generators bring modularity to strict languages
I Generators are compatible with effects
I Typed simple generators

2. Non-trivial example of simple generators
I A new solution to the pretty-printing problem
I Surprising power of very simple generators
I Reasoning and accurate prediction of latency, time and

space complexities

The talk, and the paper, have two main parts. The first is about the
universally acknowledged main attraction of lazy evaluation, and the
universally acknowledged main drawback. Generators bring the main
attraction – modularity and compositionality – to strict, call-by-value
languages, and they are compatible with effects. This talk is about a
simple version of generators. Some may say too simple, since they are
limited in expressiveness. But they are very simple to implement.
What we can still do with these too simple generators? Well, more
than we thought.

The second part is a non-trivial illustration of simple generators: a

new solution to the pretty-printing problem – a contribution by itself.

It is quite a surprising contribution since some experts didn’t think

simple generators are up to this job. The example shows how can we

reason about and accurately predict the time and space performance

of a program. You have heard it right: we will be reasoning about

space, in Haskell. And it is simple, once you stay within the

framework.

2

Outline

1. The splendors and miseries of lazy evaluation
I Generators bring modularity to strict languages
I Generators are compatible with effects
I Typed simple generators

2. Non-trivial example of simple generators
I A new solution to the pretty-printing problem
I Surprising power of very simple generators
I Reasoning and accurate prediction of latency, time and

space complexities

The approach is cross-platform (Haskell, OCaml)
We will be using Haskell

Simple generators are not language-specific, and we have the

implementation of generators in Haskell and OCaml. In this talk we

will use Haskell.

3

Lazy Evaluation

© Modularity, reuse, decoupling consumers and producers:
why functional programming matters

�� Incompatible with effects

�� Reasoning about space is excruciating

Furthermore:

I Tying the knot (around yourself)

I AI search problems are all but impossible

I Debugging is difficult

Let us first recall the acknowledged, greatest attractions and greatest
drawbacks of Lazy evaluation – something that both Lennart
Augustsson and Bob Harper publicly agree upon (and this doesn’t
happen often). John Hughes in his famous paper regarded lazy
evaluation as one of the main reasons why functional programming
matters. It is because it decouples consumers and producers of data
and enables reuse, permitting and encouraging programming by
composing combinators. We’ll see examples next. Alas, this greatest
asset is incompatible with effects, and we pay for it with the
excruciating difficulty of estimating the space requirements of a
program and plugging memory leaks.

There are further points like tying the knot – a fascinating application

on one hand, which also lets us tie up ourselves with our own rope.

Lazy evaluation makes it all but impossible to program search in large

spaces, where laziness, or memoization, is exactly the wrong trade-off.

There is no time to talk about them here.

4

Lazy Evaluation: modularity

any :: (a → Bool) → [a] → Bool
any f = or ◦ map f

Lennart Augustsson: More points for lazy evaluation, May 2011.

So, modularity. We will be using the main point example from

Lennart Augustsson’s well-discussed blog post from last year. The

example is the function any, which tells if an element of a list satisfies

a given predicate. The function can be defined by the composition of

two already written functions or and map.

4

Lazy Evaluation: modularity

any :: (a → Bool) → [a] → Bool
any f = or ◦ map f

t1 = any (>10) [1..]
−− True

Lennart Augustsson: More points for lazy evaluation, May 2011.

Further, any stops as soon as it finds the satisfying element. To

demonstrate, we use it with an infinite list, obtaining the result True.

We will not get any result in a strict language: or does not get to

work before map f finishes – which, if it is applied to an infinite list,

does not.

4

Lazy Evaluation: modularity

any :: (a → Bool) → [a] → Bool
any f = or ◦ map f

t1 = any (>10) [1..]
−− True

t2 = any (>10) ◦ map read ◦ lines $ ”2\n3\n5\n7\n11\n13\nINVALID”
−− True

Lennart Augustsson: More points for lazy evaluation, May 2011.

We can grow the chain farther. For example, the input list of numbers

could be the result of parsing a column of text. Splitting into lines,

parsing, comparing – all happens incrementally and on demand.

Indeed, t2 returns True even though ”INVALID” is unparseable as a

number. The evaluation has really stopped before the entire list is

consumed.

5

Lazy evaluation and effects

Naive reading

(any (>10) ◦ map read ◦ lines) ‘fmap‘
(read string fname :: IO String)

�� Lost incremental processing

That was greatly appealing. But what if the string to parse and

search is to be read from a file? Suppose read string is an IO action

that reads a string from a file. But how much to read? Only the pure

pipeline in the parenthesis can tell, but it is evaluated after the

reading action finishes. (IO) actions can’t run half-way, return a part

of the result, and then resume. Since read string gets no feedback on

how much to read, it has to read the whole file. Hence we lost the

incrementality and the early termination, right after the satisfying

element is found.

5

Lazy evaluation and effects

Naive reading

(any (>10) ◦ map read ◦ lines) ‘fmap‘
(read string fname :: IO String)

�� Lost incremental processing

Lazy IO

t2 lazy = do
h ← openFile test file ReadMode
str ← hGetContents h
let result = any (>10) ◦ map read ◦ lines $ str
return result

�� Lost sanity

But we can read on demand – there is Lazy IO, like in the code
below. The library function hGetContents arranges for such an
incremental read, as more of the string is demanded.

Lazy IO has many problems, and I have already talked about them,

not so while ago and not so far from here. I just mention one

problem: when the handle h is closed? When the garbage collector

gets around to it, if ever. The lazy IO code thus leaks a scarce

resource (the file handle). Lazy IO is especially problematic when the

input comes from a pipe or a network channel. It is not specified how

much hGetContents really reads. It usually reads by buffer-full and it

may read-ahead arbitrarily, which for communication channels can

(and does) lead to a deadlock.

6

Lazy evaluation and space complexity

It took three weeks to write a prototype genomic data mining
application in Haskell,

and two months to work around laziness frequently causing
heap overflows.

Amanda Clare and Ross D. King: Data Mining the Yeast
Genome in a Lazy Functional Language, PADL2003.

As to reasoning about space complexity, let me refer to a case study

presented as PADL2003. Since then, the GHC strictness analyzer got

better, and memory got much cheaper. Still the point stands, and we

shall see the example.

7

If not lazy, then strict?

t2 strict =
bracket (openFile test file ReadMode) hClose (loop (>10))
where
loop f h = do

r ← liftM f $ liftM read $ hGetLine h
if r then return True else loop f h

© No file handle leaks

�� Lost compositionality

On the plus side, the handle is definitely closed, immediately right

after the result is obtained. But we have lost the compositionality: we

have to program the recursion explicitly, essentially inlining or. See

Augustsson’s post for more discussion why we have to do this. The

accompanying code also discusses monadic lists (streams) and

demonstrates why streams leak resources like a file handle.

8

If neither lazy nor strict, then what?

Non-Strict languages

© modularity and reuse

�� incompatible with effects

�� any space cost model at all?

Strict languages (CBV)

© good time and space cost model

© compatible with effects

�� difficult modularity and reuse:
coupling data producers and consumers

Let’s recap. Non-strict languages promote modularity and
compositionality by decoupling producers and consumers. They are
incompatible with effects. One may wonder if non-strict languages
have any space cost model at all, in practical programs.

Strict languages, in contrast, have the good space cost model, are

compatible with effects, but couple consumers and producers of data

and hence break modularity and inhibit reuse. So, we should try to

repair CBV by finding a way to uncouple the producers and the

consumers. And that’s exactly what generators do.

9

Typed Simple Generators

type GenT e m
instance MonadTrans (GenT e)

type Producer m e = GenT e m ()
type Consumer m e = e → m ()
type Transducer m1 m2 e1 e2 = Producer m1 e1 → Producer m2 e2

yield :: Monad m ⇒ e → Producer m e
runGenT :: Monad m ⇒ Producer m e → Consumer m e → m ()
foldG :: Monad m ⇒

(s → e → m s) → s → Producer (StateT s m) e
→ m s

The interface is simple: one abstract GenT e m and three functions.
GenT e is a monad transformer for generators that yield the value e in
some monad m. The three type aliases meant to clarify the meaning.

See the paper for discussion of and pointers to the variety of

generators and how simple generators fit in.

10

Generating

fileG :: (GBracket m, MonadIO m) ⇒ FilePath →Producer m Char
fileG fname =

gbracket (liftIO $ openFile fname ReadMode) (liftIO ◦ hClose) loop
where
loop h = do
b ← liftIO $ hIsEOF h
if b then return () else liftIO (hGetChar h) �= yield � loop h

I No file handle leaks

I Mere producer: no coupled consumers

The code looks like the strict IO code we saw earlier. The handle is

closed as soon as the result (or an exception) are obtained. But we

don’t process any read data here: we only yield them. This is a mere

producer, written with no consumers in sight. This is the first

illustration how generators uncouple the production and consumption

of data.

11

Consuming

orG :: Monad m ⇒ Producer (ErrT Bool m) Bool → m Bool
orG gen = either id (const False) ‘ liftM ‘ runErrT (runGenT gen orC)
where
orC :: MonadError Bool m ⇒ Consumer m Bool
orC True = throwError True
orC False = return ()

12

Transforming

mapG :: Monad m ⇒ (e1 → e2) → Transducer (GenT e2 m) m e1 e2
mapG f gen = runGenT gen (yield ◦ f)

type TrState m = StateT String (GenT String m)
linesG :: Monad m ⇒ Transducer (TrState m) m Char String
linesG gen = foldG tr [] gen �= at end
where
tr s ’\n’ = yield (reverse s) � return []
tr s c = return (c: s)
at end [] = return ()
at end s = yield (reverse s)

The slide shows a stateless transformer and a state transformer,

converting one generator into another. In particular, linesG converts

the generator of characters into the generator of lines, by

accumulating characters until it sees a newline, at which point the

accumulated string is yielded.

13

Composing

anyG f = orG ◦ mapG f

t2 gen :: IO Bool
t2 gen = anyG (>10) ◦ mapG read ◦ linesG $ fileG test file

I Functional composition and reuse

I No file handle leaks

Finally we compose the separately written producers, consumers and

transformers. The code here looks quite like the lazy code – but we

do read from a file and close the file handle promptly.

14

Simplicity of Simple Generators

simple generators: asymmetric, one-shot, implicit supensions

�� Cannot run side-by-side

© Very easy to implement:
single linear stack without copying

I dynamic binding (common terms)
I resumable exception (CL terms)
I environment, Reader monad (Haskell terms)

type GenT e m = ReaderT (e → m ()) m

Like lazy evaluation, generators are stylized co-routines. Although

some versions of generators are as powerful as general, first-class

suspensions (delimited control), our simple generators are quite

restricted. They are asymmetric, one-shot, implicit supensions.Our

simple generators are indeed implemented via the Reader monad.

Here is what GenT really looks like.

15

Pretty-printing problem

Group (Text ”A” :+ : Line : + :
Group (Text ”B” :+ : Line : + : Text ”C”))

results in . . .

w = 5 w = 3 or 4 w = 1 or 2

A B C
A
B C

A
B
C

Requirements

I time linear in document size n

I independent of the line width w

I bounded latency

I constant space (when read from a file)

Latency is the amount of time from the moment a piece of data such

as ”A” is seen by the formatter till the moment it is placed in the

output document.

16

Possible algorithms

I Compute the size of a group; if fits, format Line as spaces
t = O(2n), ` unbounded

I Backtracking
t = O(2n), s = O(n), ` unbounded

I Pre-compute group size
t = O(n), s = O(n), ` unbounded

One may imagine several algorithms. The simplest one computes the

size of a group; if fits, formats Line as spaces. Alas, it takes, in the

worst case, the exponential time with respect to the document size n

and has unbounded latency. Backtracking, common to many practical

libraries, is even worse, since we need to store the non-committed

output. Pre-computing group sizes is better, but it takes space of the

order of document size n. Again, the latency is unbounded.

17

Modular pretty-printing algorithm

Generating t = Θ(n) s = Θ(log n) ` = 1

Annotating t = Θ(n) s = Θ(1) ` = 1

Estimating t = Θ(n) s = Θ(n) ` = Θ(n)

Formatting t = Θ(n) s = Θ(1) ` = 1

Total t = Θ(n) s = Θ(n) ` = Θ(n)

data Stream = TE String | LE | GBeg | GEnd

This is (the first phase) of our algorithm, developed incrementally.

The overall algorithm: functional composition of all the stages. The

result is a stream of strings. We add the latencies ` and take the

maximum of time t and memory s. The overall result is

unsatisfactory: latency and memory linear in the document size.

17

Modular pretty-printing algorithm

Generating t = Θ(n) s = Θ(log n) ` = 1

Annotating t = Θ(n) s = Θ(1) ` = 1

Pruning t = Θ(n) s = Θ(w) ` = Θ(w)

Formatting t = Θ(n) s = Θ(1) ` = 1

Total t = Θ(n) s = Θ(w) ` = Θ(w)

data Stream = TE String | LE | GBeg | GEnd

But we make a small change, replacing the group size estimation with

pruning: we only need to know the group size to the extent it is less

than w. With this change, we obtain the algorithm with the desired

complexity. Please see the full paper for the complete details.

18

Benchmark: time vs document size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
P

U
 ti

m
e

(s
)

Document size, Mbytes

It’s time for benchmarks. We’ve just seen the analysis, which was
performed on the source code, in Haskell. Let us see how those
predictions bear out in practice. The full description of the
benchmark is in the paper, and the code is on the web. GHC 7.4.2.

Here is the first benchmark, the running time (reported by the GHC

RTS statistics) in seconds vs. the document size in MBytes. The page

width is constant, 50. Recall the analysis predicted the linear

relationship. I am embarrassed to say that the observation is really a

straight line through the origin. You can run the benchmark yourself

and see for yourselves.

19

Benchmark: time vs page width

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 10 15 20 25 30 35 40 45 50 55

C
P

U
 ti

m
e

(s
)

Page width

Constant document size 405Kb

We have also predicted that the running time of formatting does not

depend on the page width. Here is what we see in practice: the

running time of the benchmark in seconds vs the page width, for a

constant document size 405Kb.

20

Benchmark: memory vs page width

 65

 66

 67

 68

 69

 70

 10 15 20 25 30 35 40 45 50 55

U
se

d
m

em
or

y,
 K

by
te

s

Page width

Constant document size 405Kb

Space benchmarks are more interesting. Space is much more difficult

to reason about in Haskell. We see the average resident memory in

KBytes, as reported by the GC statistics, vs page width. Recall our

analysis predicted Θ(w).

21

Benchmark: memory vs document size

 65

 66

 67

 68

 69

 70

 0 0.5 1 1.5 2 2.5 3 3.5 4

U
se

d
m

em
or

y,
 K

by
te

s

Document size, Mbytes

Finally, the most interesting benchmark: memory needed for
formatting vs the document size. Our code analysis said the
formatting should run in constant memory for the constant page
width, 50.

I must stress that the document width (the X axis) is in megabytes,

and the memory used is in kilobytes, and the spread over the Y axis is

only 5K.

22

Gotcha

data Counts = Counts Int Int deriving Show

instance Monoid Counts where
mempty = Counts 0 0
mappend (Counts c1 l1) (Counts c2 l2) = Counts (c1+ c2) (l1+ l2)

Initially I didn’t have strict fields below, and the memory usage was
linear! I looked at the code and found a leak, outside of the
formatting code. Instead of writing the formatted data into a file, the
becnhmark, to avoid the complexities of IO, counted the total number
of characters and the total number of newlines. The problem was in
this counting code, shown on the slide.

Anyone sees a memory leak here?

22

Gotcha

data Counts = Counts ! Int ! Int deriving Show

instance Monoid Counts where
mempty = Counts 0 0
mappend (Counts c1 l1) (Counts c2 l2) = Counts (c1+ c2) (l1+ l2)

It is in the addition. Within the main formatting, the monadic style

makes the dependencies plain and GHC can strictify things

appropriately. With generators, we have build the walled guarded,

from which laziness is exorcised. But once we venture outside, laziness

is lurking to get you.

23

Conclusions

Simple generators to complement or supplant lazy evaluation in
stream-processing programs

A new and unexpected solution to the pretty-printing problem:

I no coroutines

I modular development, modular analysis

I reuse and compositionality in the presence of effects

I reasoning about space complexity

Let us recount the lessons.
We have described simple generators to complement or supplant lazy
evaluation in stream-processing programs. Like lazy evaluation,
simple generators promote modularity, stepwise development and
incremental testing by decoupling stream producers, consumers and
transformers.
We implenmented the generators in OCaml and Haskell.
Our implementation is a new and unexpected solution: efficient
pretty-printing was believed to require full delimited continuations or
coroutines, which simple generators do not provide. Simplicity can be
a virtue.

	Composing Pretty-printing
	Benchmarks

