
A Substructural Type System
for Delimited Continuations?

Oleg Kiselyov1 and Chung-chieh Shan2

1 FNMOC oleg@pobox.com
2 Rutgers University ccshan@rutgers.edu

Abstract. We propose type systems that abstractly interpret small-step
rather than big-step operational semantics. We treat an expression or
evaluation context as a structure in a linear logic with hypothetical rea-
soning. Evaluation order is not only regulated by familiar focusing rules
in the operational semantics, but also expressed by structural rules in
the type system, so the types track control flow more closely. Binding
and evaluation contexts are related, but the latter are linear.

We use these ideas to build a type system for delimited continuations.
It lets control operators change the answer type or act beyond the nearest
dynamically-enclosing delimiter, yet needs no extra fields in judgments
and arrow types to record answer types. The typing derivation of a direct-
style program desugars it into continuation-passing style.

1 Introduction

Cousot and Cousot [14] originally presented abstract interpretation by starting
with a small-step operational semantics. Nevertheless, the typical type system
abstractly interprets [13] a denotational or big-step operational semantics, in
that each typing rule is the abstract interpretation of a denotational equation or
a big-step evaluation judgment. Besides simplicity, one reason to start with such
a semantics coarser than a transition system is to make the type system syntax-
directed : the type of each expression, like its denotation or its big-step evaluation
result, is determined by structural induction over the expression. However, when
the language involves effects (especially control effects), it can be easier to specify
and reason with a small-step semantics (especially evaluation contexts) [68].

A canonical effect that makes semantics and types harder to determine in-
ductively is delimited control [25, 26]. With this effect, an expression may access
its delimited continuation [17–19] or delimited evaluation context as a first-class
value. This ability is useful in backtracking search [12, 18, 44, 59], direct-style
representations of monads [30–32], the continuation-passing-style (CPS) trans-
formation [17–19], partial evaluation [6, 7, 10, 16, 23, 33, 37, 47, 64], Web inter-
actions [35, 53], mobile code [50, 56, 60], and linguistics [9, 58].

? Thanks to Olivier Danvy, Andrzej Filinski, Michael Stone, Philip Wadler, and the
anonymous referees. The appendices to this paper are online at http://okmij.org/
ftp/papers/delim-control-logic.pdf

This paper presents a new type system for delimited control as an example
of typing by small-step abstract interpretation. Sect. 2 introduces delimited con-
trol, explains why answer types are crucial, and points out shortcomings in how
the existing type systems track answer types. We then address the shortcom-
ings in the rest of the paper. As a stepping stone, Sect. 3 introduces small-step
typing using the familiar simply-typed λ-calculus. Sect. 4 then presents the λξ0-
calculus, a language with delimited control and small-step typing, and a type-
checking algorithm for it. Our Twelf code online at http://pobox.com/~oleg/
ftp/packages/small-step-typechecking.tar.gz implements type checking
and contains numerous tests and sample derivations.

2 Answer types

The intuition behind delimited control may be conveyed by the two programs
below. They are written in the language with delimited control formally defined
in Fig. 3, enriched with string “literals” and concatenation a. The first program
shows that a control delimiter alone does not affect the evaluation result.

$ “Goldilocks said: ” a (# $ “This porridge is ” a “too hot” a “. ”) (1)

This program contains two control delimiters, notated # $. . . where the subex-
pression . . . extends as far to the right as possible. (We pronounce # “reset” and
$ “plug”.) The delimiter to the left surrounds the whole program, whereas the de-
limiter to the right surrounds the subexpression that computes what Goldilocks
said. The program computes the string “Goldilocks said: This porridge is too hot. ”.
The delimiters affect the result only in the presence of a control operator that
captures a delimited continuation, as in the following program.

$ “Goldilocks said: ” a
(
$ “This porridge is ” a(

ξ0k.(k $ “too hot”) a (k $ “too cold”) a (k $ “just right”)
)

a “. ”
)

(2)

The control operator ξ0k (pronounced “shift-zero k”) removes, and binds k to,
the current continuation up to the nearest dynamically-enclosing delimiter. Once
this continuation is captured, an expression such as “too hot” can be plugged into
it, notated k $ “too hot” in the scope of k. In (2), k prepends “This porridge is ”
and appends “. ” to any string plugged in, so the program computes “Goldilocks
said: This porridge is too hot. This porridge is too cold. This porridge is just right. ”.
The prefix “Goldilocks said: ” is not tripled because it is not captured in k.

These examples illustrate the distinction between delimited and undelimited
control: a delimited continuation represents only a prefix of the default future of
the computation. This prefix maps a subexpression’s value (such as “too hot”)
to an intermediate result at the delimiter (such as “This porridge is too hot. ”).
A type system for delimited control must thus track these intermediate results’
types as part of the effects of expressions. These types are called answer types.

The only answer type in (1) and (2) is that of strings, but real programs need
different answer types at multiple delimiters. On one hand, it is useful for an

expression to access its delimited continuation beyond the nearest dynamically-
enclosing delimiter: to combine multiple monadic effects [18, 31, 32], to normalize
λ-terms with sums [7], and to simulate exceptions and mutable references [39]
and dynamic binding [45]. These uses motivate type systems [38, 39, 51] that
maintain a stack or heap of answer types. On the other hand, it is also useful
for an expression to change the answer type, that is, to capture one delimited
continuation then install another with a different answer type: to create functions
[18], to find list prefixes [10], to represent parameterized monads [5], and to
analyze questions and polarity in natural language [58]. These uses motivate a
type system [17] that is sensitive to evaluation order.

Unfortunately, no existing type system for delimited control subsumes all
others, so no clear choice emerges for practical use. Moreover, the existing type
systems attach answer types to judgments and arrows as effect annotations [32,
34, 48, 61–63, 65]. These annotations obscure any logical interpretation of the
types via the Curry-Howard correspondence [4, 36, 42].

For example, Danvy and Filinski [17] uses typing judgments of the form
ρ, α ` E : τ, β, where ρ is a typing environment, α and β are answer types, E is
a term, and τ is its type. If E changes the answer type, then the answer types α
and β may differ. If α, τ, β are atomic, then this judgment indicates that the CPS
transformation of E has the type (τ → α)→ β in the simply-typed λ-calculus.
The typing rule for λ-expressions reads

[x 7→ σ]ρ, α ` E : τ, β
ρ, δ ` λx.E : (σ/α→ τ/β), δ.

(3)

If σ, α, τ, β are atomic, then the type σ/α→ τ/β above indicates that the CPS
transformation of λx.E has the simple type σ→ (τ → α)→ β.

The extra fields for answer types in these judgments and arrow types still
leave no room for delimiters beyond the nearest dynamically-enclosing one. Also,
the comma and slash are not logical connectives in their own right, so the logical
interpretation of the extra fields is unclear, unlike with undelimited control [36] or
the simply-typed λ-calculus, which do not have varying answer types. Kameyama
[42] logically interprets a static variant of Danvy and Filinski’s system that does
not allow changing the answer type. Ariola et al. [4] embed Danvy and Filinski’s
type system in subtractive logic, but the embedding is not full: the target includes
undelimited control but the source does not.

In sum, we want a type system for delimited control that accommodates an
arbitrary number of changing answer types. We achieve this goal by assigning
types not just to expressions but also to evaluation contexts, as guided by CPS.
For example, the delimited continuation k in (2) yields a string answer when a
string is plugged into it; we write this type as string↑string. The ξ0-term in (2) is
an expression that yields a string answer when it is plugged into such a delimited
continuation; we write this type as (string ↑ string) ↓ string. The return types to
the right of the function-like connectives ↑ and ↓ are answer types.

An evaluation context is not usually part of an expression. Thus, to assign
types to evaluation contexts, we need to revise our notion of a syntax-directed
type system. We do so first for the λ-calculus, then return to delimited control.

Statements M ::= C $ E

Terms E,F ::= V
˛̨
FE

Values V ::= x
˛̨
λx.E

Coterms C ::= #
˛̨
E,C

˛̨
C;V

Types T,U ::= U → T
˛̨

string
˛̨

int
˛̨
· · ·

Cotypes S ::= U ↑ T
Statement contexts M [] ::= C[] $ E

˛̨
C $ E[]

Term contexts E[] ::= []
˛̨
E[]E

˛̨
EE[]

Coterm contexts C[] ::= E[], C
˛̨
E,C[]

˛̨
C[];V

Statement equality

C $ FE = E,C $ F C $ V E = C;V $ E

Transitions

C $ (λx.E)V ; C $ E{x 7→ V }

Typing

[x : U]
···

$ E : T
λ

λx.E : U → T

F : U

[x : U]
···

M [x] : T
M [U]

M [F] : T

[x : U]
···

V x : T
→I

V : U → T

[x : U]
···

C $ x : T
↑I

C : U ↑ T

V : U
#

$ V : U

F : U → T E : U
→E

FE : T

C : U ↑ T E : U
↑E

C $ E : T

Fig. 1. Warm-up: the simply typed λ-calculus with small-step typing. For uniformity
with Fig. 3 below, the notation is somewhat unconventional: we use the metavariable
E for terms and also E[] for a term with a term-hole. The only variable binder is
λx. Following the Barendregt variable convention, the variable x in the M [U], →I,
and ↑I rules is to be chosen fresh, not to occur free in the conclusion. The assumption
x : U discharged in these rules always occurs exactly once, because the hole [] appears
linearly in a context and no rule duplicates subterms.

3 Warm-up: small-step typing

Fig. 1 shows a type system for the pure λ-calculus that includes small-step as well
as big-step abstract interpretation. The purpose of this system is to prepare for
the main development in Sect. 4. Many aspects of this system seem contrived and
redundant when taken alone, but they are necessary for delimited control. The
accompanying Twelf code in lfix-calc.elf implements small-step abstract
interpretation for this language and contains numerous sample derivations.

Besides terms E, this language defines two other syntactic categories: co-
terms C and statements M . Whereas a term can contain subterms, a statement
is a complete program like a top-level term (a common notion in small-step se-
mantics). A statement is formed by, and decomposes into, plugging a term into
a coterm. This distinction between terms and statements is refined in Sect. 4.

A statement context M [] (respectively term context E[], coterm context
C[]) is a statement (respectively term, coterm) with a hole that can be filled by
any term, such that the hole is not under a binder λx. We write M [E] for the
context M [] filled with the term E. Judgments of the form M : T , E : T , and
C : S assign types T and cotypes S to statements M , terms E, and coterms C.

A coterm is an evaluation context, that is, a defunctionalized continuation of
a substitution-based evaluation function [1–3, 21]: the coterm # is the identity
continuation; the coterm E,C means to apply to the argument term E then
continue with the coterm C; the coterm C;V means to apply the function value V
then continue with the coterm C. Formally, a simple bijection maps coterms C
to term contexts E[] in which only values appear to the left of the hole.

Definition 1. Associate with each coterm C a term context C†[] by induction:

#†[] = [], (E,C)†[] = C†
[
[]E

]
, (C;V)†[] = C†

[
V []

]
. (4)

Every coterm “comes with its own control delimiter”, in that it always ends in the
identity continuation #. Hence a coterm represents a complete (delimited) con-
tinuation, not a list of stack frames. It makes no sense to “concatenate” coterms,
for example to try to combine the coterms E1,# and E2,# into E1, (E2,#).

A statement, of the form C $E (pronounced “plug”), represents the term E
plugged into the coterm C. It is a state of the CK machine [25, 27, 28]. A
statement can also be understood as a zipper [41] over a term.

Among the binary constructors, $ has the lowest precedence, and juxtaposi-
tion (for function application) the highest. All binary constructors associate to
the right, except juxtaposition associates to the left.

3.1 A substructural logic for expressions and evaluation contexts

Two statement equality rules enforce left-to-right, call-by-value evaluation, as
evaluation contexts [25] and focusing [20] do in other accounts. Formally, our
equality rules are equations in the multisorted algebra of statements, terms, and
coterms, as well as the following reversible typing rules.

C $ FE : T
========= =
E,C $ F : T

C $ V E : T
========= =
C;V $ E : T

(5)

These rules let us navigate around a term using a statement as a zipper.

Proposition 1. The statement equality rules equate the statements C1 $E1 and
C2 $ E2 iff the terms C†1 [E1] and C†2 [E2] are equal.

Because C†[] is always an evaluation context for left-to-right, call-by-value eval-
uation, Prop. 1 ties evaluation order to transitions in the dynamic semantics as
well as types in the static semantics. The # typing rule makes # $ V effectively
equivalent to V , so as to type # as the identity continuation.

The separator : in judgments is the turnstile in a substructural logic. This
logic has four sorts (namely statements, terms, values, and coterms). It allows
no exchange, associativity, weakening, or contraction except by the structural

rules in (5). It builds structures from values using six multiplicative-conjunctive
punctuation marks [54], or modes: four binary (juxtaposition and $, ;), one
nullary (#), and one unary (the implicit coercion from a value to a term). This
logic is thus a restricted multimodal type-logical grammar (TLG).

Multimodal TLG is a generalization of the Lambek calculus [46] whose proof
theory and Kripke semantics are well-studied and well-behaved: there are sound
and complete natural-deduction and sequent calculi with cut elimination [49,
52]. Our statements, terms, and coterms (to the left of the turnstile) are TLG
structures, restricted to be sort-correct. Our types and cotypes (to the right of the
turnstile) are TLG formulae, restricted to use only two implication connectives
→ and ↑ out of the four pairs available in TLG (one pair per binary mode).

Viewed as a substructural logic, this type system is mostly familiar. The→I,
→E, ↑I, and ↑E rules establish → as the right-implication of juxtaposition and
↑ as the right-implication of $. As in the Lambek calculus, x occurs linearly in
the premises of →I and ↑I; these premises could be just V U : T and C $ U : T
if, in the spirit of abstract interpretation, types were values. Of these rules, only
→I is needed for delimited control in Sect. 4, but we include introduction and
elimination rules for all binary connectives to relate them to TLG. Still, as in the
original Lambek calculus, no binary mode comes with any product connective,
such as any connective ∗ such that F : T and E : U justify FE : T ∗ U . This
distinction between modes and connectives is standard in substructural logic.

In contrast to the binary modes, the (implicit) unary mode for coercing values
into terms does correspond to an (implicit) product connective. The M [U] rule
is the standard elimination rule for this connective in natural deduction. This
rule lets us use any expression with a pure type—which in the pure λ-calculus
is any type—as a value. This rule is more general than the ↑E rule in that
it allows substituting a nonvalue F into an operand position in M [] even if
the corresponding (preceding) operator position contains a nonvalue as well. In
particular, the equality rules can treat a term F of a pure type U as a value x.

Finally, the familiar λ rule creates a function value. Unlike in the →I and ↑I
rules, the bound variable x in the λ rule may appear multiple times, or not at
all, in the body E of the abstraction λx.E. In other words, a λ-bound variable
is intuitionistic rather than substructural: it admits weakening and contraction.

The transition rule in Fig. 1 is β-reduction, restricted to when the argument V
is a value. Transitions operate on statements, not terms: to run a term E as a
complete program, we run the statement # $ E.

3.2 Normalizing small-step derivations to big-step derivations

Despite all these rules, the system is equivalent to the simply-typed λ-calculus.

Proposition 2. Write E :: T if the term E has the type T in the simply-typed
λ-calculus. Then, under any typing assumptions x1 : T1, x1 :: T1, . . . , xn : Tn,
xn :: Tn: (a) E : T iff E :: T . (b) C $ E : T iff C†[E] :: T . (c) C : U ↑ T iff
λx.C†[x] :: U → T .

Proof. [⇒] By induction on a derivation in our system.

inc : int→ int [x : int]2
→E

incx : int

[y : int]1
#

$ y : int
M [U]1

$ incx : int
=

#; inc $ x : int
↑I2

#; inc : int ↑ int

inc : int→ int 2 : int
→E

inc 2 : int
↑E

#; inc $ inc 2 : int
=

$ inc (inc 2) : int

inc : int→ int

inc : int→ int 2 : int
→E

inc 2 : int
→E

inc (inc 2) : int

[y : int]1
#

$ y : int
M [U]1

$ inc (inc 2) : int

Fig. 2. Two derivations of “# $ inc (inc 2) : int” from “inc : int→ int” and “2 : int”

[⇐] (a) By induction on a simple-type derivation, using our →E rule and
[x : U]2
···

E : T
[y : T]1

#
$ y : T

M [U]
$ E : T

λ2.
λx.E : U → T

(b) Feed the conclusion of

··· Use (a)
C†[E] : T

[y : T]1
#

$ y : T
M [U]1

$ C†[E] : T
to Prop. 1. (c) Derive C $ x : U by (b), then use ↑I. ut

Because the simply-typed λ-calculus enjoys preservation, progress, and decidable
type reconstruction, our system does as well.

Fig. 2 shows two typing derivations of the same statement # $ inc (inc 2),
where the value inc is the integer increment function. At the bottom is the result
of converting the familiar derivation in the simply-typed λ-calculus to our system
using part (b) of Prop. 2. We call this derivation big-step because it follows the
applicative structure of the expression: it determines the type of inc (inc 2) from
the type of its parts inc and inc 2. At the top is a small-step derivation, which
separates the expression inc 2 from its evaluation context #; inc. This derivation
represents the term inc 2 by the variable x in #; inc $ x. Thus x in the typing
context is an abstract value, in the sense of abstract interpretation [13, 14].

Because all expressions in the λ-calculus are pure, they can be derived by both
big-step and small-step. (In Sect. 4, impure expressions—which incur delimited-
control effects—require small-step derivations.) These derivations are related by
a normalization process (not cut elimination, because our type system is based
on natural deduction rather than sequents) detailed in Appendix A. There we
normalize the small-step derivation in Fig. 2 to the big-step derivation below.

4 Delimited control

Fig. 3 defines the static and dynamic semantics of the λξ0-calculus, a new lan-
guage with delimited control. The most prominent difference between this system

Terms E,F ::= V
˛̨
FE

˛̨
C $ E

˛̨
ξ0k.E

Values V ::= x
˛̨
λx.E

Coterms C ::= k
˛̨

#
˛̨
E,C

˛̨
C;V

Types T ::= U
˛̨
S ↓ T

Pure types U ::= U → T
˛̨

string
˛̨

int
˛̨
· · ·

Cotypes S ::= U ↑ T
Term contexts E[] ::= []

˛̨
E[]E

˛̨
EE[]

˛̨
C[] $ E

˛̨
C $ E[]

Coterm contexts C[] ::= E[], C
˛̨
E,C[]

˛̨
C[];V

Term equality

C $ FE = E,C $ F C $ V E = C;V $ E # $ V = V

Transitions

C1 $ · · · $ Cn $ (λx.E)V ; C1 $ · · · $ Cn $ E{x 7→ V }
C1 $ · · · $ Cn $ C $ (ξ0k.E) ; C1 $ · · · $ Cn $ E{k 7→ C}

Typing

[x : U]
···

E : T
λ

λx.E : U → T

[k : S]
···

E : T
ξ0

ξ0k.E : S ↓ T
F : U

[x : U]
···

E[x] : T
E[U]

E[F] : T

[x : U]
···

V x : T
→I

V : U → T

[k : S]
···

k $ E : T
↓I

E : S ↓ T

[x : U]
···

C $ x : T
↑I

C : U ↑ T
F : U → T E : U

→E
FE : T

C : S E : S ↓ T
↓E

C $ E : T

C : U ↑ T E : U
↑E

C $ E : T

Fig. 3. The λξ0-calculus: syntax and semantics

and Fig. 1 is new non-value terms of the form ξ0k.E. These terms have impure
types of the form (U ↑ T1) ↓ T2. As we discussed for the example (2) above, such
a type means that, when the term is plugged into a coterm of cotype U ↑ T1 (in
other words, a coterm which yields an answer of type T1 when a value of type U
is plugged into it), the combination yields an answer of type T2. All other types
are pure. We distinguish pure types by using the metavariable U rather than T .

A term of the form ξ0k.E in the λξ0-calculus may capture not just its imme-
diately surrounding delimited continuation in the covariable k but also delimited
continuations beyond the nearest dynamically-enclosing delimiter, if the body E
invokes another control operator ξ0k.E′. Hence our primitive control operator
is dynamic [17–19]: the answer types T1 and T2 in the impure type (U ↑ T1) ↓ T2

may themselves be impure. We also allow changing the answer type, so T1 and
T2 may differ. Thus our type system is the first to achieve both desiderata in
Sect. 2: to reach beyond the nearest delimiter and to change the answer type.

More precisely, our ξ0 is not Danvy and Filinski’s shift but the variation in
their Appendix C [17], which we pronounce “shift-zero”. In the untyped setting,
ξ0, shift, control [25, 26], and their variants [38–40] are all macro-expressible in
terms of each other [43, 57]. In the typed setting, ξ0 easily emulates shift [17]
(shift k.E translates to ξ0k.# $ E), but it remains to relate ξ0 to other type
systems of control. In particular, unlike Gunter et al.’s system [38, 39], we assure
that a program of a pure type never gets stuck due to a missing delimiter. We
are also able to type more terms, for example ξ0k. λx. k $ x, which changes the
answer type.

Existing languages with delimited control generally introduce a primitive
expression form, called “reset” or “prompt”, to insert a control delimiter. In
contrast, our language includes terms of the form C $ E, which means to plug
the term E into the coterm C. We call these terms statements. Unlike in Fig. 1,
a statement is a term. Because every coterm “comes with its own delimiter” in
that it always ends in either the identity continuation # or a covariable k, our
term # $ E serves the purpose of “reset E” or “prompt E” in previous work,
even though $ alone is not a delimiter. Now that # $E is as much a term as E,
we replace the typing rule # in Fig. 1 by a new term equality rule # $ V = V .

To evaluate programs that use delimited control, Fig. 3 defines two transition
rules. The first rule substitutes an argument value V into the body E in λx.E,
whereas the second rule substitutes an argument coterm C into the body E in
ξ0k.E. Both rules operate inside a term context C1 $ · · · $Cn $ [], where n ≥ 0.
This term context is the metacontinuation [67] that appears in CPS semantics
[17–19] and abstract machines [11, 24] for delimited control.

As in Sect. 3.1, the term equality rules in Fig. 3 are equations in the multi-
sorted algebra of terms and coterms as well as the reversible typing rules

E′[C $ FE] : T
============ =
E′[E,C $ F] : T

E′[C $ V E] : T
============ =
E′[C;V $ E] : T

E′[V] : T
========== =
E′[# $ V] : T

(6)

and the corresponding rules replacing E′[] and T by C ′[] and S.
As a substructural logic, the λξ0-calculus has the same binary modes as Fig. 1,

but allows not just the right-implication ↑ of the $ mode but also its dual, the left-
implication ↓. As before, this logic has neither negation nor multiple conclusions,
so we interpret delimited control as multimodal intuitionistic logic via the Curry-
Howard correspondence. The implication connectives each come with their own
introduction and elimination rules, but ↓E and ↑E both conclude with C $E : T .
This apparent ambiguity is standard in type systems descended from the Lambek
calculus [46]. Indeed, if the first of the two transition rules in Fig. 3 did not
restrict β-reductions to take place only when the argument is a value, then the
term # $ (λx. “call by name”)(ξ0k. “call by value”) would transition not only to
“call by value” but also to # $ “call by name”, which is equal to “call by name”.
Just as the dynamic semantics restricts argument terms to values, the static
semantics restricts argument types to pure types.

With both ↑ and ↓ present, each term has an infinite number of types. For
example, Fig. 4 shows that a string also has the types (string ↑ int) ↓ int and

[k : string ↑ int]1 x : string
↑E

k $ x : int
↓I1

x : (string ↑ int) ↓ int

[k′ : int ↑ T]2
[k : string ↑ int]1 x : string

↑E
k $ x : int

↑E
k′ $ k $ x : T

↓I2
k $ x : (int ↑ T) ↓ T

↓I1
x : (string ↑ int) ↓ (int ↑ T) ↓ T

Fig. 4. Two type derivations for a string x

(string↑int)↓(int↑T)↓T for any T . In fact, the entailment relation of the logic is a
partial order of subtyping, which we notate as T1 ≤ T2. This relation is generated
by U ≤ (U ↑ T) ↓ T along with congruences, covariance, and contravariance.

We show two example terms before stating formal properties. Appendix B
gives the derivations. The term (ξ0k. 1)(ξ0k. “x”) has the type S ↓ int for any
cotype S. The derivation is CPS-like, even though the term is in direct style
like all our programs. Since the type is impure, the term may (and does) get
stuck if run alone, but can appear in safe programs such as λx.(ξ0k. 1)(ξ0k. “x”).
As with (only) Danvy and Filinski’s type system for shift [17], the answer type
varies between int (for the subterm ξ0k. 1) and string (for ξ0k. “x”), but the
overall answer type is int rather than string due to (left-to-right) evaluation
order.

The impure term inc(ξ0k. ξ0k′. “x”) reaches beyond the nearest enclosing de-
limiter, which shift does not allow. It has the type (int ↑ T) ↓ S ↓ string, where
int is the type of the result of inc.

Proposition 3 (Preservation). If E[E1] : T and E1 ; E2 then E[E2] : T .

We sketch the proof by stating three lemmas. The first lemma is termed direct
compositionality on demand by Barker [8]: a subterm of a typed term is typed.

Lemma 1. If E[E1] : T , then there exists some type T1 such that E1 : T1 and
whenever E′1 : T1 we have E[E′1] : T .

The two remaining lemmas are less trivial than usual because the typing rules
→I, ↓I, and ↑I are not syntax-directed.

Lemma 2. If (λx.E)V : T then E{x 7→ V } : T .

Lemma 3. If C $ (ξ0k.E) : T then E{k 7→ C} : T .

Proposition 4 (Progress). If C $E : U , then either C $E is a value (that is,
C = # and E is a value) or C $ E ; E′ for some E′.

The small-step type-checking algorithm in Sect. 4.1 offers an appealing proof of
this proposition: on one hand, it is correct with respect to the static semantics
(Corollary 1 below); on the other hand, it is sound as an abstract interpretation
of the dynamic semantics.

Proposition 5 (Determinism). If E ; E′1 and E ; E′2, then E′1 = E′2.

Proposition 6 (Termination). If E : T , then there is no infinite transition
sequence E ; E1 ; E2 ; · · · .

4.1 Type-checking algorithm

Fig. 5 shows a type-checking algorithm, expressed as moded inference rules, for a
variant of our language in which binders are annotated with types and cotypes.
The accompanying Twelf code in lxi0-calc.elf implements this algorithm. It
produces a CPS-like derivation from a direct-style program. For the term (ξ0k. 1)
(ξ0k. “x”) above, our algorithm returns its type and even the cotypes of k’s.

Our type checker performs abstract interpretation by traversing the term,
just as the focusing process of an evaluator would traverse the term in search of
a focus, and replacing nonvariable subterms by typed variables one by one.

Definition 2. A focus is a term of the form V1V2, C $ E, or ξ0k :S.E.

As explained in Sect. 3.2, each typed variable is an abstract value. In addition,
our covariables are cotyped and can be thought of as abstract covalues.

Whereas the focusing process of an evaluator need only traverse a known
term plugged into a known coterm, the type checker often needs to traverse a
term without knowing what coterm it may be plugged into. For example, to
check the function λx:int. inc(ξ0k :int↑string. 3), the checker needs to visit the
subterm ξ0k :int↑string. 3 without knowing the context where the function will
be applied and hence its body evaluated. In other words, the checker needs to use

an equality rule
〈〉; inc $ (ξ0k :int↑string. 3) : T
〈〉 $ inc(ξ0k :int↑string. 3) : T

where 〈〉 represents an unknown

coterm. To perform such traversals, we introduce the notion of an incomplete
coterm C〈〉, which is like a coterm but ends in 〈〉 rather than in # or k. Some
of the checker’s judgments use the notation C〈〉 ¢ E. Intuitively, C〈〉 ¢ E means
the term obtained by plugging E into the term context C〈〉†[] defined below.

Definition 3. Associate with each incomplete coterm C〈〉 a term context C〈〉†[]:

〈〉†[] = [], (E,C〈〉)†[] = C〈〉†
[
[]E

]
, (C〈〉;V)†[] = C〈〉†

[
V []

]
. (7)

The pair C〈〉 and E is a zipper over the term C〈〉†[E], “unzipped” to display
the subterm E. We also use C ¢ E to mean the term C $ E, where C is a
(complete) coterm. Whereas C $ E is always a statement, the term C〈〉†[E] is
only a statement when C〈〉 is 〈〉 and E is a statement.

Unlike a ξ0-bound covariable like k, this unknown coterm is not annotated
with its cotype. Rather, the checker infers its (greatest) cotype, using a judgment
form S ⇐ C〈〉¢E : T whose modes are rather special: the only output parameter
is S. Any unknown coterm into which the term C〈〉†[E] is plugged for evaluation
needs to have the cotype S in order to yield an answer of type T .

Our approach to “visit subterms in evaluation position before the context in
which they occur” may be an instance of tridirectional type-checking [22]. The
4th–6th rules for C〈?〉 ¢ E ⇒ T̂ and the 2nd–4th rules for Ŝ ⇐ C〈〉 ¢ E : T
are focusing rules: they traverse the applicative structure of E to find the next
subterm to abstractly interpret according to the evaluation order.

Proposition 7 (Termination). Under any typing assumptions x1 : U1, . . . ,
k1 : S1, . . . , any query using the inference rules in Fig. 5 terminates.

Terms (annotated) E,F ::= V
˛̨
FE

˛̨
C $ E

˛̨
ξ0k :S.E

Values (annotated) V ::= x
˛̨
λx:U.E

Incomplete coterms C〈〉 ::= 〈〉
˛̨
E,C〈〉

˛̨
C〈〉;V

Possibly incomplete coterms C〈?〉 ::= C
˛̨
C〈〉

Judgments (hats indicate output as opposed to input parameters)

T1 ≤ T2 E ⇒ T̂ C〈?〉 ¢ E ⇒ T̂ Ŝ ⇐ C〈〉 ¢ E : T

V : Û k : Ŝ C〈?〉 ¢ U ⇒ T̂ Ŝ ⇐ C〈〉 ¢ U : T

Initial query for type inference 〈〉 ¢ E ⇒ T

Inference rules for T1 ≤ T2

U primitive

U ≤ U
U1 ≤ U2 T1 ≤ T2

U1 ≤ (U2 ↑ T1) ↓ T2

U2 ≤ U1 T1 ≤ T2

U1→ T1 ≤ U2→ T2

U1 ≤ U2 T2 ≤ T1 T ′
1 ≤ T ′

2

(U1 ↑ T1) ↓ T ′
1 ≤ (U2 ↑ T2) ↓ T ′

2

Inference rules for E ⇒ T̂

V1 : U1 → T V2 : U2 U2 ≤ U1

V1V2 ⇒ T

C ¢ E ⇒ T

C $ E ⇒ T

[k : S]
···

〈〉 ¢ E ⇒ T

ξ0k :S.E ⇒ S ↓ T

Inference rules for C〈?〉 ¢ E ⇒ T̂

V : U

〈〉 ¢ V ⇒ U

k : U1 ↑ T V : U2 U2 ≤ U1

k ¢ V ⇒ T

V : U

¢ V ⇒ U

C〈?〉;V ¢ E ⇒ T

E,C〈?〉 ¢ V ⇒ T

C〈?〉 ¢ V1V2 ⇒ T

C〈?〉;V1 ¢ V2 ⇒ T

F or E is not a value E,C〈?〉 ¢ F ⇒ T

C〈?〉 ¢ FE ⇒ T

E ⇒ U C〈?〉 ¢ U ⇒ T

C〈?〉 ¢ E ⇒ T

E ⇒ (U ↑ T1) ↓ T C ¢ U ⇒ T2 T2 ≤ T1

C ¢ E ⇒ T

E ⇒ (U ↑ T1) ↓ T S ⇐ C〈〉 ¢ U : T1

C〈〉 ¢ E ⇒ S ↓ T

Inference rules for Ŝ ⇐ C〈〉 ¢ E : T

V : U

U ↑ T ⇐ 〈〉 ¢ V : T

S ⇐ C〈〉;V ¢ E : T

S ⇐ E,C〈〉 ¢ V : T

S ⇐ C〈〉 ¢ V1V2 : T

S ⇐ C〈〉;V1 ¢ V2 : T

F or E is not a value S ⇐ E,C〈?〉 ¢ F : T

S ⇐ C〈〉 ¢ FE : T

E ⇒ U S ⇐ C〈〉 ¢ U : T

S ⇐ C〈〉 ¢ E : T

E ⇒ (U ↑ T1) ↓ T2 T2 ≤ T S ⇐ C〈〉 ¢ U : T1

S ⇐ C〈〉 ¢ E : T

Other inference rules

[x : U]
···

〈〉 ¢ E ⇒ T

λx:U.E : U → T

[x : U]
···

C〈?〉 ¢ x⇒ T

C〈?〉 ¢ U ⇒ T

[x : U]
···

S ⇐ C〈〉 ¢ x : T

S ⇐ C〈〉 ¢ U : T

Fig. 5. Type-checking algorithm for delimited control

Proposition 8. Under any typing assumptions x1 : U1, . . . , k1 : S1, . . . :

(a) U1 ≤ U2 iff E : U1 entails E : U2.
(b) E ⇒ T iff E is a focus and T is a least type such that E : T .
(c) C ¢ E ⇒ T iff T is a least type such that C $ E : T .
(d) C〈〉 ¢ E ⇒ T iff T is a least type such that C〈〉†[E] : T .
(e) S ⇐ C〈〉 ¢ E : T iff S is a greatest cotype such that C〈〉†[E] : S ↓ T .

For T to be a least type such that E : T means that E : T and, for all T ′, if
E : T ′ then T ≤ T ′. For U ↑T1 to be a greatest cotype such that E : (U ↑T1) ↓T2

means that E : (U ↑ T1) ↓ T2 and, for all U ′ and T ′1, if E : (U ′ ↑ T ′1) ↓ T2 then
U ≤ U ′ and T ′1 ≤ T1.

Corollary 1 (Correctness). 〈〉 ¢ E ⇒ T iff T is a least type such that E : T .

Given that we annotate binders with types, this corollary shows the least type
is unique because the type-checking algorithm is deterministic.

5 Conclusion

We model syntax using a substructural logic, such that terms in the language are
structures in the substructural logic. This approach is standard in logical anal-
yses of natural language but less common for programming languages. Types
as abstract interpretations fall out, because structures in logic naturally contain
formulas, and formulas are types—or abstract values—in the language. Hypo-
thetical reasoning and structural rules in the logic model small-step transitions.
Thus our type systems embody small-step abstract interpretation.

Beyond reconstructing the simply-typed λ-calculus, the fruit of our approach
is the λξ0-calculus. It is the first type system for delimited continuations in which
control effects may change the answer type as well as act beyond the nearest dy-
namically-enclosing delimiter. The types are built up from binary connectives,
which can clearly be interpreted as implication in intuitionistic logic. This feature
is enabled by small-step typing, which lets us assign cotypes to delimited evalu-
ation contexts. We also presented and implemented a type-checking algorithm,
which again operates by small-step abstract interpretation.

Modeling syntax using a substructural logic lets us take advantage of es-
tablished results, such as proof rules and reductions. It further draws attention
to the similarity between hypothetical reasoning in the binding context and in
the evaluation context—for example, between the ξ0 and ↓I rules in Fig. 3. The
two kinds of contexts differ simply in that the binding context is intuitionistic
whereas the evaluation context is substructural: while the former is usually writ-
ten to the left of ` and admits weakening and contraction, the latter is usually
written between ` and : and only allows structural rules that model focusing.
Typing derivations thus follow evaluation order and control flow: the typing
derivation of a direct-style term is essentially its CPS transformation.

Our work exhibits a duality closely related to that for undelimited continua-
tions [15, 29, 55, 66], but investigating the delimited case remains future work.

Given our analogy between small-step type-checking and small-step evaluation,
we should relate our proof and term normalizations.

It remains to extend this work to other control operators, such as Felleisen’s
control [25, 26] and named prompts for delimiters, and to relate it to other
substructural logics, such as those with additives and exponentials. We also look
forward to mechanizing our proofs.

References

[1] Ager, Mads Sig, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. 2003. A functional
correspondence between evaluators and abstract machines. In Proc. 5th intl. conf. principles
& practice of declarative prog., 8–19.

[2] Ager, Mads Sig, Olivier Danvy, and Jan Midtgaard. 2004. A functional correspondence between
call-by-need evaluators and lazy abstract machines. Info. Proc. Lett. 90(5):223–232.

[3] ———. 2005. A functional correspondence between monadic evaluators and abstract machines
for languages with computational effects. Theor. Comp. Sci. 342(1):149–172.

[4] Ariola, Zena M., Hugo Herbelin, and Amr Sabry. 2004. A type-theoretic foundation of contin-
uations and prompts. In ICFP, 40–53.

[5] Atkey, Robert. 2006. Parameterised notions of computation. In MSFP 2006, ed. Conor McBride
and Tarmo Uustalu. Electronic Workshops in Computing, British Computer Society.

[6] Balat, Vincent, and Olivier Danvy. 2002. Memoization in type-directed partial evaluation. In
GPCE, ed. Don S. Batory, Charles Consel, and Walid Taha, 78–92. LNCS 2487.

[7] Balat, Vincent, Roberto Di Cosmo, and Marcelo Fiore. 2004. Extensional normalisation and
type-directed partial evaluation for typed lambda calculus with sums. In POPL, 64–76.

[8] Barker, Chris. 2007. Direct compositionality on demand. In Direct compositionality, ed. Chris
Barker and Pauline Jacobson, 102–131. New York: Oxford University Press.

[9] Barker, Chris, and Chung-chieh Shan. 2006. Types as graphs: Continuations in type logical
grammar. J. Logic, Lang. & Info. 15(4):331–370.

[10] Biernacka, Ma lgorzata, Dariusz Biernacki, and Olivier Danvy. 2005. An operational foundation
for delimited continuations in the CPS hierarchy. Logical Methods in Comp. Sci. 1(2:5).

[11] Biernacka, Ma lgorzata, and Olivier Danvy. 2005. A syntactic correspondence between context-
sensitive calculi and abstract machines. Theor. Comp. Sci. To appear. BRICS Report RS-05-38.

[12] Biernacki, Dariusz, and Olivier Danvy. 2004. From interpreter to logic engine by defunctional-
ization. In LOPSTR 2003, ed. Maurice Bruynooghe, 143–159. LNCS 3018.

[13] Cousot, Patrick. 1997. Types as abstract interpretations. In POPL, 316–331.
[14] Cousot, Patrick, and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In POPL, 238–252.
[15] Curien, Pierre-Louis, and Hugo Herbelin. 2000. The duality of computation. In ICFP, 233–243.
[16] Danvy, Olivier. 1996. Type-directed partial evaluation. In POPL, 242–257.
[17] Danvy, Olivier, and Andrzej Filinski. 1989. A functional abstraction of typed contexts. Tech.

Rep. 89/12, DIKU. http://www.daimi.au.dk/~danvy/Papers/fatc.ps.gz.
[18] ———. 1990. Abstracting control. In Proc. conf. Lisp & funct. prog., 151–160.
[19] ———. 1992. Representing control: A study of the CPS transformation. Math. Structures

Comp. Sci. 2(4):361–391.
[20] Danvy, Olivier, and Lasse R. Nielsen. 2001. Syntactic theories in practice. In RULE 2001:

2nd intl. workshop on rule-based prog., ed. Mark van den Brand and Rakesh Verma, 358–374.
Electron. Notes in Theor. Comp. Sci. 59(4), Elsevier.

[21] ———. 2004. Refocusing in reduction semantics. Report RS-04-26, BRICS.
[22] Dunfield, Joshua, and Frank Pfenning. 2004. Tridirectional typechecking. In POPL, 281–292.
[23] Dybjer, Peter, and Andrzej Filinski. 2002. Normalization and partial evaluation. In APPSEM

2000, ed. Gilles Barthe, Peter Dybjer, Luis Pinto, and João Saraiva, 137–192. LNCS 2395.
[24] Dybvig, R. Kent, Simon L. Peyton Jones, and Amr Sabry. 2005. A monadic framework for

delimited continuations. Tech. Rep. 615, Indiana U.
[25] Felleisen, Matthias. 1987. The calculi of λv-CS conversion: A syntactic theory of control and

state in imperative higher-order programming languages. Ph.D. thesis, Indiana U.
[26] ———. 1988. The theory and practice of first-class prompts. In POPL, 180–190.
[27] Felleisen, Matthias, and Matthew Flatt. 2006. Programming languages and lambda calculi.

http://www.cs.utah.edu/plt/publications/pllc.pdf.
[28] Felleisen, Matthias, and Daniel P. Friedman. 1987. Control operators, the SECD machine, and

the λ-calculus. In Formal description of prog. concepts III, ed. Martin Wirsing, 193–217.
Elsevier.

[29] Filinski, Andrzej. 1989. Declarative continuations: An investigation of duality in programming
language semantics. In Proc. category theory & comp. sci., ed. David H. Pitt, David E.
Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné, 224–249. LNCS 389.

[30] ———. 1994. Representing monads. In POPL, 446–457.
[31] ———. 1996. Controlling effects. Ph.D. thesis, CMU.
[32] ———. 1999. Representing layered monads. In POPL, 175–188.
[33] ———. 2001. Normalization by evaluation for the computational lambda-calculus. In TLCA,

ed. Samson Abramsky, 151–165. LNCS 2044.
[34] Gifford, David K., and John M. Lucassen. 1986. Integrating functional and imperative pro-

gramming. In Proc. conf. Lisp & funct. prog., 28–38.
[35] Graunke, Paul Thorsen. 2003. Web interactions. Ph.D. thesis, Northeastern U.
[36] Griffin, Timothy G. 1990. A formulae-as-types notion of control. In POPL, 47–58.
[37] Grobauer, Bernd, and Zhe Yang. 2001. The second Futamura projection for type-directed

partial evaluation. Higher-Order & Symbolic Comp. 14(2–3):173–219.
[38] Gunter, Carl A., Didier Rémy, and Jon G. Riecke. 1995. A generalization of exceptions and con-

trol in ML-like languages. In Funct. prog. lang. & comp. architecture: 7th conf., ed. Simon L.
Peyton Jones, 12–23.

[39] ———. 1998. Return types for functional continuations. http://pauillac.inria.fr/~remy/work/
cupto/.

[40] Hieb, Robert, and R. Kent Dybvig. 1990. Continuations and concurrency. In Proc. 2nd sym-
posium on principles & practice of parallel prog., 128–136.

[41] Huet, Gérard. 1997. The zipper. J. Funct. Prog. 7(5):549–554.
[42] Kameyama, Yukiyoshi. 2001. Towards logical understanding of delimited continuations. In

Proc. 3rd workshop on continuations, ed. Amr Sabry, 27–33. Tech. Rep. 545, Indiana U.
[43] Kiselyov, Oleg. 2005. How to remove a dynamic prompt: Static and dynamic delimited contin-

uation operators are equally expressible. Tech. Rep. 611, Indiana U.
[44] Kiselyov, Oleg, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking,

interleaving, and terminating monad transformers (functional pearl). In ICFP, 192–203.
[45] Kiselyov, Oleg, Chung-chieh Shan, and Amr Sabry. 2006. Delimited dynamic binding. In ICFP,

26–37.
[46] Lambek, Joachim. 1958. The mathematics of sentence structure. Amer. Math. Monthly 65(3):

154–170.
[47] Lawall, Julia L., and Olivier Danvy. 1994. Continuation-based partial evaluation. In Proc.

conf. Lisp & funct. prog., 227–238.
[48] Lucassen, John M. 1987. Types and effects: Towards the integration of functional and imperative

programming. Ph.D. thesis, MIT.
[49] Moortgat, Michael. 1997. Categorial type logics. In Handbook of logic and language, ed. Johan

F. A. K. van Benthem and Alice G. B. ter Meulen, chap. 2. Elsevier.
[50] Murphy, Tom, VII, Karl Crary, and Robert Harper. 2005. Distributed control flow with classical

modal logic. In CSL, ed. C.-H. Luke Ong, 51–69. LNCS 3634.
[51] Murthy, Chetan R. 1992. Control operators, hierarchies, and pseudo-classical type systems:

A-translation at work. In Proc. workshop on continuations, ed. Olivier Danvy and Carolyn
Talcott, 49–71. Tech. Rep. STAN-CS-92-1426, Stanford U.

[52] Polakow, Jeff. 2001. Ordered linear logic and applications. Ph.D. thesis, CMU.
[53] Queinnec, Christian. 2004. Continuations and web servers. Higher-Order & Symbolic Comp.

17(4):277–295.
[54] Restall, Greg. 2000. An introduction to substructural logics. London: Routledge.
[55] Selinger, Peter. 2001. Control categories and duality: On the categorical semantics of the

lambda-mu calculus. Math. Structures Comp. Sci. 11:207–260.
[56] Sewell, Peter, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-

Williams, Pierre Habouzit, and Viktor Vafeiadis. 2005. Acute: High-level programming language
design for distributed computation. In ICFP, 15–26.

[57] Shan, Chung-chieh. 2004. Shift to control. In Proc. Scheme workshop, ed. Olin Shivers and
Oscar Waddell, 99–107. Tech. Rep. 600, Indiana U.

[58] ———. 2005. Linguistic side effects. Ph.D. thesis, Harvard U.
[59] Sitaram, Dorai. 1993. Handling control. In PLDI, 147–155.
[60] Sumii, Eijiro. 2000. An implementation of transparent migration on standard Scheme. In Proc.

Scheme workshop, ed. Matthias Felleisen, 61–63. Tech. Rep. 00-368, Rice U.
[61] Talpin, Jean-Pierre, and Pierre Jouvelot. 1992. Polymorphic type, region and effect inference.

J. Funct. Prog. 2(3):245–271.
[62] ———. 1994. The type and effect discipline. Info. & Comp. 111(2):245–296.
[63] Thielecke, Hayo. 2003. From control effects to typed continuation passing. In POPL, 139–149.
[64] Thiemann, Peter. 1999. Combinators for program generation. J. Funct. Prog. 9(5):483–525.
[65] Wadler, Philip L. 1998. The marriage of effects and monads. In ICFP, 63–74.
[66] ———. 2003. Call-by-value is dual to call-by-name. In ICFP.
[67] Wand, Mitchell, and Daniel P. Friedman. 1988. The mystery of the tower revealed: A non-

reflective description of the reflective tower. Lisp & Symbolic Comp. 1(1):11–37.
[68] Wright, Andrew K., and Matthias Felleisen. 1994. A syntactic approach to type soundness.

Info. & Comp. 115(1):38–94.

A Derivation normalization

Definition 4. The size of a derivation is the number of inferences (horizontal
rules) in it. In particular, the undischarged identity inference x : U has size 0.
The measure of a derivation is the number of inferences in it excluding the left
premise of any use of the M [U] rule (or of the two admissible rules in (8) below).

Lemma 4. The rules below are admissible. In terms of both size and measure,
the E[U] rule costs no inference, whereas the C[U] rule costs one inference.

F : U

[x : U]
···

E[x] : T
E[U]

E[F] : T
F : U

[x : U]
···

C[x] : S
C[U]

C[F] : S

(8)

Proof. By induction on the second premise. ut

Proposition 9 (Normalization). No infinite derivation sequence D1, D2, . . .
is such that each Di+1 results from applying a reduction in Fig. 6 to a part of Di.

Proof. Every reduction either reduces the size of the derivation or keeps the same
size but reduces the total measure of all subderivations ending with M [U]. ut

Fig. 7 shows how the small-step derivation at the top of Fig. 2 normalizes to
the big-step derivation at the bottom there, using the reductions 3, 8, 1, and
finally 5 in Fig. 6. Also possible are η-reductions, but we do not need them here.

· · ·
M

:
T

=
M

′
:
T

=
=
⇒ 1

M
:
T

· · ·
M

:
T

[x
:
U

]
· · ·

V
x

:
T
→

I
V

:
U
→
T

· · ·
E

:
U
→

E
=
⇒ 2

V
E

:
T

· · ·
E

:
U

[x
:
U

]
· · ·

V
x

:
T
E

[U
]

V
E

:
T

[x
:
U

]
· · ·

C
$
x

:
T
↑I

C
:
U
↑
T

· · ·
E

:
U
↑E

=
⇒ 3

C
$
E

:
T

· · ·
E

:
U

[x
:
U

]
· · ·

C
$
x

:
T
M

[U
]

C
$
E

:
T

· · ·
V

:U

[x
:U

]
#

#
$
x

:U
M

[U
]=
⇒ 4

#
$
V

:U

· · ·
V

:U
#

#
$
V

:U
· · ·

F
:U

· · ·
~ F

:
~ U

[x
:U

]
· · ·

F
′ [x

]:
U

′

[x
′ :U

′]
[~x

:
~ U

]
· · ·

M
[x

′][
~x

]:
T
M

[U
]

M
[F

′ [x
]]
[~x

]:
T
M

[U
]

M
[F

′ [x
]]
[~ F

]:
T
M

[U
]

=
⇒ 5

M
[F

′ [F
]]
[~ F

]:
T

· · ·
~ F

:
~ U

· · ·
F

:U

[x
:U

]
· · ·

F
′ [x

]:
U

′

E
[U

]
F

′ [F
]:
U

′

[x
′ :U

′]
[~x

:
~ U

]
· · ·

M
[x

′][
~x

]:
T
M

[U
]

M
[F

′ [F
]]
[~x

]:
T
M

[U
]

M
[F

′ [F
]]
[~ F

]:
T

· · ·
F

:U

[x
:U

]
· · ·

C
[x

]:
U

′ ↑
T

· · ·
E

:U
′

↑E
C

[x
]$
E

:T
M

[U
]
=
⇒ 6

C
[F

]$
E

:T

· · ·
F

:U

[x
:U

]
· · ·

C
[x

]:
U

′ ↑
T
C

[U
]

C
[F

]:
U

′ ↑
T

· · ·
E

:U
′

↑E
C

[F
]$
E

:T

· · ·
F

:U

· · ·
C

:U
′ ↑
T

[x
:U

]
· · ·

E
[x

]:
U

′

↑E
C

$
E

[x
]:
T
M

[U
]=
⇒ 7

C
$
E

[F
]:
T

· · ·
C

:U
′ ↑
T

· · ·
F

:U

[x
:U

]
· · ·

E
[x

]:
U

′

E
[U

]
E

[F
]:
U

′

↑E
C

$
E

[F
]:
T

· · ·
F

:
U

[x
:
U

]
· · ·

M
[x

]
:
T

=
M

′ [x
]
:
T
M

[U
]

=
⇒ 8

M
′ [F

]
:
T

· · ·
F

:
U

[x
:
U

]
· · ·

M
[x

]
:
T
M

[U
]

M
[F

]
:
T

=
M

′ [F
]

:
T

· · ·
V

:
U

[x
:
U

]
· · ·

M
(x

)
:
T

=
M

′ (x
)

:
T
M

[U
]

=
⇒ 9

M
′ (V

)
:
T

· · ·
V

:
U

[x
:
U

]
· · ·

M
(x

)
:
T
M

[U
]

M
(V

)
:
T

=
M

′ (V
)

:
T

· · ·
F

′
:
U

′

· · ·
F

:
U

[x
:
U

]
[x

′
:
U

′]
· · ·

M
(x

)[
x

′]
:
T

=
M

′ (x
)[
x

′]
:
T
M

[U
]

M
′ (F

)[
x

′]
:
T
M

[U
]

=
⇒ 1
0

M
′ (F

)[
F

′]
:
T

· · ·
F

:
U

· · ·
F

′
:
U

′[x
:
U

]
[x

′
:
U

′]
· · ·

M
(x

)[
x

′]
:
T
M

[U
]

M
(x

)[
F

′]
:
T

=
M

′ (x
)[
F

′]
:
T
M

[U
]

M
′ (F

)[
F

′]
:
T

Fig. 6. Reductions on typing derivations. Reductions 2, 5, 6, and 7 use the admissible
E[U] and C[U] rules in Lemma 4. In reductions 9 and 10, the notation M() means
either C $ ()E or C; () $ E, where () is a special hole to be plugged with a value.

inc : int→ int [x : int]2
→E

incx : int

[y : int]1
#

$ y : int
M [U]1

$ incx : int
=

#; inc $ x : int
↑I2

#; inc : int ↑ int

inc : int→ int 2 : int
→E

inc 2 : int
↑E

#; inc $ inc 2 : int
=

$ inc (inc 2) : int

inc : int→ int 2 : int
→E

inc 2 : int

inc : int→ int [x : int]2
→E

incx : int

[y : int]1
#

$ y : int
M [U]1

$ incx : int
=

#; inc $ x : int
M [U]2

#; inc $ inc 2 : int
=

$ inc (inc 2) : int

inc : int→ int 2 : int
→E

inc 2 : int

inc : int→ int [x : int]2
→E

incx : int

[y : int]1
#

$ y : int
M [U]1

$ incx : int
M [U]2

$ inc (inc 2) : int
=

#; inc $ (inc 2) : int
=

$ inc (inc 2) : int

inc : int→ int 2 : int
→E

inc 2 : int

inc : int→ int [x : int]2
→E

incx : int

[y : int]1
#

$ y : int
M [U]1

$ incx : int
M [U]2

$ inc (inc 2) : int

inc : int→ int

inc : int→ int 2 : int
→E

inc 2 : int
→E

inc (inc 2) : int

[y : int]1
#

$ y : int
M [U]1

$ inc (inc 2) : int

Fig. 7. Reducing a small-step derivation to a big-step derivation

B Example derivations

[k : U ↑ T]1
[f : U ′→ U]2 [x : U ′]3

→E
fx : U

↑E
k $ fx : T

=
k; f $ x : T

↑I3
k; f : U ′ ↑ T

“x” : string
ξ0

(ξ0k. “x”) : (U ′ ↑ T) ↓ string
↓E

k; f $ (ξ0k. “x”) : string
=

(ξ0k. “x”), k $ f : string
↑I2

(ξ0k. “x”), k : (U ′→ U) ↑ string

1 : int
ξ0

(ξ0k. 1) : ((U ′→ U) ↑ string) ↓ int
↓E

(ξ0k. “x”), k $ (ξ0k. 1) : int
=

k $ (ξ0k. 1)(ξ0k. “x”) : int
↓I1

(ξ0k. 1)(ξ0k. “x”) : (U ↑ T) ↓ int

Fig. 8. Deriving a type for (ξ0k. 1)(ξ0k. “x”)

[k : int ↑ T]1
[x : int]2

incx : int
↑E

k $ incx : T
=

k; inc $ x : T
↑I2

k; inc : int ↑ T

“x” : string
ξ0

ξ0k
′. “x” : S ↓ string

ξ0
ξ0k. ξ0k

′. “x” : (int ↑ T) ↓ S ↓ string
↓E

k; inc $ (ξ0k. ξ0k
′. “x”) : S ↓ string

=
k $ inc(ξ0k. ξ0k

′. “x”) : S ↓ string
↓I1

inc(ξ0k. ξ0k
′. “x”) : (int ↑ T) ↓ S ↓ string

Fig. 9. Deriving a type for inc(ξ0k. ξ0k
′. “x”)

