Lambek Grammars and a New Look to Context-Free Grammars

Oleg Kiselyov

Tohoku University, Japan

 $\begin{array}{c} {\rm AiDL} \\ {\rm May\ 11,\ 2022} \end{array}$

Outline

► AB and Context-Free Grammars

Grammars and Context-Free Grammars AB Grammars AB vs CFG Dissatisfaction with AB

Lambek Calculus and Grammars

Lambek Calculus
Lambek Grammar

Lambek Grammars and CFG

L Algebraically

Outline

► AB and Context-Free Grammars

Grammars and Context-Free Grammars

AB Grammars
AB vs CFG
Dissertisfaction with AB

Lambek Calculus and Grammars

Lambek Calculus Lambek Grammar

Lambek Grammars and CFG

L Algebraically

Language

a set of strings (often called sentences), which are finite sequences of words

Grammar

a way to define, describe, delineate the sentences of a language: to tell which sentences belong to the language, or being well-formed

BNF

$$e ::= 1 | x | e + e | -e$$

CFG: set of productions

$$\begin{array}{ccc} S & \rightarrow & 1 \\ S & \rightarrow & \times \\ S & \rightarrow & S+S \\ S & \rightarrow & -S \end{array}$$

CFG: set of *productions*

$$\begin{array}{ccc} S & \rightarrow & 1 \\ S & \rightarrow & \mathsf{x} \\ S & \rightarrow & S+S \\ S & \rightarrow & -S \end{array}$$

A language (set of sentences) is specified by generating it

- ▶ Post System (Emil Post, 1921)
- ► Generative Grammar Noam Chomsky: The logical structure of linguistic theory, 1956

CFG in CNF

$$\begin{array}{cccc} S & \rightarrow & 1 \\ S & \rightarrow & \times \\ S & \rightarrow & S A \\ A & \rightarrow & P S \\ P & \rightarrow & + \\ S & \rightarrow & M S \\ M & \rightarrow & - \end{array}$$

A language (set of sentences) is specified by generating it

- ▶ Post System (Emil Post, 1921)
- ► Generative Grammar Noam Chomsky: The logical structure of linguistic theory, 1956

Outline

► AB and Context-Free Grammars

Grammars and Context-Free Grammars

AB Grammars

AB vs CFG
Dissatisfaction with AR

Lambek Calculus and Grammars

Lambek Calculus Lambek Grammar

Lambek Grammars and CFG

L Algebraically

The problem of syntactic connection

Among these [important problems of logic] problems that of syntactic connection is of the greatest importance for logic. It is concerned with the specification of the conditions under which a word pattern constituted of meaningful words, forms an expression which itself has a unified meaning (constituted, to be sure, by the meaning of the single words belonging to it). A word pattern of this kind is called syntactically connected.

Kazimierz Ajdukiewicz. Die syntaktische Konnexität. Studia Philosophica, 1935.

Fractions

Specification problem

How to specify that -x, -x, etc. all belong to our language but $x \times does not$?

Fractions

Specification problem

How to specify that -x, -x, etc. all belong to our language but $x \times does not$?

Index of an sentence (fragment)

▶ Assign to each word an index, which is a fraction

x: 7 -:
$$\frac{7}{7}$$

► An index of a string is the product of the indices of their constituents

Fractions

Specification problem

How to specify that -x, -x, etc. all belong to our language but $x \times does not$?

Index of an sentence (fragment)

▶ Assign to each word an index, which is a fraction

$$x: 7$$
 -: $\frac{7}{7}$

► An index of a string is the product of the indices of their constituents

$$x: 7$$
 - $x: 7$ - $x: 7$

But what about x + x vs + x x?

Non-commutative fractions

Non-commutative multiplication

$$A \times B \neq B \times A$$

Non-commutative (directional) fractions

 $ightharpoonup A \ B$: A under B

 \triangleright B/A: B over A

Cancellation laws

$$\begin{array}{ccc} A & \times & A \backslash B & = B \\ B / A & \times & A & = B \end{array}$$

Example: matrices

Grammar with directional fractional indices

Word index assignment

x: 7 1: 7 -:
$$7/7$$
 +: $(7\7)/7$

Sample sentences and their indices

Grammar with directional fractional indices

Word index assignment

x: 7 1: 7 -:
$$7/7$$
 +: $(7\7)/7$

Sample sentences and their indices

$$\begin{array}{cccc} -1 & : & 7 \\ 1- & : & 7\times (7/7) \\ x-1 & : & 7\times 7 \\ x+1 & : & 7 \end{array}$$

Yehoshua Bar-Hillel. A quasi arithmetical notation for syntactic description. Language, 1953.

Grammar with directional fractional indices

Word index assignment

$$x: s$$
 1: s -: s/s +: $(s \setminus s)/s$

Sample sentences and their indices

```
-1 : s
1 - : not s
x - 1 : not s
x + 1 : s
```

Yehoshua Bar-Hillel. A quasi arithmetical notation for syntactic description. Language, 1953.

AB Grammars

Indices (Categories, Types)

Primitive types $P ::= s, n, np, \dots$

Syntactic Types $A, B ::= P \mid A \backslash B \mid B/A$

Lexicon

Assignment of types to individual words, e.g.: 1:s

(Residualization, Reduction, 'Multiplication') Rules

$$\frac{u:B/A \quad v:A}{uv:B}/e \qquad \frac{u:A \quad v:A \backslash B}{uv:B} \backslash e$$

A sequence of words $w_1w_2...w_n$ is a sentence of the language of the grammar iff its type is s

Outline

► AB and Context-Free Grammars

Grammars and Context-Free Grammars

AB Grammars

AB vs CFG

Dissatisfaction with AB

Lambek Calculus and Grammars

Lambek Calculus

Laimber Grammar

Lambek Grammars and CFG

L Algebraically

AB	CFG
Lexicon	Rules
x: s	$S \ o \ 1$
1: s	$S \;\; o \;\; x$
-: s/s	$S \rightarrow SA$
$+: (s \backslash s)/s$	$A \rightarrow PS$
	$P \rightarrow +$
Two multiplication rules	$S \rightarrow M S$
	$M \rightarrow -$

AB	CFG
Lexicon	Rules
x : s	$S \rightarrow 1$
1: s	$S \; o \; x$
-: s/s	$S \rightarrow SA$
$+: (s \backslash s)/s$	$A \rightarrow PS$
	$P \rightarrow +$
Two multiplication rules	$S \hspace{.1in} ightarrow \hspace{.1in} M \hspace{.1in} S$
	$M \rightarrow -$
A language is defined by lexicon	A language is defined by rules

AB	CFG
Lexicon	Rules
x: s	$S \ o \ 1$
1: s	$S \; \; ightarrow \; x$
-: s/s	$S \hspace{.1in} ightarrow \hspace{.1in} S \hspace{.1in} A$
$+: (s \setminus s)/s$	$A \rightarrow PS$
	$P \rightarrow +$
Two multiplication rules	$S \rightarrow MS$
	$M \rightarrow -$
A language is defined by lexicon	A language is defined by rules
Lexicalized	Phrase-Structure

۸D

AB	CFG
Lexicon	Rules
x: s	$S \ o \ 1$
1: s	$S \; o \; x$
-: s/s	$S \rightarrow SA$
$+: (s \backslash s)/s$	$A \rightarrow PS$
	$P \rightarrow +$
Two multiplication rules	$S \hspace{.1in} ightarrow \hspace{.1in} M \hspace{.1in} S$
	$M \rightarrow -$
A language is defined by lexicon	A language is defined by rules
Lexicalized	Phrase-Structure

CEC

The two shown grammars define the same language: they are weakly equivalent

	AB			CFG
		-:s/s 1:s		
	$+: (s \backslash s)/s$	-1:s		
x:s	+-1	$: s \backslash s$	S	\rightarrow 1
	x + -1 : s		S	ightarrow x
			S	\rightarrow SA
			A	$\rightarrow PS$
			P	\rightarrow +
			S	$\rightarrow MS$
			M	\rightarrow $-$

	AB				CFC	i i	
<u>x:s</u>	$\frac{+: (s \backslash s)/s}{+-1:}$ $x + -1:s$	-1:s	$\frac{:s}{-} S \to MS$		$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$		
				A P	$\overset{\rightarrow}{\rightarrow}$	M S	

AB	CFG
-: s/s 1: s	
$+: (s \setminus s)/s$ $-1: s$ $A \to PS$	
$x:s$ $+-1:s \setminus s$	$S \rightarrow 1$
x + -1:s	$S \rightarrow x$
	$S \rightarrow SA$
	$A \rightarrow PS$
	$P \rightarrow +$
	$S \rightarrow MS$
	$M \rightarrow -$

	AB	3		CFG
		-:s/s 1:s		
	$+: (s \backslash s)/s$	-1:s		
x:s	+-1		S	\rightarrow 1
	x + -1 : s	5 7521	S	ightarrow x
			S	\rightarrow SA
			A	$\rightarrow PS$
			P	\rightarrow +
			S	$\rightarrow MS$
			M	\rightarrow $-$

AB	CFG
-: s/s 1:	3
$+: (s \setminus s)/s$ $-1: s$	_
$x:s$ $+-1:s \setminus s$	$S \rightarrow 1$
x + -1 : s	$S \;\; o \;\; x$
	$S \rightarrow SA$
	$A \rightarrow PS$
	$P \rightarrow +$
	$S \hspace{.1in} ightarrow \hspace{.1in} M \hspace{.1in} S$
	$M \rightarrow -$

➤ Our AB and CNF grammars have the same derivation trees for any given sentence

	AB			CFG
		-: s/s 1: s		
	$+: (s \backslash s)/s$	-1:s		
x:s	+ - 1	: s\s	S	\rightarrow 1
	x + -1 : s		S	\rightarrow x
			S	\rightarrow SA
			A	$\rightarrow PS$
			P	\rightarrow +
			S	$\rightarrow MS$
			M	\rightarrow $-$

- ▶ Our AB and CNF grammars have the same derivation trees for any given sentence
- ▶ Parsing as Deduction

Grammar Equivalence

Two grammars are weakly equivalent if they define the same language

Example: For each context-free G there exists a CFG in CNF that is weakly equivalent to G

Grammar Equivalence

Two grammars are weakly equivalent if they define the same language

Example: For each context-free G there exists a CFG in CNF that is weakly equivalent to G

Two grammars are *strongly* equivalent if they produce the isomorphic parse trees

Example: For every AB grammar there exists a strongly equivalent CFG in CNF

AB are Context-Free

	AB	CFG
	-:s/s $1:s$	
	$+: (s \setminus s)/s \qquad -1: s$	
x:s	+-1:sackslash s	$S \rightarrow 1$
	x + -1:s	$S \rightarrow x$
		$S \rightarrow SA$
		$A \rightarrow PS$
		$P \rightarrow +$
		$S \rightarrow MS$
		$M \rightarrow -$
Lexic	al items	Terminals
Types	s and Subtypes	Non-terminals
Insta	nces of derivation rules	Productions

AB are Context-Free

AB	CFG
$ \frac{AB}{\frac{-:s/s 1:s}{-1:s}} $ $ \frac{+:(s\backslash s)/s \frac{-1:s}{-1:s}}{x+-1:s} $ $ x : s x + -1:s $	$S \rightarrow 1$ $S \rightarrow \times$ $S \rightarrow SA$ $A \rightarrow PS$ $P \rightarrow +$ $S \rightarrow MS$
	$M \rightarrow -$

Lexical items
Types and Subtypes
Instances of derivation rules
The number of instances is finite

Terminals
Non-terminals
Productions

Every AB grammar is strongly equivalent to a CFG in CNF

Every ϵ -free CFG is weakly equivalent to an AB grammar

Every ϵ -free CFG in Greibach normal form is strongly equivalent to an AB grammar

Yehoshua Bar-Hillel, Chaim Gaifman, and Eli Shamir. On categorial and phrase-structure grammars. Bulletin of the research council of Israel, 1963

Outline

► AB and Context-Free Grammars

Grammars and Context-Free Grammars AB Grammars AB vs CFG

Dissatisfaction with AB

Lambek Calculus and Grammars

Lambek Calculus Lambek Grammar

Lambek Grammars and CFG

L Algebraically

Dissatisfaction with AB: Algebraic

A tempting free semigroup model for AB

AB

Model

Primitive type

 $A \backslash B$

B/A

Multiplication

Set of strings

Right semigroup action $\cdot B$

Left semigroup action B·

Action

However,

$$C/B \times B/A = C/A$$

is derivable in the model but not in AB

Dissatisfaction with AB: Logical

$$\frac{u:B/A \quad v:A}{uv:B} / e \qquad \qquad \frac{u:A \quad v:A \backslash B}{uv:B} \backslash e$$

- ➤ The AB rules can be interpreted as elimination rules Where are the introduction rules?
- ▶ A\B and B/A can be interpreted as directional implications, and the AB rules as modus ponens But implications compose (and modus ponens can be cut)

Dissatisfaction with AB: Linguistic

```
John: np
                  X
likes : (np \ s)/np cooking : np
       likes cooking : np \setminus s
                  X
 and: ((np \ s) \ (np \ s))/(np \ s)
hates : (np \ s)/np cleaning : np
      hates cleaning : np \setminus s
```

John likes cooking and hates cleaning: s

20

Dissatisfaction with AB: Linguistic

John likes and Jane hates cooking: \boldsymbol{s}

Dissatisfaction with AB: Linguistic

```
John: np likes: np \setminus (s/np)
       John likes : s/np
                X
and: ((s/np)\setminus(s/np))/(s/np)
Jane : np hates : np \setminus (s/np)
       Jane hates : s/np
                X
          cooking: np
```

John likes and Jane hates cooking: s

Outline

AB and Context-Free Grammars

Grammars and Context-Free Grammars
AB Grammars
AB vs CFG

▶ Lambek Calculus and Grammars

Lambek Calculus
Lambek Grammar

Lambek Grammars and CFG

L Algebraically

Outline

AB and Context-Free Grammars

Grammars and Context-Free Grammars

AB Grammars

AB vs CFG

Dissatisfaction with AB

▶ Lambek Calculus and Grammars

Lambek Calculus

Lambek Grammar

Lambek Grammars and CFG

L Algebraically

Lambek Calculus L

Primitive types
$$P$$
 ::= $s, n, np, ...$
Types A, B, C ::= $P \mid A \setminus B \mid B/A$
Environments Γ, Δ ::= $A_1, ..., A_n \mid n > 0$
Judgements $\Gamma \vdash A$
$$\frac{\Delta \vdash B/A \quad \Gamma \vdash A}{\Delta, \Gamma \vdash B} / e \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash B/A} / i$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash A \setminus B}{\Gamma, \Delta \vdash B} \setminus e \qquad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \setminus B} \setminus i$$

$$\frac{A \vdash A}{A \vdash A} Var$$

Natural Deduction presentation in Gentzen style

Lambek Calculus L

Primitive types
$$P$$
 ::= $s, n, np, ...$
Types A, B, C ::= $P \mid A \setminus B \mid B/A$
Environments Γ, Δ ::= $A_1, ..., A_n \mid n > 0$
Judgements $\Gamma \vdash A$
$$\frac{\Delta \vdash B/A \quad \Gamma \vdash A}{\Delta, \Gamma \vdash B} / e \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash B/A} / i$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash A \setminus B}{\Gamma, \Delta \vdash B} \setminus e \qquad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \setminus B} \setminus i$$

$$\frac{A \vdash A}{A \vdash A} Var$$

These are all rules: there is no weakening or exchange

Sample derivation

$$\frac{A \vdash A \qquad \Gamma \vdash A \backslash (B/C)}{\underbrace{A, \Gamma \vdash B/C}} \backslash e \qquad C \vdash C \\ \frac{A, \Gamma, C \vdash B}{\underbrace{\Gamma, C \vdash (A \backslash B)}} \backslash i \\ \frac{\Gamma, C \vdash (A \backslash B)}{\Gamma \vdash (A \backslash B)/C} / i$$

Sample derivation

$$\frac{A \vdash A \qquad \Gamma \vdash A \backslash (B/C)}{\underbrace{A, \Gamma \vdash B/C}} \backslash e \qquad C \vdash C \\ \frac{A, \Gamma, C \vdash B}{\underbrace{\Gamma, C \vdash (A \backslash B)}} \backslash i \\ \frac{\Gamma, C \vdash (A \backslash B)/C}{} / i$$

Likewise,

$$\Gamma \vdash C/B$$
 and $\Delta \vdash B/A$ derives $\Gamma, \Delta \vdash C/A$

and

$$\Gamma \vdash A \text{ derives } \Gamma \vdash (B/A) \backslash B$$

More complicated derivation

Lの導出木の例

$$\left(\begin{array}{c|c} \frac{\Delta \vdash B/A & \Gamma \vdash A}{\Delta, \Gamma \vdash B} \not e & \frac{\Gamma, A \vdash B}{\Gamma \vdash B/A} \not i \\ \hline \frac{\Gamma \vdash A & \Delta \vdash A \backslash B}{\Gamma, \Delta \vdash B} & e & \frac{A, \Gamma \vdash B}{\Gamma \vdash A \backslash B} \backslash i \end{array} \right)$$

Outline

AB and Context-Free Grammars

Grammars and Context-Free Grammars

AB Grammars

AB vs CFG

Dissatisfaction with AB

▶ Lambek Calculus and Grammars

Lambek Calculus

Lambek Grammar

Lambek Grammars and CFG

L Algebraically

Lambek Grammars

LとLambek文法LG A_s : initial type (文法のstart symbol) $w_1 w_2 \dots w_n$ がLambek文法の言語 A_s に属する $\Leftrightarrow \mathcal{L}(w_1), \mathcal{L}(w_2), \dots, \mathcal{L}(w_n) \vdash A_s$ $\frac{np \vdash np}{(np \backslash s)/np \vdash (np \backslash s)/np} \quad \frac{np \vdash np}{(np \backslash s)/np, np \vdash np \backslash s} \setminus_{e}$ Lexicon $\frac{np, (np \backslash s)/np, np \vdash s}{np, (np \backslash s)/np \vdash s/np} /_{i}$ $n \vdash n$ $rel, np, (np \backslash s)/np \vdash n \backslash n$ $np/n \vdash np/n$ $n, rel, np, (np \setminus s)/np \vdash n$ /e $np/n, n, rel, np, (np \backslash s)/np \vdash np$ $np \setminus n$, n, rel, np, $(np \setminus s) / np$, $np \setminus s$ The book that John read vanished

L is the logic of resources

The environment is the sentence

$$np/n,$$
 $n,$ $rel,$ $np,$ $(np\backslash s)/np,$ $np\backslash s$ $\vdash s$ The book that John read vanished

Joachim Lambek. The mathematics of sentence structure. American mathematical monthly, 1958.

Outline

AB and Context-Free Grammars

Grammars and Context-Free Grammars
AB Grammars
AB vs CFG
Dissatisfaction with AB

Lambek Calculus and Grammars

Lambek Calculus Lambek Grammar

▶ Lambek Grammars and CFG

L Algebraically

▶ LG subsumes AB, so subsumes CFG

- ▶ LG subsumes AB, so subsumes CFG
- ▶ LG also supports hypothetical reasoning...

- ▶ LG subsumes AB, so subsumes CFG
- ▶ LG also supports hypothetical reasoning...
- ▶ But LG is also constrained...

- ► LG subsumes AB, so subsumes CFG
- ► LG also supports hypothetical reasoning...
- ▶ But LG is also constrained...

Conjecture: LG are equivalent to CFG Noam Chomsky. Formal properties of grammars. In Handbook of Mathematical Psychology, volume 2, 1963.

Cardinality problem

Lの導出木の例

$$\left(\begin{array}{c|c} \frac{\Delta \vdash B/A & \Gamma \vdash A}{\Delta, \Gamma \vdash B} \not e & \frac{\Gamma, A \vdash B}{\Gamma \vdash B/A} \not i \\ \hline \frac{\Gamma \vdash A & \Delta \vdash A \backslash B}{\Gamma, \Delta \vdash B} & e & \frac{A, \Gamma \vdash B}{\Gamma \vdash A \backslash B} \not i \end{array} \right)$$

Cut

Sample Grammar

$$\begin{array}{ccc} S & \rightarrow & 1 \\ S & \rightarrow & \mathsf{x} \\ S & \rightarrow & S+S \\ S & \rightarrow & -S \end{array}$$

Cut

Sample Grammar

$$\begin{array}{ccc} S & \rightarrow & 1 \\ S & \rightarrow & \times \\ S & \rightarrow & S+S \\ S & \rightarrow & -S \end{array}$$

Further productions (due to substitution, or cut)

$$\begin{array}{ccc} S & \rightarrow & -1 \\ S & \rightarrow & -S+1 \\ S & \rightarrow & -S+S+S \end{array}$$

Cut

Sample Grammar

$$\begin{array}{ccc} S & \rightarrow & 1 \\ S & \rightarrow & \times \\ S & \rightarrow & S+S \\ S & \rightarrow & -S \end{array}$$

Further productions (due to substitution, or cut)

$$\begin{array}{ccc} S & \rightarrow & -1 \\ S & \rightarrow & -S+1 \\ S & \rightarrow & -S+S+S \end{array}$$

CFG also has arbitrary many productions but only a finite number of *cut-free* productions

Interpolation Lemma

Let $\Gamma, \Delta, \Theta \vdash C$ where Δ is not empty be a provable judgement in L. Then there exists type I such that

- 1. $\Delta \vdash I$
- 2. $\Gamma, I, \Theta \vdash C$
- 3. I is 'simpler' than Δ and Γ, Θ, C

Dirk Roorda. Resource logic: proof theoretical investigations. PhD thesis, FWI, Universiteit van Amsterdam, 1991.

Thus judgements (rule instances) appearing in derivations might also be factored

LG are context-free

 Mati Pentus. Lambek grammars are context-free. LICS, 1993.

LG are context-free

Mati Pentus. Lambek grammars are context-free. LICS, 1993.

- ► Weak equivalence of LG and CFG
- ▶ LG can be parsed in $O(n^3)$ time
- ► Exponential explosion in the number of productions: CFG obtained from LG are *impractical*

LG are context-free

Mati Pentus. Lambek grammars are context-free. LICS, 1993.

- ▶ Weak equivalence of LG and CFG
- ▶ LG can be parsed in $O(n^3)$ time
- ► Exponential explosion in the number of productions: CFG obtained from LG are *impractical*
- ► Thus, although LG are context-free in theory, they aren't in practice

Outline

AB and Context-Free Grammars

Grammars and Context-Free Grammars
AB Grammars
AB vs CFG
Dissatisfaction with AB

Lambek Calculus and Grammars

Lambek Calculus Lambek Grammar

Lambek Grammars and CFG

▶ L Algebraically

範疇文法の 代数的な埋め込み手法

星野 雄哉

論文指導教員:Oleg Kiselyov 助教

東北大学大学院情報科学研究科 情報基礎科学専攻

※一定の制限下

計算体系LA

```
Primitive types P ::= s \mid n \mid np
Syntactic types A, B ::= P \mid A/B \mid B \setminus A
Environments \Gamma, \Delta ::= A_1, ..., A_m, ..., B_1, ..., B_n
Judgements \Gamma \vdash A
\frac{\Delta \vdash B/A \qquad \Gamma \vdash A}{\Delta, \Gamma \vdash B} / e \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash B/A} / i
\frac{\Gamma \vdash A \qquad \Delta \vdash A \backslash B}{\Gamma, \Delta \vdash B} \backslash e \qquad \frac{A, \Gamma \vdash B}{\Gamma \vdash A \backslash B} \backslash i
                                                                                      ■は空を表すわけ
                                                                                            ではない
  A \vdash A Var
 \frac{1}{\bullet \vdash np} john \quad \frac{1}{\bullet \vdash np/n} the \quad \frac{1}{\bullet \vdash np} mary
```

LAの導出木の例

$$\begin{array}{|c|c|c|c|c|}\hline \Delta \vdash B/A & \Gamma \vdash A \\\hline \Delta, \Gamma \vdash B & /e & \frac{\Gamma, A \vdash B}{\Gamma \vdash B/A}/i \\\hline \frac{\Gamma \vdash A & \Delta \vdash A \backslash B}{\Gamma, \Delta \vdash B} \backslash e & \frac{A, \Gamma \vdash B}{\Gamma \vdash A \backslash B} \backslash i \\\hline \end{array}$$

◆ロト ◆部ト ◆草ト ▼草 ・ りへ()・

文法としてのLA

$$w_1 w_2 ... w_n$$
がLAの言語 A_s に属する

$$\Leftrightarrow \mathcal{F}\left(\frac{\vdots}{\cdot, \cdot, \cdot, \dots, \cdot \vdash A_S}\right) = w_1 \, w_2 \, \dots \, w_n$$

$$\frac{\cdot \vdash np \quad john}{\cdot \vdash np \quad john} \, \frac{\cdot \vdash (np \setminus s)/np \quad read \quad np \vdash np \quad /e}{\cdot, \cdot np \vdash np \setminus s \quad \land e} \, \wedge e$$

$$\frac{\cdot \vdash np/n \quad the}{\cdot, \cdot, \cdot, \cdot, \cdot \vdash np \quad /e} \, \frac{\cdot \vdash np \setminus s \quad \wedge e}{\cdot, \cdot, \cdot, \cdot, \cdot \vdash np \quad /e} \, \frac{\cdot \vdash np \setminus s \quad \wedge e}{\cdot, \cdot, \cdot, \cdot, \cdot, \cdot \vdash np \quad /e} \, \wedge e$$

代数としてのLA

略記 $\begin{array}{rcl} & & & & \\ vp & = & np \backslash s \\ tv & = & vp/np \\ det & = & np/n \\ rel & = & (n \backslash n)/(s/np) \end{array}$

シグネチャ Σ_{AL}

```
iohn
                                 : ⟨•; np⟩
                                                                                                                                                      : \langle \bullet : np \rangle \rightarrow \langle \bullet : vp \rangle \rightarrow \langle \bullet : s \rangle
                                                                                                    \langle e_{(\bullet;\bullet;np;s)} \rangle
                                                                                                                                                     : \langle \bullet; n \rangle \rightarrow \langle \bullet; pp \rangle \rightarrow \langle \bullet; n \rangle
book
                                 : ⟨•; n⟩
                                                                                                    e_{\langle \bullet; \bullet; n; n \rangle}
the
                                : ⟨•; det⟩
                                                                                                                                                     : \langle \bullet; \det \rangle \rightarrow \langle \bullet; n \rangle \rightarrow \langle \bullet; np \rangle
                                                                                                   /e_{\langle \bullet; \bullet; n; np \rangle}
                                                                                                                                                              \langle \bullet; \mathrm{tv} \rangle \to \langle \bullet; \mathrm{np} \rangle \to \langle \bullet; \mathrm{vp} \rangle
                                : ⟨•; rel⟩
that
                                                                                                    /e_{\langle \bullet; \bullet; np; np \backslash s \rangle}
                                                                                                                                                               \langle \bullet; tv \rangle \rightarrow \langle np; np \rangle \rightarrow \langle \bullet, np; vp \rangle
read
                                      <•; tv>
                                                                                                   /e_{\langle \bullet; np; np; np \setminus s \rangle}
vanished
                               : ⟨•: vp⟩
                                                                                                   var_{\langle np;np \rangle}
                                                                                                                                                              \langle np; np \rangle
                                                                                                                                                               \langle \bullet; np \rangle \rightarrow \langle \bullet, np; vp \rangle \rightarrow \langle \bullet, np; s \rangle
                                                                                                    \langle e_{\langle \bullet; \bullet; np; s \rangle} \rangle
                                                                                                    /i_{\langle \bullet; np; s \rangle}
                                                                                                                                                     : \langle \bullet, np; s \rangle \rightarrow \langle \bullet; s/np \rangle
                                                                                                                                                     : \langle \bullet; rel \rangle \rightarrow \langle \bullet; s/np \rangle \rightarrow \langle \bullet; pp \rangle
                                                                                                    /e_{\langle \bullet; \bullet; s/np; n \setminus n \rangle}
```

項の例

```
\begin{array}{l} \langle e_{\langle \bullet; \bullet; np; s \rangle} (/e_{\langle \bullet; \bullet; n; np \rangle} (the, \langle e_{\langle \bullet; \bullet; n; n \rangle} (e_{\langle \bullet; \bullet; np; s \rangle} (e_{\langle \bullet; \bullet; np; np, n \rangle} (that, \langle i_{\langle \bullet; np; s \rangle} (e_{\langle \bullet; \bullet; np; s \rangle} (e_{\langle \bullet; \bullet; np; np, np \rangle} (that, \langle i_{\langle \bullet; np; np; np, s \rangle} (e_{\langle \bullet; \bullet; np; np, np \rangle} (e_{\langle \bullet; np; np; np, np \rangle} (thet, \langle i_{\langle \bullet; np; np; np, s \rangle} (e_{\langle \bullet; \bullet; np; np, np \rangle} )))))), \text{ vanished)} \end{array}
```

Conclusion

For any LG and the natural number n, there exists a CFG whose derivations are all and only LG derivations of hyp-rank n. The LG lexicon enters CFG as is, with no duplications, let alone exponential explosions.

LG of a bounded hyp-rank are *strongly* equivalent to CFG

Real Conclusion

Lambek Grammars are Great