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Abstract. Spreadsheets in accounting and Matlab in engineering are
immensely popular because these glorified calculators let domain experts
play : write down a problem in familiar terms and quickly try a number
of solutions. Natural-language semanticists have a better tool. Not only
does it compute grammar yields and truth values, it also infers types,
normalizes terms, and displays truth conditions as formulas. Its modu-
larity facilities make it easy to try fragments out, scale them up, and
abstract encoding details out of semantic theories.

This tool is a combination of techniques created by functional program-
mers, who are as unaware of its application to semantics as most semanti-
cists. This paper breaks the barrier. We express extensible interpreters of
natural- and formal-language fragments as functional programs. Specif-
ically, we work our way from the simply-typed lambda calculus and
a context-free grammar to a dynamic treatment of quantification and
anaphora. We strive to be comprehensible and informative to both lin-
guists and programmers.

1 Introduction

A lecture on natural-language semantics started with this exchange:

Lecturer: Did you find lambda-conversion difficult?
Audience: YES.
Lecturer: Sorry. This is the main technical tool. Without it, nothing

else makes sense. Let’s go back to the slide with long lambda-conversions,
and go through them again. Slowly.

Our sympathy to the audience motivates this work. Although it is important to
be able to do lambda-calculus conversions by hand, it is boring and error-prone
to do them by hand all the time, as semanticists typically do. Hand calculations
condemn the researcher to trying out a mere handful of simple examples, in dan-
ger of overlooking more complex counter-examples and the feature interactions
they incur. The same danger that Karttunen [13] noted in phonology threatens
semantics: computational support is badly needed to ensure that changing one’s
theory to fix one case doesn’t break five other cases.
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It already helps to have a simple calculator that accepts lambda terms con-
taining pre-defined domain constants and computes their normal forms. The
Penn Lambda Calculator [3] answers this need. But more tasks should be au-
tomated and more patterns abstracted. For example, besides adding domain
constants and lexical entries, a researcher may want to add intensionality to an
existing grammar by uniformly lifting every rule’s type. Moreover, it is common
to lift the types several times, which usually turns an intuitive set of terms into
an inscrutable nest of lambdas. To work with such grammars, the researcher may
develop abbreviations to hide trivial encodings and administrative distractions.

The ideal calculator should automate uniform changes to the grammar and
accept as well as display abbreviated terms. However, today’s variety of semantic
theories is too wide for any given calculator to anticipate and support even a
significant fraction of them as built-in features. Instead, we need a calculator that
is programmable by users. In fact, a programmable calculator that automates
and hides irrelevant details can not only relieve semanticists of tedium, but
also enable them to disavow that the details matter at all and thus formulate
more general theories at higher levels of abstraction. In other words, a richer
metalanguage, with better abstraction facilities, enables building richer theories
while retaining the confidence and convenience that formalization affords.

Contributions This paper shows that such an ideal tool already exists—
unbeknownst to its developers. The tool is based on a well-developed, well-
documented, and well-maintained functional programming language with an in-
teractive top-level. We use the Haskell language for illustration, but Standard
ML and OCaml would work too. Applying some recently collected and polished
techniques [2], we embed into this language several domain-specific languages
(DSLs) of interest, such as English and the lambda calculus. Our contribution,
besides explaining these techniques to an audience of natural-language semanti-
cists, is to encode natural-language fragments and their interpretations as pro-
gramming-language modules and thus to extend and relate them clearly and
concisely. We demonstrate computing and printing not only truth values but
truth conditions, on various levels of abstraction.

We explain the tool in tutorial style by a series of examples. In each example,
we derive a set of well-formed expressions (as in a context-free grammar) and
interpret the derivations in several ways to calculate their forms (such as the
English strings they yield) and meanings (such as the first-order formulas they
denote) automatically. Our theme is thus calculemus: let’s turn manual reasoning
into automatic calculation, to ease formulating theories and verifying hypotheses.

Organization Reflecting how we propose linguistic theories can and should
be expressed, our series of examples develops many fragments of natural and
formal languages. We start with a trivial fragment of English in §2, then ex-
press simply-typed lambda-terms in §3. In our code (online at http://okmij.

org/ftp/gengo/NASSLLI10/), we add quantification, relative clauses, and pro-
nouns. We use these additions to explain de Groote’s dynamic analysis of donkey
anaphora. The metalanguage in which we encode these analyses is Haskell, not
English, so the analyses are precisely described and mechanically executable.



2 Calculating with grammars

In this section we introduce Haskell and show how to use it as a calculator to
express linguistic derivations as programs. The form of the programs is intuitive
in that it resembles familiar notation and thus makes our intentions clear.

2.1 Calculating yields and truth values

Haskell can calculate with numbers, booleans, and strings. The calculator is
called GHCi and is a part of the Haskell Platform. The calculator starts by giving
the prompt Prelude>, which means the standard Prelude functions are available.
We can enter expressions (shown in italics) and see the result underneath:

Prelude> "John" ++ " came"
"John came"

We have calculated the concatenation of two strings, using the standard infix
operator ++ for concatenation. The infix notation, albeit convenient, is not nec-
essary: writing any operator in parentheses exposes it as a regular function:

Prelude> (++) "John" " came"
"John came"

Our expression is built of mere applications, written as juxtaposition. Actually
(++) is a curried function: it is a function that maps "John" to a function
that maps " came" to "John came". Accordingly, juxtaposition for application
associates to the left. There are also abstractions, with λ written as a backslash:

Prelude> (\np -> np ++ " " ++ "came") "John"
"John came"

The calculator has performed a β-reduction, substituting the string "John" for
the variable np, followed by the same string concatenation as before.

Haskell is typed; the types are inferred and remain implicit. We become aware
of types when we enter an ill-typed expression, such as not "John", and see a
type error message. We can also ask GHCi to show us the type it infers, using
the :t command. (Some Haskell environments instead let us simply select an
expression to ask for its type.)

Prelude> :t (\np -> np ++ " " ++ "came")
(\np -> np ++ " " ++ "came") :: [Char] -> [Char]

The abstraction has the type [Char] -> [Char], indeed the type of a function
from character lists ([Char], which can also be written String) to strings.

One strength of the metalanguage is the ability to name frequently occurring
expressions. One can think of such definitions as shortcuts or bookmarks. One
way to name an expression for later reuse is to put its definition into into a file.
For example, we can put the following definitions into a file CFG1EN.hs:

john = "John"
mary = "Mary"
like = "likes"
r2 tv np = tv ++ " " ++ np
r1 np vp = np ++ " " ++ vp



sentence = r1 john (r2 like mary)

These definitions associate the name john with the string "John" and so on.
The definition r2 is parameterized by two arguments, tv and np. It is equivalent
to defining a function explicitly: r2 = \tv -> \np -> tv ++ " " ++ np, or for
short r2 = \tv np -> tv ++ " " ++ np. The definition r1 is similar; both r2

and r1 abbreviate the concatenation of two arguments with a separating space.
The final definition sentence abbreviates a familiar expression.

The form of these definitions is meant to express a context-free grammar:

NP → John (john) NP → Mary (mary) TV → likes (like)

VP → TV NP (r2) S → NP VP (r1)

The definition sentence expresses a derivation in this CFG. We can calculate
its yield by loading the file into GHCi and asking what sentence abbreviates:

Prelude> :load CFG1EN.hs
*CFG1EN> sentence
"John likes Mary"

Besides yields, we can associate our CFG notation with different computa-
tional interpretations. In particular, we can interpret a CFG derivation as a truth
value in a particular model. In a different file CFG1Sem.hs, we enter

data Entity = John | Mary deriving (Eq, Show)

john = John
mary = Mary
like = \o s -> elem (s,o) [(John,Mary), (Mary,John)]
r2 tv np = tv np
r1 np vp = vp np

sentence = r1 john (r2 like mary)

Our domain has two entities John and Mary, which can be compared for equality
(Eq) and displayed (Show). A semanticist would write De = {john,mary}. We
define the same names as before, but we let them denote not strings but semantic
values such as entities (for john and mary), relations (for like, using a built-in
function elem), and truth values (for r1 np vp, by applying a property vp to an
entity np). The definition sentence looks exactly the same as before. However, if
we load CFG1Sem.hs into GHCi and ask for sentence, we no longer see a string.
We see a boolean True, telling us that John likes Mary in our model.

2.2 Expressing syntactic categories

Next, we teach our calculator to check our syntactic categories for us. This move
begins our journey to expressing theories at a higher level of abstraction.

Ideally, the grammar we intend to express should correspond exactly to how
the calculator executes our program. In CFG1EN.hs for example, every string
abbreviation should denote the yield of a valid derivation. So far, the correspon-
dence is shallow: we meant r1 as a rule for combining an NP with a VP and



chose the variable names np and vp accordingly, yet to GHCi these names are
opaque and r1 is just a function of type String -> String -> String. Thus,
we can write nonsensical expressions such as r1 (r2 like mary) john, even
though r2 like mary is not an NP and john is not a VP. The expression type-
checks and evaluates to a string. It shouldn’t. With the semantic interpretation
in CFG1Sem.hs, the same expression is rejected by the type checker, but other
nonsensical expressions such as r2 (r2 like mary) john still slip through.

Our calculator should reject invalid derivations when we try to build them,
rather than when we try to interpret them. Following Russell and Church, we
use types to delineate the set of meaningful expressions – those that represent
valid derivations. The types will tell the calculator to check in derivations that
r2 is used as a CFG rule and like is used as a terminal as we intend them to be.

In the file CFG3EN.hs, we define new types S, NP, etc. for syntactic categories:

data S; data NP; data VP; data TV

We then use these types to annotate syntactic derivations:

data EN a = EN { unEN :: String }

To the left of the equal sign, EN a means to define a new type EN a for each
type a, such as EN S, EN NP, etc. To the right of the equal sign, we define two
functions that are inverses of each other: EN from String to EN a and unEN

from EN a to String. One may thus view a type just defined, such as EN NP, as
String annotated with NP, as if NP were a grammatical feature.

We now annotate the yield interpretation with syntactic categories. The def-
initions for john, r2, etc. remain essentially the same, with a sprinkling of the
‘annotation glue’ EN. After all, we did not intend to change the grammar.

john, mary :: EN NP
like :: EN TV
r2 :: EN TV -> EN NP -> EN VP
r1 :: EN NP -> EN VP -> EN S

john = EN "John"
mary = EN "Mary"
like = EN "likes"
r2 (EN tv) (EN np) = EN (tv ++ " " ++ np)
r1 (EN np) (EN vp) = EN (np ++ " " ++ vp)

sentence :: EN S
sentence = r1 john (r2 like mary)

New are the type annotations (written with ::), assigning explicit types to the
defined names. The types look like grammar rules! For example, the type of r2
can be read as VP → TV NP. This type says explicitly that r2 should only be used
to combine a TV and an NP to form a VP, so GHCi rejects invalid derivations:

*CFG3EN> r2 (r2 like mary) john
... Couldn’t match expected type ‘TV’ against inferred type ‘VP’ ...

In the first argument of ‘r2’, namely ‘(r2 like mary)’

The message clearly describes the type error in terms of the grammar. We can
also ask GHCi to show the syntactic category it infers for a valid derivation.



2.3 Type functions: from syntactic categories to semantic types

We just annotated the calculation of yields with syntactic categories. Likewise, in
CFG3Sem.hs we annotate the calculation of truth values with syntactic categories:

data S; data NP; data VP; data TV

type family Tr (a :: *) :: *
type instance Tr S = Bool
type instance Tr NP = Entity
type instance Tr VP = Entity -> Bool
type instance Tr TV = Entity -> Entity -> Bool

data Sem a = Sem { unSem :: Tr a }

Like EN a in §2.2, Sem a stands for an annotated type. Whereas EN a is always
isomorphic to String because every derivation yields a string, the type that
Sem a is isomorphic to depends on a: we interpret derivations of category NP as
entities, derivations of category S as truth values (Bool), and so on. In Haskell,
we specify this dependence as cases of a type function, Tr, mapping each cate-
gory label to a semantic type. The definitions for john, r2, etc. are same as in
CFG1Sem.hs, except with type annotations and the ‘annotation glue’ Sem added.

2.4 Unifying form with meaning

So far we have been keeping our definitions for yields and for truth values in
separate files, even though the two sets of definitions are quite similar and it
is bothersome to keep switching between loading two different files into GHCi.
Below are the similar parts of CFG3EN.hs and CFG3Sem.hs, side by side:

data S; data NP; data VP; data TV data S; data NP; data VP; data TV

john, mary :: EN NP john, mary :: Sem NP
like :: EN TV like :: Sem TV
r2 :: EN TV -> EN NP -> EN VP r2 :: Sem TV -> Sem NP -> Sem VP
r1 :: EN NP -> EN VP -> EN S r1 :: Sem NP -> Sem VP -> Sem S

sentence :: EN S sentence :: Sem S
sentence = r1 john (r2 like mary) sentence = r1 john (r2 like mary)

Both sides define the same syntactic categories and use them to annotate the
same terminals, rules, and sample derivation in the same way. As is rightful, the
only difference is in how the terminals, rules, and sample derivation are inter-
preted: EN vs. Sem. The definition of sentence on the last line is also identical.

Repeated code is a tell-tale sign of an abstraction struggling to get out.
We proceed to factor the common code out of the two interpretations. We first
factor out the category annotations on terminals and rules by abstracting over
the interpretations EN and Sem. Haskell provides just the right facility for such an
abstraction: a type class. In a single new file CFG4.hs, we enter the code below.

data S; data NP; data VP; data TV



class Symantics repr where
john, mary :: repr NP
like :: repr TV
r2 :: repr TV -> repr NP -> repr VP
r1 :: repr NP -> repr VP -> repr S

We replaced EN and Sem with a variable repr, which can be instantiated to EN,
Sem, or something else. The type class Symantics lets us assign categories to
terminals and rules once and for all, regardless of their possible interpretations.

Second, we write and type-check derivations once and for all as well, regard-
less of – in other words, abstracting over – their possible interpretations.

sentence = r1 john (r2 like mary)

The inferred type of sentence is Symantics repr => repr S, which says that,
in any interpretation repr, the derivation has the type that repr assigns to S.

Finally, we define each way to interpret derivations as an instance of the type
class Symantics. To the right is a map of Symantics and its two interpretations.

Symantics

EN
Sem

data EN a = EN { unEN :: String }
instance Symantics EN where
john = EN "John"
... = ...
r1 (EN x) (EN f) = EN (x ++ " " ++ f)

data Sem a = Sem { unSem :: Tr a }
instance Symantics Sem where
john = Sem John
... = ...
r1 (Sem x) (Sem f) = Sem (f x)

We can then calculate the yield and truth value of the same derivation sentence

by instantiating the variable repr in the type of sentence to either EN or Sem:

*CFG4> unEN (sentence :: EN S)
"John likes Mary"
*CFG4> unSem (sentence :: Sem S)
True

Because type classes in Haskell are open, at any time we can add a new way to
interpret derivations (as a new instance of Symantics) and re-interpret existing
derivations without repeating them. In particular, at the end of the next section
we add a new interpretation to see truth conditions as formulas, not just True.

Factoring out repetitive code in this way not only saves us typing but also
adds a language of derivations to our calculator notation. This object language
of derivations consists of what all interpretations have in common: the type
system enforces the abstraction barrier between derivations and interpretations
by rejecting derivations that depend on a particular interpretation. As many
linguistic theories exhort [10, 17, 19], form and meaning must build in tandem.
In particular, because for simplicity our EN interpretation only concatenates
plain strings, our example grammar here can be understood as a combinatory



categorial grammar (CCG) [20, 21] embedded in Haskell. In general, for form
and meaning to build in tandem is well supported by how we embed an object
language in a functional programming language: our notation for derivations
looks like a typical linear notation and are executable. (Derivations can also be
interpreted as trees familiar to linguists, as shown in Appendix A.)

3 The syntax and interpretations of semantics

We have embedded in Haskell a small fragment of English and interpreted its
derivations in two ways. The same approach – representing valid derivations
as well-typed programs and using a type class to abstract over interpretations –
applies to formal languages too. We take as our example Church’s Simple Theory
of Types [4]. (The approach easily extends to multisorted logics such as Ty2 [6, 7],
popular in natural-language semantics.) As in §2, we represent well-formed STT
formulas as well-typed Haskell programs that can be interpreted in several ways:
evaluated in a model, printed, and simplified. The last two interpretations will
let us see the truth conditions of our English derivations as simplified formulas.

STT is the simply-typed lambda calculus with two base types, Entity and
Bool, and a few constants. The language is a higher-order predicate logic. Just as
we defined a CFG using the type class Symantics in §2, we define the grammar of
STT using a type class Lambda containing constants (true, mary’), connectives
(neg, conj), abstraction, and application. The code below is in Semantics.hs.

class Lambda lrepr where
john’, mary’ :: lrepr Entity
like’ :: lrepr (Entity -> Entity -> Bool)
true :: lrepr Bool
neg :: lrepr Bool -> lrepr Bool
conj :: lrepr Bool -> lrepr Bool -> lrepr Bool
exists :: lrepr ((Entity -> Bool) -> Bool)
app :: lrepr (a -> b) -> lrepr a -> lrepr b
lam :: (lrepr a -> lrepr b) -> lrepr (a -> b)

We represent STT applications using app. For example, app (app like’ mary’)

john’ represents the formula (like mary) john. Following Church, exists is
a higher-order constant, and lam encodes STT abstractions using Haskell ones.
This higher-order abstract syntax (HOAS) [14, 18] represents STT variables as
Haskell ones. Thus, the formula ∃x. (like mary) x is represented as follows.

lsene :: Lambda lrepr => lrepr Bool
lsene = app exists (lam (\x -> app (app like’ mary’) x))

We have not defined false because it is neg true. Likewise, we define uni-
versal quantification with a restrictor predicate r as a ‘macro’ in terms of exists,
then define the unrestricted forall in terms of the restricted forall_:

forall_ r = lam (\p -> neg (app exists
(lam (\x -> conj (app r x) (neg (app p x))))))

forall = forall_ (lam (\x -> true))



For example, the formula ∀x. (like mary) x is represented as follows.

lsenf :: Lambda lrepr => lrepr Bool
lsenf = app forall (lam (\x -> app (app like’ mary’) x))

We interpret these formulas in three ways, as mapped below to the right. The
first is to evaluate them in a model, just as we evaluated English derivations in §2:

Lambda

R

P

C

data R a = R { unR :: a }
instance Lambda R where
john’ = R John
... = ...
app (R f) (R x) = R (f x)
lam f = R (\x -> unR (f (R x)))

The second is to print them as text, but this interpretation (unlike the yield
calculation in §2) cannot compose mere strings: we need two pieces of context,
namely the number of variables already bound i (to generate fresh names) and
the current precedence level p (to minimize printing parentheses).

data C a = C { unC :: Int -> Int -> String }
instance Lambda C where
john’ = C (\i p -> "john’")
... = ...
conj (C x) (C y) = C (\i p -> if p > 3

then "(" ++ x i 4 ++ " ∧ " ++ y i 3 ++ ")"
else x i 4 ++ " ∧ " ++ y i 3 )

exists = C (\i p -> "∃")

We can now choose whether to evaluate an expression to an under-informative
truth value or to print it as an over-informative unnormalized formula:

*Semantics> lsenf :: R Bool
False
*Semantics> lsenf :: C Bool
(λx1. ¬(∃ (λx2. (λx3. >) x2 ∧ ¬(x1 x2)))) (λx1. like’ mary’ x1)

For checking truth conditions, we want to see the formula with obvious simplifi-
cations applied such as β-reductions and removing conjunctions with > (true).
In programming-language terms, we want to partially evaluate the formula. Such
a third interpretation turns out to be easy and elegant to define using Haskell’s
existing computing machinery in types and terms [2]. Actually we define a family
of interpretations P lrepr, parameterized by the interpretation lrepr for the
partially evaluated formula. For lack of space, we only demonstrate the payoff:

*Semantics> lsenf :: (P C) Bool
¬(∃ (λx1. ¬(like’ mary’ x1)))

Finally we link the Lambda language to the Symantics language in §2. Our
partial evaluator P lrepr translates Lambda to Lambda and interprets the result
using lrepr. In CFG.hs, we likewise turn the Sem interpretation in §2.4 into
an interpretation family Sem lrepr that translates Symantics to Lambda and
interprets the result using lrepr. We can then use the pipeline Sem (P C) to
calculate simplified truth conditions, such as like’ mary’ john’ for sentence.



4 Growing languages and interpretations

Our approach scales up to the following map of languages (boxes) and interpre-
tations (arrows). A hooked arrow means that a language is a subset of another.

Symantics

Lambda

Quantifier

Pronoun

Dynamics

States

EN

EN

EN

JA

JA

Sem

Se
m

Sem

D

D

R
C

P

R
C

P
C

P

To the English fragment on the left, we add context-free rules for quantifiers
(whose restrictors may be subject relative clauses) and pronouns. The quantifiers
fragment can also be spelled out in Japanese. (Another way to add quantifiers is
to express Montague’s quantifying in [15] using HOAS.) On the right, to explain
what pronouns mean, we translate the Dynamics language (STT with a con-
stant it’ [12]) to the States language (STT with information states [11]). The
step-by-step extensions are so modular, we can write a lexical entry for every
without anaphora in mind, then reuse it to calculate simplified truth conditions
for donkey sentences such as every farmer who owns a donkey beats it [9]. Ap-
pendix B gives more details. (Barker and Shan’s account of donkey anaphora [1]
and Moortgat’s symmetric categorial grammar [16] can also be expressed.)

To conclude, we have showed a way to use computers to build and test lin-
guistic theories that achieves two kinds of reuse and extensibility. First, we apply
functional programming techniques to embed a syntax-semantics interface in a
typed programming language. The language comes with mature tools for incre-
mental development and interactive testing, which we use to calculate yields
and meanings. Second, we use the language’s modularity facilities to abstract
derivations from ways to interpret them, and to grow our theory without re-
peating code or entangling notation. Our trivial fragment extends step by step
to handle quantification and donkey anaphora. A single derivation can be in-
terpreted in tandem to give a string in English or Japanese, a truth value in a
model, and a formula in classical or dynamic logic. More language fragments and
interpretations (as an audio file or a tree diagram) can be added at any time.

We stand on the shoulders of many existing linguistic formalisms in which
form and meaning build in tandem: Montague grammar, definite clause gram-
mars with semantics [17], Grammatical Framework [19], and abstract categorial
grammars (ACGs) [10]. Our grammars are closest to ACGs because their order
can be arbitrarily high, but we allow interpreting function types. Moreover, we
make no attempt at parsing. Rather, we stress interactive execution and mod-
ular extension in a rational re-exposition of formal semantics. We hope it spurs
more natural- and programming-language researchers to study together ideas [5]
such as side effects, continuations, regions, quotation, and dependent types.



A Automatic visualization of derivation trees

The tree to the right is automatically generated using Graphviz [8] by an addi-
tional instance of Symantics defined in CFG4.hs.

sentence = r1 john (r2 like mary)
john

like mary

r2

r1

B Quantifiers and pronouns in a dynamic logic

This appendix details how to grow the languages and interpretations in §2 and §3
into an analysis of quantificational donkey anaphora.

B.1 Quantifiers

Starting with the English fragment in §2, we add a second transitive verb own

for variety. (Instead of changing the type class Symantics defined in §2.4, we
could define a new type class using the inheritance mechanism described below.)

class Symantics repr where
john, mary :: repr NP
like, own :: repr TV
r2 :: repr TV -> repr NP -> repr VP
r1 :: repr NP -> repr VP -> repr S

instance Symantics EN where
john = EN "John"
mary = EN "Mary"
like = EN "likes"
own = EN "owns"
r2 (EN f) (EN x) = EN (f ++ " " ++ x)
r1 (EN x) (EN f) = EN (x ++ " " ++ f)

The semantics of this fragment is standard. We express it as lambda-terms that
can be evaluated, printed, and simplified – as promised at the end of §3. The
header instance (Lambda lrepr) => Symantics (Sem lrepr) below means
to define an instance Symantics (Sem lrepr) for each instance Lambda lrepr.

data Sem lrepr a = Sem { unSem :: lrepr (Tr a) }

instance (Lambda lrepr) => Symantics (Sem lrepr) where
john = Sem john’
mary = Sem mary’
like = Sem like’
own = Sem own’
r2 (Sem f) (Sem x) = Sem (app f x)
r1 (Sem x) (Sem f) = Sem (app f x)



Next, we add quantifiers. Besides everyone and someone, which we treat as
unrestricted quantifiers, we also add the restricted quantifiers every and a. The
restrictors are expressed by common nouns such as farmer and donkey, so we
add the new syntactic category CN for common nouns, alongside QNP for quantifi-
cational noun phrases. We also add who, which adjoins a subject relative clause
(that is, a VP) to a CN to build a complex CN. Following Montague’s rule number-
ing, an object QNP enters the derivation by the rule r5, and a subject QNP by the
rule r4. The code below is in the file QCFG.hs. The header class (Symantics

repr) => Quantifier repr means to define a type class Quantifier that in-
herits all the members of the type class Symantics.

data CN; data QNP

class (Symantics repr) => Quantifier repr where
farmer, donkey :: repr CN
everyone, someone :: repr QNP
every, a :: repr CN -> repr QNP
who :: repr VP -> repr CN -> repr CN
r5 :: repr TV -> repr QNP -> repr VP
r4 :: repr QNP -> repr VP -> repr S

instance Quantifier EN where
farmer = EN "farmer"
donkey = EN "donkey"
everyone = EN "everyone"
someone = EN "someone"
every (EN n) = EN ("every " ++ n)
a (EN n) = EN ("a " ++ n)
who (EN r) (EN q) = EN (q ++ " who " ++ r)
r5 (EN f) (EN x) = EN (f ++ " " ++ x)
r4 (EN x) (EN f) = EN (x ++ " " ++ f)

We assign completely standard meanings to these new constructions.

type instance Tr CN = Entity -> Bool
type instance Tr QNP = (Entity -> Bool) -> Bool

instance (Lambda lrepr) => Quantifier (Sem lrepr) where
farmer = Sem farmer’
donkey = Sem donkey’
everyone = Sem forall
someone = Sem exists
every (Sem cn) = Sem (forall_ cn)
a (Sem cn) = Sem (exists_ cn)
who (Sem r) (Sem q) = Sem (lam (\x -> conj (app q x) (app r x)))
r5 (Sem tv) (Sem qnp) = Sem (lam (\s -> app qnp

(lam (\o -> app (app tv o) s))))
r4 (Sem qnp) (Sem vp) = Sem (app qnp vp)

Below is an example derivation.

sen5 = r4 (every (who (r5 own (a donkey)) farmer)) (r5 like (a donkey))

We calculate the yield and simplified truth conditions of this sentence.



*QCFG> sen5 :: EN S
every farmer who owns a donkey likes a donkey
*QCFG> sen5 :: Sem (P C) S
¬(∃ (λx1. farmer’ x1 ∧ ∃ (λx2. donkey’ x2 & own’ x2 x1)

∧ ¬(∃ (λx2. donkey’ x2 ∧ like’ x2 x1))))

It is because Quantifier inherits from Symantics that sen5 above can reuse
the definitions and interpretations of donkey and farmer. In fact, we can use any
Symantics derivation (such as sentence in §2.4) as a Quantifier derivation.

B.2 Pronouns

Our final goal is to add pronouns. Our first step towards this goal, following
de Groote [11], is to add to STT a base type State of information states, along
with two operations on them, update and select. The update operation adds
an Entity to a State, and the select operation retrieves an Entity from a
State. Just as the type class Quantifier above inherits from Symantics, the
new type class States below inherits from Lambda.

class (Lambda lrepr) => States lrepr where
update :: lrepr Entity -> lrepr State -> lrepr State
select :: lrepr State -> lrepr Entity

By defining a few instances (in Dynamics.hs, omitted here), we extend our
interpretations of the Lambda language to the States language, so as to evaluate,
print, and simplify lambda-terms that contain update and select. Below is a
demonstration; update is printed as infix :: and select is printed as sel.

*Dynamics> lam (\e -> app (lam (\e’ -> select (update john’ e’)))
(update mary’ e)) :: (P C) (State -> Entity)

λx1. sel (john’ :: mary’ :: x1)

Our second step is to extend STT in a different direction by adding a constant
it’ of type (Entity -> Bool) -> Bool.

class (Lambda lrepr) => Dynamics lrepr where
it’ :: lrepr ((Entity -> Bool) -> Bool)

This new type class Dynamics expresses de Groote’s dynamic logic [12]. However,
where de Groote proliferates connectives such as u for dynamic conjunction in
addition to ∧ for static conjunction, we can reuse the same names such as conj
because the Dynamics language inherits from the Lambda language. This name
overloading is important because it lets us reuse the lexical meanings we have
already specified for the English fragment above. For example, we do not need
to specify another meaning for who in order to interpret it dynamically below.

We interpret the Dynamics language by translating it into the States lan-
guage. That is, we define a family of Dynamics interpretations D lrepr, param-
eterized by a States interpretation lrepr:

type family Dynamic (a :: *)
type instance Dynamic (a -> b) = Dynamic a -> Dynamic b
type instance Dynamic Entity = Entity
type instance Dynamic Bool = State -> (State -> Bool) -> Bool



data D lrepr a = D { unD :: lrepr (Dynamic a) }

instance (States lrepr) => Lambda (D lrepr) where
app (D f) (D x) = D (app f x)
lam f = D (lam (\x -> unD (f (D x))))
john’ = D john’
... = ...
conj (D x) (D y) = D (lam (\e -> lam (\phi -> app (app x e)

(lam (\e -> app (app y e) phi)))))
exists = D (lam (\p -> lam (\e -> lam (\phi -> app exists

(lam (\x -> app (app (app p x) (update x e))
phi))))))

instance (States lrepr) => Dynamics (D lrepr) where
it’ = D (lam (\p -> lam (\e -> lam (\phi ->

app (app (app p (select e)) e) phi))))

The type function Dynamic, like the type function Tr in §2.3, specifies that,
for example, the interpretation of farmer’ in States has the type Entity ->

State -> (State -> Bool) -> Bool.
Finally, we are ready to add a pronoun it_ to our English fragment.

class (Quantifier repr) => Pronoun repr where
it_ :: repr QNP

instance Pronoun EN where
it_ = EN "it"

instance (Dynamics lrepr) => Pronoun (Sem lrepr) where
it_ = Sem it’

We derive the classic donkey sentence in this fragment.

sen6 = r4 (every (who (r5 own (a donkey)) farmer)) (r5 like it_)

We calculate the yield and simplified truth conditions of this sentence.

*Dynamics> sen6 :: EN S
every farmer who owns a donkey likes it
*Dynamics> sen6 :: Sem (D (P C)) S
λx1. λx2. ¬(∃ (λx3. farmer’ x3 ∧ ∃ (λx4. donkey’ x4 ∧ own’ x4 x3

∧ ¬(like’ (sel (x4::x3::x1)) x3))))
∧ x2 x1

By defining two more short instances (in Dynamics.hs, omitted here), we can
also simplify formulas in the dynamic logic while treating it’ as a primitive:

*Dynamics> sen6 :: Sem (P C) S
¬(∃ (λx1. farmer’ x1 ∧ ∃ (λx2. donkey’ x2 ∧ own’ x2 x1)

∧ ¬(it (λx2. like’ x2 x1))))
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