QNP Textual Entailment with Polynomial Event Semantics

Oleg Kiselyov Haruki Watanabe

Tohoku University, Japan

LENLS
November 13, 2021

Outline

- Introduction

Generalized Quantifiers

Copula Clauses

Existence and Subject Relative Clauses

Conclusions

Overview

FraCaS Textual Entailment \& Event Semantics

+ Event semantics is good for textual entailment
- FraCaS (Sec 1) has a whole variety of quantifiers:
- a, some, every, all,
- several, many, at least three,
- no, at most ten,
- most, few

Event semantics is not good at quantifiers
? FraCaS (Sec 1) has copula, existence and relative clauses: not action sentences
Does event semantics even apply?

Overview

FraCaS Textual Entailment \& Event Semantics

+ Event semantics is good for textual entailment
- FraCaS (Sec 1) has a whole variety of quantifiers:
- a, some, every, all,
- several, many, at least three,
- no, at most ten,
- most, few

Event semantics is not good at quantifiers
? FraCaS (Sec 1) has copula, existence and relative clauses: not action sentences Does event semantics even apply?

Polynomial Event Semantics

Event semantics meant to deal with quantifiers (at least simple universal and existential)

Outline

Introduction

- Generalized Quantifiers

Negative Quantification and Downward Monotonicity Negation Many, Most, Few

Copula Clauses

Existence and Subject Relative Clauses

Conclusions

FraCaS

The poster problem
FraCaS 023

Some delegates finished the survey on time.
Some delegates finished the survey.

Goal
Check the entailment of the last sentence of the problem from the preceding sentences

Polynomial Event Semantics

Some delegates finished the survey on time.
$\left(\right.$ subj $^{\prime} /\left(\mathcal{G}_{\mathrm{N}>1}\right.$ Delegate $\left.)\right) \sqcap\left(\mathcal{P}\left\{\right.\right.$ Finished $\left.\left.^{\prime}\right\}\right) \sqcap$ $\left(\right.$ ob1 $\left.^{\prime} /(\mathcal{P S u r v e y})\right) \sqcap\left(\mathcal{P}\left\{\right.\right.$ OnTime $\left.\left.^{\prime}\right\}\right)$

Polynomial Event Semantics

Some delegates finished the survey on time.
subj $^{\prime} / \mathcal{G}_{\mathrm{N}>1}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap$ ob1 ${ }^{\prime} / \mathcal{P}$ Survey $\sqcap \mathcal{P}\left\{\right.$ OnTime $\left.^{\prime}\right\}$

Polynomial Event Semantics

Some delegates finished the survey on time.

$$
\begin{aligned}
& \text { subj }^{\prime} / \mathcal{G}_{\mathrm{N}>1} \text { Delegate } \sqcap \mathcal{P}\left\{\text { Finished }{ }^{\prime}\right\} \sqcap \\
& \text { ob1 } 1^{\prime} / \mathcal{P} \text { Survey } \sqcap \mathcal{P}\left\{\text { OnTime }^{\prime}\right\}
\end{aligned}
$$

- Sets of individuals (concepts): Delegate, Survey
- Sets of events: Finished', OnTime ${ }^{\prime}$
- Sets of non-empty event sets (e-concepts): \{Finished'\}
- Turn (inject) concepts to polyconcepts: \mathcal{P}
- Grouping: \mathcal{G}_{N} (in fact, $\mathcal{P}=\mathcal{G}_{1}$)
- Thematic functions and relations: subj', ob1' ${ }^{\prime}$
- Polyconcept intersection: \sqcap

Polynomial Event Semantics

Some delegates finished the survey on time.
subj $^{\prime} / \mathcal{G}_{\mathrm{N}>1}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap$ ob1 ${ }^{\prime} / \mathcal{P}$ Survey $\sqcap \mathcal{P}\left\{\right.$ OnTime $\left.^{\prime}\right\}$

- Denotation is not a (FOL, Ty2) logic formula
- No variables (no event variable)
- The denotation is a query (of a database of events in the world)
- Its result is the set of events which witness the sentence

Polynomial Event Semantics

Some delegates finished the survey on time.

$$
\begin{aligned}
& \text { subj }^{\prime} / \mathcal{G}_{\mathrm{N}>1} \text { Delegate } \sqcap \mathcal{P}\left\{\text { Finished }{ }^{\prime}\right\} \sqcap \\
& \text { ob } 1^{\prime} / \mathcal{P} \text { Survey } \sqcap \mathcal{P}\left\{\text { OnTime }^{\prime}\right\}
\end{aligned}
$$

- Compositional (denotation matches the sentence, in form)
- Each constituent is represented by a polyconcept
- quantifiers analyzed in situ

Polynomial Event Semantics: Entailment

Some delegates finished the survey on time.

$$
\begin{aligned}
& \text { subj }^{\prime} / \mathcal{G}_{\mathrm{N}>1} \text { Delegate } \sqcap \mathcal{P}\left\{\text { Finished }{ }^{\prime}\right\} \sqcap \\
& \text { ob1 }^{\prime} / \mathcal{P} \text { Survey } \sqcap \mathcal{P}\left\{\text { OnTime }^{\prime}\right\}
\end{aligned}
$$

Some delegates finished the survey.
subj $^{\prime} / \mathcal{G}_{\mathrm{N}>1}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.^{\prime}\right\} \sqcap$ ob1' / PSurvey

Polynomial Event Semantics: Entailment

Some delegates finished the survey on time.

$$
\begin{aligned}
& \text { subj }^{\prime} / \mathcal{G}_{\mathrm{N}>1} \text { Delegate } \sqcap \mathcal{P}\left\{\text { Finished }{ }^{\prime}\right\} \sqcap \\
& \text { ob1'} / \mathcal{P} \text { Survey } \sqcap \mathcal{P}\left\{\text { OnTime }^{\prime}\right\}
\end{aligned}
$$

Some delegates finished the survey.
subj $^{\prime} / \mathcal{G}_{\mathrm{N}>1}$ Delegate $\sqcap \mathcal{P}\{$ Finished' $\} \sqcap$
ob1' / PSurvey
$Q_{1} \Longrightarrow Q_{2}$ iff
$Q_{1} \neq \perp \Longrightarrow Q_{2} \neq \perp \quad$ for any event database

Polynomial Event Semantics: Entailment

Some delegates finished the survey on time.

$$
\begin{aligned}
& \text { subj }^{\prime} / \mathcal{G}_{\mathrm{N}>1} \text { Delegate } \sqcap \mathcal{P}\left\{\text { Finished }{ }^{\prime}\right\} \sqcap \\
& \text { ob1 } 1^{\prime} / \mathcal{P} \text { Survey } \sqcap \mathcal{P}\left\{\text { OnTime }^{\prime}\right\}
\end{aligned}
$$

Some delegates finished the survey.

$$
\begin{array}{r}
\text { subj }^{\prime} / \mathcal{G}_{\mathrm{N}>1} \text { Delegate } \sqcap \mathcal{P}\left\{\text { Finished }^{\prime}\right\} \sqcap \\
\text { ob1 }^{\prime} / \mathcal{P} \text { Survey }
\end{array}
$$

$$
\text { Algebraically: } x \sqcap y \Longrightarrow x
$$

Didn't even need to know what \mathcal{G}_{N} is exactly

A bit of formality

\sqcap : basically, like set intersection

$$
\begin{gathered}
c_{1} \sqcap c_{2}=c_{1} \cap c_{2} \quad \mathcal{P} d_{1} \sqcap \mathcal{P} d_{2}=\mathcal{P}\left(d_{1} \sqcap d_{2}\right) \\
d_{1} \sqcap d_{2}=\left\{c_{1} \cap c_{2} \mid c_{1} \in d_{1}, c_{2} \in d_{2}, c_{1} \cap c_{2} \neq \varnothing\right\} \\
\mathcal{P} d=\perp \text { iff } d=\varnothing
\end{gathered}
$$

Grouping

$$
\mathcal{G}_{N} d_{1} \sqcap \mathcal{P} d_{2}=\mathcal{G}_{N}\left(d_{1} \sqcap\left\{\cup d_{2}\right\}\right) \quad \mathcal{G}_{N} d=\perp \text { iff }|d|<N
$$

A bit of formality

$$
\begin{array}{r}
\text { subj }^{\prime} / \mathcal{G}_{\mathrm{N}>1} \text { Delegate } \sqcap \mathcal{P}\left\{\text { Finished }^{\prime}\right\} \sqcap \\
\text { ob1 } 1^{\prime} /(\mathcal{P} \text { Survey }) \\
=\mathcal{G}_{N}\left(\text { subj }^{\prime} / \text { Delegate } \sqcap\left\{\text { Finished }^{\prime} \cap \bigcup \text { ob1 }^{\prime} / \text { Survey }\right\}\right) \\
=\mathcal{G}_{N}\left\{\text { nonempty subj' } / i_{d} \cap \text { Finished }^{\prime} \cap \bigcup \text { ob1 }^{\prime} / \text { Survey } \mid\right. \\
\left.i_{d} \in \text { Delegate }\right\}
\end{array}
$$

non- \perp just in case there are records in the event database of at least N delegates having finished the survey

Solved Similarly

017 An Irishman won the Nobel prize for literature. An Irishman won a Nobel prize.

024 Many delegates obtained interesting results from the survey.
Many delegates obtained results from the survey.
025 Several delegates got the results published in major national newspapers.
Several delegates got the results published.
031 At least three commissioners spend a lot of time at home. At least three commissioners spend time at home.

$$
\text { Just by } \quad x \sqcap y \Longrightarrow x
$$

Negative Quantification

No delegate finished the report on time.
No delegate finished the report.

Negative Quantification

> No delegate finished the report on time. subj $^{\prime} / \neg \mathcal{P}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P}$ Report $\sqcap \mathcal{P}\left\{\right.$ OnTime $\left.^{\prime}\right\}$

No delegate finished the report. subj $^{\prime} / \neg \mathcal{P}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap$ ob1' / \mathcal{P} Report

- Query for a counter-examples (refutation)
- $\neg x$: set (polyconcept) marked as a refutation

Negative Quantification

No delegate finished the report on time.
$\neg\left(\right.$ subj $^{\prime} / \mathcal{P}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.^{\prime}\right\} \sqcap$ ob1' $/ \mathcal{P}$ Report $\sqcap \mathcal{P}\left\{\right.$ OnTime $\left.^{\prime}\right\}$)

No delegate finished the report.
\neg subj $^{\prime} / \mathcal{P}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap$ ob1 ${ }^{\prime} / \mathcal{P}$ Report)

- Query for a counter-examples (refutation)
- $\neg x$: set (polyconcept) marked as a refutation
- Entailment of refutations

Downward Monotonicity

At most ten commissioners spend a lot of time at home.

At most ten commissioners spend time at home.

Downward Monotonicity

At most ten commissioners spend a lot of time at home.

At most ten commissioners spend time at home.

$$
\text { AtMost10 } c=\neg\left(\mathcal{G}_{11} c\right)
$$

Solved Similarly

038 No delegate finished the report.
Some delegate finished the report on time.
070 No delegate finished the report on time. Some Scandinavian delegate finished the report on time.

Negation

- Negative quantification
- Sentential negation: "It is not the case that"
- VP negation

Negation

- Negative quantification
- Sentential negation: "It is not the case that"
- VP negation
negative sentences mean what they deny
- Affirmative sentence: affirms certain events
- A sentence with negation: denies certain events and whose appearance would thus cause contradiction

Analysis of Negation

A delegate finished no report.
A delegate didn't finish a report.
A delegate didn't finish any report.
A delegate didn't FINISH a report.

Analysis of Negation

A delegate finished no report.
subj' / PDelegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap \neg$ ob1 $^{\prime} / \mathcal{P R}$ Report
A delegate didn't finish a report.
A delegate didn't finish any report.
A delegate didn't FINISH a report.

Analysis of Negation

A delegate finished no report.
$\bigsqcup_{i \in \text { Delegate }} \neg \bigsqcup_{j \in \text { Report }}$ subj $^{\prime} / i \cap$ Finished $^{\prime} \cap$ ob1 $^{\prime} / j$
A delegate $d i d n ' t$ finish a report.
A delegate didn't finish any report.
A delegate didn't FINISH a report.

Analysis of Negation

A delegate finished no report. subj' $/ \mathcal{P}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap \neg$ ob1 $^{\prime} / \mathcal{P R e p o r t}$

A delegate didn't finish a report.
subj' / P Delegate $\sqcap \neg \mathcal{P}\left\{\right.$ Finished $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P}$ Report
A delegate didn't finish any report.
A delegate didn't FINISH a report.

Analysis of Negation

A delegate finished no report.

A delegate didn't finish a report.
$\bigsqcup_{i \in \text { Delegate }} \bigsqcup_{j \in \text { Report }} \neg$ (subj $^{\prime} / i \cap$ Finished $^{\prime} \cap$ ob1 $\left.^{\prime} / j\right)$
A delegate didn't finish any report.
A delegate didn't FINISH a report.

Analysis of Negation

A delegate finished no report. subj' / PDelegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap \neg$ ob1 $^{\prime} / \mathcal{P}$ Report

A delegate didn't finish a report.
subj' / PDelegate $\sqcap \neg \mathcal{P}\left\{\right.$ Finished $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P R e p o r t}$
A delegate didn't finish any report.
subj' / PDelegate $\sqcap \neg \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap \neg$ ob1 $^{\prime} / \mathcal{P}$ Report
A delegate didn't FINISH a report.

Analysis of Negation

A delegate finished no report.

A delegate didn't finish a report.

A delegate didn't finish any report.

A delegate didn't FINISH a report.

Analysis of Negation

A delegate finished no report.
subj' $/ \mathcal{P}$ Delegate $\sqcap \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap \neg$ ob1 $^{\prime} / \mathcal{P}$ Report
A delegate didn't finish a report. subj' / \mathcal{P} Delegate $\sqcap \neg \mathcal{P}\left\{\right.$ Finished $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P}$ Report

A delegate didn't finish any report. subj $^{\prime} / \mathcal{P}$ Delegate $\sqcap \neg \mathcal{P}\left\{\right.$ Finished $\left.{ }^{\prime}\right\} \sqcap \neg$ ob1 $^{\prime} / \mathcal{P}$ Report

A delegate didn't FINISH a report.
$\ldots \sqcap\left(\right.$ action $^{\prime} / \mathcal{P}$ Action $\otimes \neg$ action $^{\prime} /\{$ finished $\left.\}\right) ~ \sqcap \ldots$

many problems

Many British delegates obtained interesting results
from the survey.
Many delegates obtained interesting results from the survey.

many problems

Many British delegates obtained interesting results
from the survey.
Many delegates obtained interesting results from the survey.

Many $c=\mathcal{G}_{N} c$
or
Many $c=\mathcal{G}_{\alpha|c|} c$

many problems

Many British delegates obtained interesting results
from the survey.
Many delegates obtained interesting results from the survey.

Many $c=\mathcal{G}_{N} c \quad$ or \quad Many $c=\mathcal{G}_{\alpha|c|} c$

Most $c=\mathcal{G}_{\alpha|c|} c \quad$ where $\alpha>0.5$

many problems

Many British delegates obtained interesting results
from the survey.
Many delegates obtained interesting results from the survey.

Many $c=\mathcal{G}_{N} c$
or
Many $c=\mathcal{G}_{\alpha|c|} c$

Most $c=\mathcal{G}_{\alpha|c|} c \quad$ where $\alpha>0.5$
Few $c=\neg($ Many $c)$

Outline

Introduction

Generalized Quantifiers
Negative Quantification and Downward Monotonicity Negation
Many, Most, Few

- Copula Clauses

Existence and Subject Relative Clauses

Conclusions

Copular Clauses

A Swede won a Nobel prize.
Every Swede is a Scandinavian.
A Scandinavian won a Nobel prize.

Outline

Introduction

Generalized Quantifiers

Copula Clauses

- Existence and Subject Relative Clauses

Conclusions

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
There was an Italian who became the world's greatest tenor.

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed.

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed.
world's greatest tenor
WGT

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed.
became the world's greatest tenor
$\mathcal{P}\left\{\right.$ Became $\left.^{\prime}\right\} \sqcap \mathrm{ob}^{\prime} / \mathcal{P}$ WGT

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed.
who became the world's greatest tenor $\overline{\text { subj }}^{\prime} /\left(\mathcal{P}\left\{\right.\right.$ Became $\left.^{\prime}\right\} \sqcap \mathrm{obl}^{\prime} / \mathcal{P}$ WGT $)$

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed.

> who became the world's greatest tenor $\overline{\text { subj}^{\prime}} /\left(\mathcal{P}\left\{\right.\right.$ Became $\left.^{\prime}\right\} \sqcap \mathrm{ob}^{\prime} / \mathcal{P}$ WGT $)$

$$
\text { (a) } \overline{\text { subj}}^{\prime} / \text { subjj}^{\prime} / c=c \quad \text { (b) } \quad d \Longrightarrow \text { subj }^{\prime} /{\overline{\operatorname{subj}^{\prime}}}^{\prime} / d
$$

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed. subj' $/\left(\mathcal{P}\right.$ Italian $\sqcap\left(\overline{\text { subj }}^{\prime} /\left(\mathcal{P}\left\{\right.\right.\right.$ Became $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P}$ WGT $\left.\left.)\right)\right)$
$\sqcap \mathcal{P}\left\{\mathrm{Be}^{\prime}\right\}$
(a) $\overline{\operatorname{subj}^{\prime}} /$ subj $^{\prime} / c=c$
(b) $d \Longrightarrow$ subj $^{\prime} / \overline{\text { subj }}^{\prime} / d$

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed. subj' / ($\overline{\text { subj }}^{\prime} /$ subj' $/ \mathcal{P}$ Italian Π $\left(\overline{\text { subj }}^{\prime} /\left(\mathcal{P}\left\{\right.\right.\right.$ Became $\left.^{\prime}\right\} \sqcap \mathrm{ob1}^{\prime} / \mathcal{P}$ WGT $\left.\left.)\right)\right) \sqcap \mathcal{P}\left\{\mathrm{Be}^{\prime}\right\}$
(a) $\overline{\text { subj }}^{\prime} /$ subj $^{\prime} / c=c$
(b) $d \Longrightarrow$ subj $^{\prime} / \overline{\text { subj }}^{\prime} / d$

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor.
An Italian who became the world's greatest tenor existed. subj' / $\overline{\text { subj }}^{\prime} /\left(\right.$ subj $^{\prime} / \mathcal{P}$ Italian $\sqcap \mathcal{P}\left\{\right.$ Became $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P}$ WGT $)$
$\sqcap \mathcal{P}\left\{\mathrm{Be}^{\prime}\right\}$

$$
\text { (a) } \overline{\text { subj}^{\prime}} / \operatorname{subj}^{\prime} / c=c \quad \text { (b) } \quad d \Longrightarrow \text { subj }^{\prime} / \overline{\operatorname{subj}^{\prime}} / d
$$

Existence and Subject Relative Clauses

An Italian became the world's greatest tenor. subj $^{\prime} / \mathcal{P}$ Italian $\sqcap \mathcal{P}\left\{\right.$ Became $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P}$ WGT

An Italian who became the world's greatest tenor existed. subj' $/ \overline{\text { subj }}^{\prime} /\left(\right.$ subj $^{\prime} / \mathcal{P}$ Italian $\sqcap \mathcal{P}\left\{\right.$ Became $\left.^{\prime}\right\} \sqcap$ ob1 $^{\prime} / \mathcal{P}$ WGT)
$\sqcap \mathcal{P}\left\{\mathrm{Be}^{\prime}\right\}$

$$
\text { (a) } \overline{\operatorname{subj}}^{\prime} / \operatorname{subj}^{\prime} / c=c \quad \text { (b) } \quad d \Longrightarrow \operatorname{subj}^{\prime} / \overline{\operatorname{subj}}^{\prime} / d
$$

Outline

Introduction

Generalized Quantifiers
Negative Quantification and Downward Monotonicity Negation
Many, Most, Few

Copula Clauses

Existence and Subject Relative Clauses

- Conclusions

Conclusions

- Polynomial event semantics applied to textual entailment problems in Sec. 1 of FraCaS
- Prior work extended to the gamut of GQ, copula, existential, and subject relative clauses
- Polynomial event semantics as algebra
- Deductive system for deciding entailments

Future work
The mechanical implementation

