Polynomial Event Semantics

Negation

Oleg Kiselyov

Tohoku University, Japan

LENLS
November 16, 2020
Outline

► Introduction

Event Quantification Problem

Polynomial Event Semantics
 Existential Quantification

Negative Quantification, Negation and Ambiguities

Conclusions
Summary

An interpretation of Neo-Davidsonian semantics in which the event quantification problem does not even arise

- Denotations are constructed strictly compositionally, following the structure of the sentence
- Quantifiers are analyzed in situ
Summary

An interpretation of Neo-Davidsonian semantics in which the event quantification problem does not even arise

- Denotations are constructed strictly compositionally, following the structure of the sentence
- Quantifiers are analyzed in situ
- No movement, no lifting, no type raising

Analysis of Quantifier/Negation ambiguities
Summary

An interpretation of Neo-Davidsonian semantics in which the event quantification problem does not even arise

- Denotations are constructed strictly compositionally, following the structure of the sentence
- Quantifiers are analyzed in situ
- No movement, no lifting, no type raising
- No lambda-calculus, no variables
Summary

An interpretation of Neo-Davidsonian semantics in which the event quantification problem does not even arise

- Denotations are constructed strictly compositionally, following the structure of the sentence
- Quantifiers are analyzed in situ
- No movement, no lifting, no type raising
- No lambda-calculus, no variables
- Still a Neo-Davidsonian event semantics: VP modification ‘for free’
An interpretation of Neo-Davidsonian semantics in which the event quantification problem does not even arise

- Denotations are constructed strictly compositionally, following the structure of the sentence
- Quantifiers are analyzed in situ
- No movement, no lifting, no type raising
- No lambda-calculus, no variables
- Still a Neo-Davidsonian event semantics: VP modification ‘for free’
- Analysis of Quantifier/Negation ambiguities
Outline

Introduction

► Event Quantification Problem

Polynomial Event Semantics
 Existential Quantification

Negative Quantification, Negation and Ambiguities

Conclusions
Neo-Davidsonian Semantics

- Brutus stabbed Caesar
- Brutus stabbed Caesar violently
Neo-Davidsonian Semantics

Brutus stabbed Caesar

\[\exists e. \text{stabbed}(e) \land \text{th}(e) = \text{caesar} \land \text{ag}(e) = \text{brutus} \]

Brutus stabbed Caesar violently
Neo-Davidsonian Semantics

- Brutus stabbed Caesar

\[\exists e. \text{stabbed}(e) \land \text{th}(e) = \text{caesar} \land \text{ag}(e) = \text{brutus} \]

- Brutus stabbed Caesar violently
Neo-Davidsonian Semantics

- Brutus stabbed Caesar

 \[\exists e. \text{stabbed}(e) \land \text{th}(e) = \text{caesar} \land \text{ag}(e) = \text{brutus} \]

- Brutus stabbed Caesar violently

 \[\exists e. \text{stabbed}(e) \land \text{th}(e) = \text{caesar} \land \text{ag}(e) = \text{brutus} \land \text{violent}(e) \]
Quantification Problem

- Brutus stabbed every senator
Quantification Problem

- Brutus stabbed every senator

\[\exists e. \forall x. \text{senator}(x) \Rightarrow \text{stabbed}(e) \land \text{th}(e) = x \land \text{ag}(e) = \text{brutus} \]
Quantification Problem

- Brutus stabbed every senator

\[\exists e. \forall x. \text{senator}(x) \Rightarrow \text{stabbed}(e) \land \text{th}(e) = x \land \text{ag}(e) = \text{brutus} \]

‘Collective’ reading only
Negation/Negative Quantification Problem

▶ Brutus stabbed Caesar

\[\exists e. \text{stabbed}(e) \land \text{th}(e) = \text{caesar} \land \text{ag}(e) = \text{brutus} \]

▶ Brutus stabbed nobody
Negation/Negative Quantification Problem

- Brutus stabbed Caesar
 \[\exists e. \text{stabbed}(e) \land \text{th}(e) = \text{caesar} \land \text{ag}(e) = \text{brutus} \]

- Brutus stabbed nobody
 \[\exists e. \neg \exists x. \text{human}(x) \land \text{stabbed}(e) \land \text{th}(e) = x \land \text{ag}(e) = \text{brutus} \]
Negation/Negative Quantification Problem

- Brutus stabbed Caesar
 \[\exists e. \text{stabbed}(e) \land \text{th}(e) = \text{caesar} \land \text{ag}(e) = \text{brutus} \]

- Brutus stabbed nobody
 \[\exists e. \neg \exists x. \text{human}(x) \land \text{stabbed}(e) \land \text{th}(e) = x \land \text{ag}(e) = \text{brutus} \]

Sentences are contradictory, but denotations aren’t
Event Quantification Problem

The problem of scoping of the existential closure with respect to other quantificational phrases
Resolutions so far

Scope Domain Principle

The existential quantifier for the event variable obligatory takes the lowest scope

Implementation: Movement of the QP

(Syntactic) QR: movement because we say so

(ACG) Assigning types in the creative way, so the movement happens when computing surface form

(Semantic) Type raising in the creative way, so the movement happens when normalizing the (Montagovian) denotation
Resolutions so far

Scope Domain Principle

The existential quantifier for the event variable obligatory takes the lowest scope

Implementation: Movement of the QP

(Syntactic) QR: movement because we say so

(ACG) Assigning types in the creative way, so the movement happens when computing surface form

(Semantic) Type raising in the creative way, so the movement happens when normalizing the (Montagovian) denotation
Resolutions so far

Scope Domain Principle

The existential quantifier for the event variable obligatory takes the lowest scope

Implementation: Movement of the QP

(Syntactic) QR: movement because we say so

(ACG) Assigning types in the creative way, so the movement happens when computing surface form

(Semantic) Type raising in the creative way, so the movement happens when normalizing the (Montagovian) denotation

What to do when existential closure doesn’t take the lowest scope?
Outline

Introduction

Event Quantification Problem

► Polynomial Event Semantics
 Existential Quantification

Negative Quantification, Negation and Ambiguities

Conclusions
Polynomial Event Semantics

- Brutus stabbed Caesar
- Brutus stabbed Caesar violently
Polynomial Event Semantics

- Brutus stabbed Caesar

$$\text{subj }/\text{brutus } \Box \text{Stabbed} \Box \text{ob1 }/\text{caesar}$$

- Brutus stabbed Caesar violently
Polynomial Event Semantics

- Brutus stabbed Caesar

 \[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar} \]

- Brutus stabbed Caesar violently

 \[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar} \sqcap \text{Violently} \]
Polynomial Event Semantics

- Brutus stabbed Caesar

 \[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar} \]

- Brutus stabbed Caesar violently

 \[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar} \sqcap \text{Violently} \]

Entailment just from the properties of \(\sqcap \)
Polynomial Event Semantics

- Brutus stabbed Caesar

\[
\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar}
\]

Observations

- The truth value of a sentence is the set of evidence for it (the support set)
- The query is denotation
- No existential closure (and no variables either)
- Structure of denotation matches the structure of the sentence
Existential Quantification: Motivation

The truth value of a sentence is the set of witnesses for it

▶ Brutus stabbed Caesar

subj′/brutus △ Stabbed △ ob1′/caesar
Existential Quantification: Motivation

The truth value of a sentence is the set of witnesses for it.

- Brutus stabbed Caesar

\[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{obl}'/\text{caesar} \]

- Brutus stabbed somebody
Existential Quantification: Motivation

The truth value of a sentence is the set of witnesses for it

- Brutus stabbed Caesar
 \[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar}\]

- Brutus stabbed somebody
 1. \[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \\sqcap\]
 \[\text{(ob1}'/\text{Caesar} \sqcup \text{ob1}'/\text{Antonius} \sqcup \ldots)\]
Existential Quantification: Motivation

The truth value of a sentence is the set of witnesses for it

- Brutus stabbed Caesar

 \[\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar} \]

- Brutus stabbed somebody
 1. \(\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \)
 \(\text{(ob1}'/\text{Caesar} \sqcup \text{ob1}'/\text{Antonius} \sqcup \ldots) \)
 2. \((\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{Caesar}) \sqcup \)
 \((\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{Antonius}) \sqcup \ldots \)
Factors

Factor
A collection of events grouped according to some criterion (e.g., by the common theme)

- Grouping of events into sets of alternatives
- The truth value of a sentence is a set of factors of witnessing events

Notation

- c: concept: a set of events
- x, y: polyconcept: a set of factors
- $\mathcal{P}c = \{c\}$
- $x \sqcup y = x \cup y$
- $x \sqcap y = \{c_x \cap c_y \mid c_x \in x, c_y \in y\}$
Polynomial Semantics

Brutus stabbed Caesar

\[
P \text{subj}'/\text{brutus} \cap P \text{Stabbed} \cap P \text{ob1}'/\text{caesar} \\
= \ P(\text{subj}'/\text{brutus} \cap \text{Stabbed} \cap \text{ob1}'/\text{caesar})
\]

\text{ob1}'/\text{caesar} \quad \text{concept: events with Caesar as a theme}

\[P \text{ob1}'/\text{caesar} = \{\text{ob1}'/\text{caesar}\} \quad \text{singleton polyconcept}\]
Polynomial Semantics

Brutus stabbed Caesar

\[P_{\text{subj}'/\text{brutus}} \cap P_{\text{Stabbed}} \cap P_{\text{ob1}'/\text{caesar}} = P(\text{subj}'/\text{brutus} \cap \text{Stabbed} \cap \text{ob1}'/\text{caesar}) \]

\begin{align*}
\text{ob1}'/\text{caesar} & \quad \text{concept: events with Caesar as a theme} \\
P \text{ ob1}'/\text{caesar} & = \{\text{ob1}'/\text{caesar}\} \quad \text{singleton polyconcept} \\
\text{ob1}'/\text{Human} & = ???
\end{align*}
Polynomial Semantics

Brutus stabbed Caesar

\[\mathcal{P} \text{{subj}}'/\text{brutus} \cap \mathcal{P} \text{Stabbed} \cap \mathcal{P} \text{{obl}}'/\text{caesar} \]
\[= \mathcal{P}(\text{{subj}}'/\text{brutus} \cap \text{Stabbed} \cap \text{{obl}}'/\text{caesar}) \]

- \text{obl}'/\text{caesar} concept: events with Caesar as a theme
- \(\mathcal{P} \text{ obl}'/\text{caesar} = \{\text{obl}'/\text{caesar}\} \) singleton polyconcept
- \text{obl}'/\text{Human} = \{\text{obl}'/i \mid i \in \text{Human}\} \) a factor per human
Polynomial Semantics

Brutus stabbed Caesar

\[\mathcal{P} \text{subj}'/\text{brutus} \cap \mathcal{P} \text{Stabbed} \cap \mathcal{P} \text{ob1}'/\text{caesar} \]

\[= \mathcal{P}(\text{subj}'/\text{brutus} \cap \text{Stabbed} \cap \text{ob1}'/\text{caesar}) \]

\text{ob1}'/\text{caesar} \quad \text{concept: events with Caesar as a theme}
\text{\mathcal{P} ob1}'/\text{caesar} \quad = \{\text{ob1}'/\text{caesar}\} \quad \text{singleton polyconcept}
\text{ob1}'/\text{Human} \quad = \{\text{ob1}'/i \mid i \in \text{Human}\} \quad \text{a factor per human}
\\text{\mathcal{N} x} \quad = \mathcal{P} \bigcup x
\text{\mathcal{N} ob1}'/\text{Human} \quad = \mathcal{P}\{i' \mid \text{ob1}'(i', i), i \in \text{Human}\} \quad \text{singleton}
Brutus stabbed somebody

1. $\mathcal{P} \text{subj}^\prime/\text{brutus} \cap \mathcal{P} \text{Stabbed} \cap \mathcal{N} \text{ob1}^\prime/\text{Human}$

 $= \text{subj}^\prime/\text{brutus} \cap \text{Stabbed} \cap$

 $(\text{ob1}^\prime/\text{Caesar} \cup \text{ob1}^\prime/\text{Antonius} \cup \ldots)$

2. $\mathcal{P} \text{subj}^\prime/\text{brutus} \cap \mathcal{P} \text{Stabbed} \cap \text{ob1}^\prime/\text{Human}$

 $= (\text{subj}^\prime/\text{brutus} \cap \text{Stabbed} \cap \text{ob1}^\prime/\text{Caesar}) \cup$

 $(\text{subj}^\prime/\text{brutus} \cap \text{Stabbed} \cap \text{ob1}^\prime/\text{Antonius}) \cup \ldots$

Both denotations are built compositionally
Entailments

▶ Brutus stabbed somebody
 1a. \(P \text{ subj}'/\text{brutus} \sqcap P \text{ Stabbed} \sqcap N \text{ ob1}'/\text{Human} \)
 1b. \(P \text{ subj}'/\text{brutus} \sqcap P \text{ Stabbed} \sqcap \text{ob1}'/\text{Human} \)

▶ Brutus stabbed somebody violently
 2a. \(P \text{ subj}'/\text{brutus} \sqcap P \text{ Stabbed} \sqcap N \text{ ob1}'/\text{Human} \sqcap P \text{ Violently} \)
 2b. \(P \text{ subj}'/\text{brutus} \sqcap P \text{ Stabbed} \sqcap \text{ob1}'/\text{Human} \sqcap P \text{ Violently} \)

\[2a \Rightarrow 1a \]
\[2b \Rightarrow 1b \]
\[1b \Rightarrow 1a \]
\[2b \Rightarrow 2a \]
Outline

Introduction

Event Quantification Problem

Polynomial Event Semantics

Existential Quantification

- Negative Quantification, Negation and Ambiguities

Conclusions
How to Witness Non-existence

- Brutus stabbed nobody
- Brutus stabbed nobody violently

Refutation

- Technically, a negative factor
- The truth value is a set of witnesses and a set of refutations
How to Witness Non-existence

- Brutus stabbed nobody
- Brutus stabbed nobody violently

Refutation

- Technically, a negative factor
- The truth value is a set of witnesses and a set of refutations
How to Witness Non-existence

- Brutus stabbed nobody

 1. \(P_{\text{subj'}/\text{brutus}} \cap P_{\text{Stabbed}} \cap \lnot N_{\text{ob1'}/\text{Human}} \)

- Brutus stabbed nobody violently

Refutation

- Technically, a negative factor

- The truth value is a set of witnesses and a set of refutations
How to Witness Non-existence

- Brutus stabbed nobody

 1. $\mathcal{P}_{subj'/brutus} \cap \mathcal{P}_{Stabbed} \cap \neg \mathcal{N}_{ob1'/Human}$

 $= \neg \mathcal{P}(\mathcal{P}_{subj'/brutus} \cap \mathcal{P}_{Stabbed} \cap \bigcup ob1'/Human)$

- Brutus stabbed nobody violently

 2. $\mathcal{P}_{subj'/brutus} \cap \mathcal{P}_{Stabbed} \cap \neg \mathcal{N}_{ob1'/Human} \cap \mathcal{P}_{Violently}$

 $= \neg \mathcal{P}(\mathcal{P}_{subj'/brutus} \cap \mathcal{P}_{Stabbed} \cap \mathcal{P}_{Violently} \cap \bigcup ob1'/Human)$

Refutation

- Technically, a negative factor
- The truth value is a set of witnesses and a set of refutations
How to Witness Non-existence

- Brutus stabbed nobody

 1. \(P_{\text{subj'}/\text{brutus}} \cap P_{\text{Stabbed}} \cap \neg N_{\text{ob1'/Human}} \)

 \[= \neg P(\text{subj'}/\text{brutus} \cap \text{Stabbed} \cap \bigcup \text{ob1'/Human}) \]

- Brutus stabbed nobody violently

 2. \(P_{\text{subj'}/\text{brutus}} \cap P_{\text{Stabbed}} \cap \neg N_{\text{ob1'/Human}} \cap P_{\text{Violently}} \)

 \[= \neg P(\text{subj'}/\text{brutus} \cap \text{Stabbed} \cap \text{Violently} \cap \bigcup \text{ob1'/Human}) \]

\[1 \Rightarrow 2 \]

Refutation

- Technically, a negative factor
- The truth value is a set of witnesses and a set of refutations
Negation

Brutus did not stab Caesar

\[\mathcal{P} \text{ subj}'/\text{brutus} \sqcap \neg \mathcal{P} \text{ Stabbed} \sqcap \mathcal{P} \text{ ob1}'/\text{caesar} \]

\[= \quad \neg \mathcal{P}(\text{subj}'/\text{brutus} \sqcap \text{Stabbed} \sqcap \text{ob1}'/\text{caesar}) \]
Negation and Ambiguities

- A soldier did not stab everyone
- Brutus did not accuse Caesar for one hour
Outline

Introduction

Event Quantification Problem

Polynomial Event Semantics
 Existential Quantification

Negative Quantification, Negation and Ambiguities

► Conclusions
Summary

An interpretation of Neo-Davidsonian semantics in which the event quantification problem does not even arise

- Denotations are constructed strictly compositionally, following the structure of the sentence
- Quantifiers are analyzed in situ
- No movement, lifting, type raising
- No lambda-calculus, no variables
- Still a Neo-Davidsonian event semantics: VP modification ‘for free’
- Analysis of Quantifier/Negation ambiguities