Events and Relative Clauses

Oleg Kiselyov Haruki Watanabe

Tohoku University, Japan

LENLS

November 21, 2022

Outline

- Introduction

Polynomial Event Semantics

Relative Clauses

Conclusions

Theme

(Polynomial) Event Semantics
Obtaining entailments by 'pure logic'

Theme

(Polynomial) Event Semantics
Obtaining entailments by 'pure logic'

FraCaS
Textual inference problem set

Problem

There was an Italian who became the world's greatest tenor.

FraCaS 001

Dearth of analyses of relative clauses in Event Semantics

More Interesting Example

(1) Every European has the right to live in Europe.
(2) Every European is a person.
(3) Every person who has the right to live in Europe can travel freely within Europe.
(4) Every European can travel freely within Europe.

FraCaS 18

To remind
The goal is to determine if the last sentence in a problem (sentence (4) in our case) is entailed from the others

Even More Interesting Example

There was one auditor who signed all the reports.
There is a car that John and Bill own.

And More...

(5) Smith wrote to a representative every week.
(6) There is a representative that Smith wrote to every week.

FraCaS 308

Answer: undefined

And More...

(5) Smith wrote to a representative every week.
(6) There is a representative that Smith wrote to every week.

FraCaS 308

Answer: undefined
The only example of scoping ambiguity in FraCaS

And More...

two students who skipped three classes every student who skipped no classes
 a student who didn't skip all classes

Not in FraCas, but very common

Outline

Introduction

- Polynomial Event Semantics

Relative Clauses

Conclusions

Sentences and Denotations

John has the right to live in Europe
[has the right to live in Europe] = RTLE : event set [John] = john : individual

Sentences and Denotations

John has the right to live in Europe
[has the right to live in Europe] $=$ RTLE : event set
[John] = john : individual

$$
\begin{aligned}
& \text { [[NP-SUBJ John }]]=\text { subj' }^{\prime} / \text { john } \\
& =\left\{e \mid(e, \text { john }) \in \operatorname{subj}^{\prime}\right\}=\{e \mid a g(e)=\text { john }\}
\end{aligned}
$$

Sentences and Denotations

John has the right to live in Europe

$$
\begin{aligned}
& \text { [has the right to live in Europe }]=\text { RTLE : event set } \\
& \qquad \begin{array}{l}
{[\text { John }]=\text { john : individual }} \\
{[[\text { NP-SUBJ John }]]=\text { subj' }^{\prime} / \text { john }} \\
=\left\{e \mid(e, \text { john }) \in \text { subj }^{\prime}\right\}=\{e \mid a g(e)=\text { john }\}
\end{array}
\end{aligned}
$$

[John has the right to live in Europe] $=$ subj' $/$ john \cap RTLE

Sentences and Denotations

John has the right to live in Europe
[John has the right to live in Europe] $=$ subj $^{\prime} /$ john \cap RTLE

Sentence denotation

- Events witnessing the truth of the sentence
- Formula: Query 'the world record' for such events

Coordination

John and Bill have the right to live in Europe
[John and Bill] $=$

Coordination

John and Bill have the right to live in Europe
$[$ John and Bill $]=$ john \otimes bill : polyindividual

Coordination

John and Bill have the right to live in Europe
[John and Bill] $=$ john \otimes bill : polyindividual
[[NP-SUBJ John and Bill]] $=$ subj $^{\prime} /$ john \otimes bill : polyconcept

Coordination

John and Bill have the right to live in Europe
[John and Bill] $=$ john \otimes bill : polyindividual
[[NP-SUBJ John and Bill]] = subj'/ john \otimes bill : polyconcept
[has the right to live in Europe] $=$
RTLE : event set, isa polyconcept

Coordination

John and Bill have the right to live in Europe

$[$ John and Bill $]=$ john \otimes bill : polyindividual
$[[$ NP-SUBJ John and Bill $]]=$ subj $^{\prime} /$ john \otimes bill $:$ polyconcept
$[$ has the right to live in Europe $]=$
RTLE $:$ event set, isa polyconcept
[John and Bill have the right to live in Europe] $=$ subj' $/($ john \otimes bill) \sqcap RTLE

Coordination

John and Bill have the right to live in Europe
[John and Bill have the right to live in Europe]
$=$ subj $^{\prime} /($ john \otimes bill $) \sqcap$ RTLE

Coordination

John and Bill have the right to live in Europe
[John and Bill have the right to live in Europe]

$$
\begin{gathered}
=\text { subj' }^{\prime} /\left(\text { john } \otimes \text { bill }^{\prime}\right) \sqcap \text { RTLE } \\
=\left(\left(\text { subj' }^{\prime} / \text { john }\right) \otimes\left(\text { subj }^{\prime} / \text { bill }\right)\right) \sqcap \text { RTLE }
\end{gathered}
$$

Coordination

John and Bill have the right to live in Europe
[John and Bill have the right to live in Europe]

$$
\begin{gathered}
=\text { subj' }^{\prime} /(\text { john } \otimes \text { bill }) \cap \text { RTLE } \\
=\left((\text { subj' } / \text { john }) \otimes\left(\text { subj' }^{\prime} / \text { bill }\right)\right) \sqcap \text { RTLE } \\
=\left(\text { subj' }^{\prime} / \text { john } \cap \text { RTLE }\right) \otimes\left(\text { subj' }^{\prime} / \text { bill } \cap \text { RTLE }\right)
\end{gathered}
$$

Coordination

John and Bill have the right to live in Europe
[John and Bill have the right to live in Europe]
$=$ subj $^{\prime} /($ john \otimes bill) \sqcap RTLE
$=\left(\left(\right.\right.$ subj $^{\prime} /$ john $) \otimes\left(\right.$ subj $^{\prime} /$ bill $\left.)\right) \sqcap$ RTLE
$=\left(\right.$ subj $^{\prime} /$ john \cap RTLE $) \otimes\left(\right.$ subj $^{\prime} /$ bill \cap RTLE $)$
$=[$ John has the RTLE and Bill has the RTLE]

Coordination

John and Bill have the right to live in Europe
[John and Bill have the right to live in Europe]
$=\left(\right.$ subj $^{\prime} /$ john \cap RTLE $) \otimes\left(\right.$ subj $^{\prime} /$ bill \cap RTLE $)$

Laws of \otimes
$\perp \otimes x=\perp \quad x \otimes \perp=\perp$, from which follows

$$
x \otimes y \neq \perp \Longrightarrow x \neq \perp
$$

Coordination

John and Bill have the right to live in Europe

[John and Bill have the right to live in Europe]

$$
=\left(\text { subj }^{\prime} / \text { john } \cap \text { RTLE }\right) \otimes\left(\text { subj }^{\prime} / \text { bill } \cap \text { RTLE }\right)
$$

Laws of \otimes
$\perp \otimes x=\perp \quad x \otimes \perp=\perp$, from which follows

$$
x \otimes y \neq \perp \Longrightarrow x \neq \perp
$$

John and Bill have the right to live in Europe \Longrightarrow John has the right to live in Europe

Entailment by 'pure logic'

Quantification

[Every European has the right to live in Europe]

$$
=\left(\text { subj } / \otimes_{i \in E u r o p e a n ~ i) ~}\right) \sqcap R T L E
$$

$\stackrel{\text { def }}{=}\left(\right.$ subj $^{\prime} / \mathcal{A}$ European $) \sqcap$ RTLE $=\left(\mathcal{A}\right.$ subj $^{\prime} /$ European $) ~ \sqcap$ RTLE

Quantification

[Every European has the right to live in Europe]

$$
=\left(\text { subj }^{\prime} / \bigotimes_{i \in \text { European }} \text { i) } \sqcap\right. \text { RTLE }
$$

$\stackrel{\text { def }}{=}\left(\right.$ subj ${ }^{\prime} / \mathcal{A}$ European $) \sqcap \operatorname{RTLE}=\left(\mathcal{A}\right.$ subj $^{\prime} /$ European $) \sqcap$ RTLE
[A_{N} European has the right to live in Europe]

$$
=\left(\text { subj }^{\prime} / \bigsqcup_{i \in \text { European }} \text { i) } \sqcap\right. \text { RTLE }
$$

$\stackrel{\text { def }}{=}\left(\right.$ subj $^{\prime} / \mathcal{E}$ European $) \sqcap$ RTLE $=\left(\mathcal{E}\right.$ subj $^{\prime} /$ European $) \sqcap$ RTLE

Quantification

[Every European has the right to live in Europe]

$$
=\left(\text { subj }^{\prime} / \bigotimes_{i \in \text { European }} \text { i) } \sqcap\right. \text { RTLE }
$$

$\stackrel{\text { def }}{=}\left(\right.$ subj ${ }^{\prime} / \mathcal{A}$ European $) \sqcap \operatorname{RTLE}=\left(\mathcal{A}\right.$ subj $^{\prime} /$ European $) \sqcap$ RTLE
[A_{N} European has the right to live in Europe]

$$
=\left(\text { subj }^{\prime} / \bigsqcup_{i \in \text { European }} \text { i) } \sqcap\right. \text { RTLE }
$$

$\stackrel{\text { def }}{=}\left(\right.$ subj $^{\prime} / \mathcal{E}$ European $) \sqcap$ RTLE $=\left(\mathcal{E}\right.$ subj $^{\prime} /$ European $) \sqcap$ RTLE
[A_{W} European has the right to live in Europe]

$$
=\left(\text { subj }^{\prime} / \bigoplus_{i \in \text { European }} \text { i) } \sqcap\right. \text { RTLE }
$$

$\stackrel{\text { def }}{=}\left(\right.$ subj $^{\prime} / \mathcal{I}$ European $) \sqcap$ RTLE $=\left(\mathcal{I}\right.$ subj $^{\prime} /$ European $) \sqcap$ RTLE

Outline

Introduction

Polynomial Event Semantics

- Relative Clauses

Conclusions

Subject Relative Clauses

[has the right to live in Europe] $=$ RTLE
[who has the right to live in Europe]

$$
=\{a g(e) \mid e \in \mathrm{RTLE}\}
$$

Subject Relative Clauses

[has the right to live in Europe] $=$ RTLE
[who has the right to live in Europe]

$$
\begin{gathered}
=\{\operatorname{ag}(e) \mid e \in \mathrm{RTLE}\} \\
=\left\{i \mid e \in \mathrm{RTLE},(e, i) \in \operatorname{subj}^{\prime}\right\}
\end{gathered}
$$

Subject Relative Clauses

[has the right to live in Europe] $=$ RTLE
[who has the right to live in Europe]
$=\{\operatorname{ag}(e) \mid e \in \mathrm{RTLE}\}$
$=\left\{i \mid e \in \operatorname{RTLE},(e, i) \in \operatorname{subj}^{\prime}\right\}$
$=\left\{i \in \operatorname{dom}\left(\right.\right.$ subjj$\left.^{\prime}\right) \mid$ subj $^{\prime} / i \cap$ RTLE $\left.\neq \varnothing\right\}$

Subject Relative Clauses

[has the right to live in Europe] $=$ RTLE
[who has the right to live in Europe]
$=\{a g(e) \mid e \in \operatorname{RTLE}\}$
$=\left\{i \mid e \in \operatorname{RTLE},(e, i) \in \operatorname{subj}^{\prime}\right\}$
$=\left\{i \in \operatorname{dom}\left(\right.\right.$ subjj$\left.^{\prime}\right) \mid$ subj $^{\prime} / i \cap$ RTLE $\left.\neq \varnothing\right\}$
$=\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$

More Interesting Example

(7) Every European has the right to live in Europe.
(8) Every European is a person.
(9) Every person who has the right to live in Europe can travel freely within Europe.
(10) Every European can travel freely within Europe.

FraCaS 18

Subject Relative Clauses: Entailment

> [Every European has the right to live in Europe. $]=$ $\bigotimes_{i \in \text { European }}[i$ has the right to live in Europe $]$
> $[$ who has the right to live in Europe $]$
> $=\{i \in \operatorname{dom}($ subj' $) \mid[i$ has the right to live in Europe $] \neq \varnothing\}$

Every European has the right to live in Europe.
\Longrightarrow European \subseteq [who has the right to live in Europe]

Another Look at Relative Clauses

> [who has the right to live in Europe] $=\left\{i \in \operatorname{dom(subj^{\prime })|[i\text {hastherighttoliveinEurope}]\neq \varnothing \} }\right.$
> [person who has the right to live in Europe]
> $=$ Person $\cap\{i \in \operatorname{dom}($ subj' $) \mid[i$ has the right to live in Europe $] \neq \varnothing\}$

Another Look at Relative Clauses

> [who has the right to live in Europe $]$ $=\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$
[person who has the right to live in Europe]
$=$ Person $\cap\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$ $=\{i \mid i \in \operatorname{Person} \wedge[i$ has the right to live in Europe $] \neq \varnothing\}$

Another Look at Relative Clauses

[who has the right to live in Europe $]$
$=\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$
[person who has the right to live in Europe] $=$ Person $\cap\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$ $=\{i \mid i \in \operatorname{Person} \wedge[i$ has the right to live in Europe $] \neq \varnothing\}$ $\stackrel{\text { def }}{=} \operatorname{subjs}\left(\bigoplus_{i \in \text { Person }}[i\right.$ has the right to live in Europe $\left.]\right)$

Another Look at Relative Clauses

[who has the right to live in Europe] $=\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$
[person who has the right to live in Europe]
$=$ Person $\cap\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$
$=\{i \mid i \in$ Person $\wedge[i$ has the right to live in Europe $] \neq \varnothing\}$
$\stackrel{\text { def }}{=} \operatorname{subj} \mathbf{s}\left(\bigoplus_{i \in \text { Person }}[i\right.$ has the right to live in Europe $\left.]\right)$
$=\mathbf{s u b j s}\left[\left(\bigoplus_{i \in \text { Person }} i\right)\right.$ has the right to live in Europe $]$

Another Look at Relative Clauses

[who has the right to live in Europe]
$=\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$
[person who has the right to live in Europe]
$=$ Person $\cap\left\{i \in \operatorname{dom}\left(\right.\right.$ subj $\left.^{\prime}\right) \mid[i$ has the right to live in Europe $\left.] \neq \varnothing\right\}$
$=\{i \mid i \in$ Person $\wedge[i$ has the right to live in Europe $] \neq \varnothing\}$
$\stackrel{\text { def }}{=} \operatorname{subj}\left(\bigoplus_{i \in \text { Person }}[i\right.$ has the right to live in Europe $\left.]\right)$
$=\mathbf{s u b j s}\left[\left(\bigoplus_{i \in \text { Person }} i\right)\right.$ has the right to live in Europe $]$
$=\mathbf{s u b j} \mathbf{[}\left[\mathrm{A}_{W}\right.$ person has the right to live in Europe]

Another Look at Relative Clauses

[Every person who has the rtlE can travel freely within Europe.] $=\mathcal{A}\left(\mathbf{s u b j s}\left[\mathrm{A}_{W}\right.\right.$ who has the rtlE $\left.]\right)$
\sqcap [can travel freely within Europe.]

Database join
of "A person has the right to live in Europe." with "can travel freely within Europe" on agent
(Approximate)paraphrase
Some people have the right to live in Europe. Every one of them can travel freely within Europe.

Quantified Relative Clauses

[that Smith wrote to every week] $=\left\{i \in \operatorname{dom}\left(\mathrm{ob1}^{\prime}\right) \mid[\right.$ Smith wrote to i every week $\left.] \neq \perp\right\}$
[representative that Smith wrote to every week]
$=\mathbf{o b 1 s}$ [Smith wrote to a_{W} representative every week]

Quantified Relative Clauses

Smith wrote to a representative every week.
There is a representative that Smith wrote to every week.

FraCaS 308

Outline

Introduction

Polynomial Event Semantics

Relative Clauses

- Conclusions

Conclusions

Dealing with all the challenges listed at the beginning (see the paper)

Future Work

- Mechanical implementation of entailment
- More challenges

It builds up muscles people thought didn't exist the land he had created and lived in

