Events and Relative Clauses

Oleg Kiselyov Haruki Watanabe

Tohoku University, Japan

LENLS November 21, 2022

1

▶ Introduction

Polynomial Event Semantics

Relative Clauses

Conclusions

(Polynomial) Event Semantics Obtaining entailments by 'pure logic'

(Polynomial) Event Semantics

Obtaining entailments by 'pure logic'

FraCaS Textual inference problem set

There was an Italian who became the world's greatest tenor.

FraCaS 001

Dearth of analyses of relative clauses in Event Semantics

More Interesting Example

- (1) Every European has the right to live in Europe.
- (2) Every European is a person.
- (3) Every person who has the right to live in Europe can travel freely within Europe.
- (4) Every European can travel freely within Europe.

FraCaS 18

To remind

The goal is to determine if the last sentence in a problem (sentence (4) in our case) is entailed from the others

Even More Interesting Example

There was one auditor who signed all the reports. There is a car that John and Bill own.

And More...

(5) Smith wrote to a representative every week.

(6) There is a representative that Smith wrote to every week.

FraCaS 308

Answer: undefined

And More...

(5) Smith wrote to a representative every week.

(6) There is a representative that Smith wrote to every week.

FraCaS 308

Answer: undefined The only example of scoping ambiguity in FraCaS

And More...

two students who skipped three classes every student who skipped no classes a student who didn't skip all classes

Not in FraCas, but very common

Introduction

► Polynomial Event Semantics

Relative Clauses

Conclusions

John has the right to live in Europe

[has the right to live in Europe] = RTLE : event set[John] = john : individual

John has the right to live in Europe

[has the right to live in Europe] = RTLE : event set [John] = john : individual [[NP-SUBJ John]] = subj'/ john

 $= \{e|(e, \mathsf{john}) \in \mathsf{subj'}\} = \{e|ag(e) = \mathsf{john}\}$

John has the right to live in Europe

[has the right to live in Europe] = RTLE : event set [John] = john : individual $\begin{bmatrix} [_{NP-SUBJ} \text{ John}] \end{bmatrix} = \operatorname{subj'}/\operatorname{john}$ $= \{e|(e, \operatorname{john}) \in \operatorname{subj'}\} = \{e|ag(e) = \operatorname{john}\}$ [John has the right to live in Europe] = subj'/ john \cap RTLE

John has the right to live in Europe

 $[{\rm John\ has\ the\ right\ to\ live\ in\ Europe}] = {subj'}/{\ john\ \cap\ RTLE}$

Sentence denotation

- Events *witnessing* the truth of the sentence
- ▶ Formula: Query 'the world record' for such events

[John and Bill] =

 $[John and Bill] = john \otimes bill : polyindividual$

 $\label{eq:loss} \begin{array}{l} [John \mbox{ and }Bill] = \mathsf{john} \otimes \mathsf{bill} : \mathrm{polyindividual} \\ [[_{NP-SUBJ} \mbox{ John \mbox{ and }}Bill]] = \mathsf{subj'}/ \mbox{ john} \otimes \mathsf{bill} : \mathrm{polyconcept} \end{array}$

 $\begin{array}{l} [John \mbox{ and }Bill] = \mathsf{john} \otimes \mathsf{bill} : \mathrm{polyindividual} \\ [[_{\mathrm{NP-SUBJ}} \mbox{ John \mbox{ and }}Bill]] = \mathsf{subj'}/\mbox{ john} \otimes \mathsf{bill} : \mathrm{polyconcept} \\ [has the right to live in Europe] = \\ & \mathsf{RTLE} : \mathrm{event \ set}, isa \mbox{ polyconcept} \end{array}$

 $\begin{array}{l} [\text{John and Bill}] = \mathsf{john} \otimes \mathsf{bill} : \mathsf{polyindividual} \\ [[_{NP-SUBJ} \ John \ \mathrm{and} \ \mathrm{Bill}]] = \mathsf{subj'}/ \ \mathsf{john} \otimes \mathsf{bill} : \mathsf{polyconcept} \\ [\text{has the right to live in Europe}] = \\ & \mathsf{RTLE} : \mathsf{event set}, \mathit{isa} \ \mathsf{polyconcept} \end{array} \end{array}$

 $[John and Bill have the right to live in Europe] = subj' / (john \otimes bill) \ \sqcap \ \mathsf{RTLE}$

[John and Bill have the right to live in Europe] = $subj'/(john \otimes bill) \sqcap RTLE$

[John and Bill have the right to live in Europe] = $subj'/(john \otimes bill) \sqcap RTLE$ = $((subj'/john) \otimes (subj'/bill)) \sqcap RTLE$

[John and Bill have the right to live in Europe] $= subj'/ (john \otimes bill) \sqcap RTLE$ $= ((subj'/john) \otimes (subj'/bill)) \sqcap RTLE$ $= (subj'/john \cap RTLE) \otimes (subj'/bill \cap RTLE)$

 $\begin{array}{l} [John \ and \ Bill \ have \ the \ right \ to \ live \ in \ Europe] \\ &= subj'/ \ (john \otimes bill) \ \sqcap \ RTLE \\ &= ((subj'/ \ john) \otimes (subj'/ \ bill)) \ \sqcap \ RTLE \\ &= (subj'/ \ john \ \cap \ RTLE) \otimes (subj'/ \ bill \ \cap \ RTLE) \end{array}$

= [John has the RTLE and Bill has the RTLE]

Coordination

John and Bill have the right to live in Europe

[John and Bill have the right to live in Europe] = $(subj'/john \cap RTLE) \otimes (subj'/bill \cap RTLE)$

Laws of \otimes $\bot \otimes x = \bot$ $x \otimes \bot = \bot$, from which follows

 $x\otimes y\neq\bot\Longrightarrow x\neq\bot$

Coordination

John and Bill have the right to live in Europe

[John and Bill have the right to live in Europe] = $(subj'/john \cap RTLE) \otimes (subj'/bill \cap RTLE)$

Laws of \otimes $\bot \otimes x = \bot$ $x \otimes \bot = \bot$, from which follows $x \otimes y \neq \bot \Longrightarrow x \neq \bot$

John and Bill have the right to live in Europe \implies John has the right to live in Europe

Entailment by 'pure logic'

Quantification

$$\begin{split} & [\text{Every European has the right to live in Europe}] \\ &= (\mathsf{subj'} / \bigotimes_{i \in \mathsf{European}} i) \sqcap \mathsf{RTLE} \\ & \stackrel{\mathrm{def}}{=} (\mathsf{subj'} / \operatorname{\mathcal{A}European}) \sqcap \mathsf{RTLE} = (\operatorname{\mathcal{A}} \mathsf{subj'} / \operatorname{European}) \sqcap \mathsf{RTLE} \end{split}$$

Quantification

[Every European has the right to live in Europe] = $(subj' / \bigotimes_{i \in European} i) \sqcap RTLE$ $\stackrel{\text{def}}{=} (subj' / AEuropean) \sqcap RTLE = (A subj' / European) \sqcap RTLE$

$$\begin{split} & [\mathrm{A}_N \text{ European has the right to live in Europe}] \\ &= (\mathsf{subj'}/\bigsqcup_{i\in\mathsf{European}} i) \sqcap \mathsf{RTLE} \\ \stackrel{\mathrm{def}}{=} (\mathsf{subj'}/\operatorname{\mathcal{E}\mathsf{European}}) \sqcap \mathsf{RTLE} = (\operatorname{\mathcal{E}} \operatorname{subj'}/\operatorname{European}) \sqcap \mathsf{RTLE} \end{split}$$

Quantification

[Every European has the right to live in Europe] = $(subj' / \bigotimes_{i \in European} i) \sqcap RTLE$ $\stackrel{\text{def}}{=} (subj' / AEuropean) \sqcap RTLE = (A subj' / European) \sqcap RTLE$

$$\begin{split} & [\mathrm{A}_N \text{ European has the right to live in Europe}] \\ &= (\mathsf{subj'}/\bigsqcup_{i\in\mathsf{European}} i) \sqcap \mathsf{RTLE} \\ \stackrel{\mathrm{def}}{=} (\mathsf{subj'}/\operatorname{\mathcal{E}\mathsf{European}}) \sqcap \mathsf{RTLE} = (\operatorname{\mathcal{E}\mathsf{subj'}}/\operatorname{\mathsf{European}}) \sqcap \mathsf{RTLE} \end{split}$$

$$\begin{split} [\mathrm{A}_W \text{ European has the right to live in Europe}] \\ &= (\mathsf{subj}' / \bigoplus_{i \in \mathsf{European}} i) \sqcap \mathsf{RTLE} \\ \stackrel{\mathrm{def}}{=} (\mathsf{subj}' / \mathcal{I}\mathsf{European}) \sqcap \mathsf{RTLE} = (\mathcal{I} \operatorname{subj}' / \operatorname{European}) \sqcap \mathsf{RTLE} \end{split}$$

Introduction

Polynomial Event Semantics

► Relative Clauses

Conclusions

[has the right to live in Europe] = RTLE [who has the right to live in Europe] = $\{ag(e) \mid e \in \mathsf{RTLE}\}$

[has the right to live in Europe] = RTLE

[who has the right to live in Europe] = $\{ag(e) \mid e \in \mathsf{RTLE}\}\$ = $\{i \mid e \in \mathsf{RTLE}, (e, i) \in \mathsf{subj'}\}\$ [has the right to live in Europe] = RTLE

[who has the right to live in Europe] = $\{ag(e) \mid e \in \mathsf{RTLE}\}\$ = $\{i \mid e \in \mathsf{RTLE}, (e, i) \in \mathsf{subj'}\}\$ = $\{i \in \operatorname{dom}(\mathsf{subj'}) \mid \mathsf{subj'} / i \cap \mathsf{RTLE} \neq \emptyset\}\$ $\begin{bmatrix} \text{has the right to live in Europe} \end{bmatrix} = \mathsf{RTLE} \\ \begin{bmatrix} \mathsf{who has the right to live in Europe} \end{bmatrix} \\ = \{ag(e) \mid e \in \mathsf{RTLE}\} \\ = \{i \mid e \in \mathsf{RTLE}, (e, i) \in \mathsf{subj'}\} \\ = \{i \in \operatorname{dom}(\mathsf{subj'}) \mid \mathsf{subj'} / i \cap \mathsf{RTLE} \neq \varnothing\} \\ = \{i \in \operatorname{dom}(\mathsf{subj'}) \mid [i \text{ has the right to live in Europe}] \neq \varnothing\} \end{bmatrix}$

More Interesting Example

- (7) Every European has the right to live in Europe.
- (8) Every European is a person.
- (9) Every person who has the right to live in Europe can travel freely within Europe.
- (10) Every European can travel freely within Europe.

FraCaS 18

Subject Relative Clauses: Entailment

[Every European has the right to live in Europe.] = $\bigotimes_{i \in \mathsf{European}} [i$ has the right to live in Europe]

[who has the right to live in Europe] = $\{i \in \operatorname{dom}(\operatorname{subj}') \mid [i \text{ has the right to live in Europe}] \neq \emptyset\}$

Every European has the right to live in Europe. \implies European \subseteq [who has the right to live in Europe]

[who has the right to live in Europe] = $\{i \in \operatorname{dom}(\operatorname{subj'}) \mid [i \text{ has the right to live in Europe}] \neq \emptyset\}$

[person who has the right to live in Europe] = Person $\cap \{i \in \operatorname{dom}(\operatorname{subj}') \mid [i \text{ has the right to live in Europe}] \neq \emptyset \}$

[who has the right to live in Europe] = $\{i \in \operatorname{dom}(\operatorname{subj}') \mid [i \text{ has the right to live in Europe}] \neq \emptyset\}$

 $\begin{bmatrix} \text{person} & \text{who has the right to live in Europe} \end{bmatrix} \\ = \text{Person} \cap \{i \in \text{dom}(\mathsf{subj'}) \mid [i \text{ has the right to live in Europe}] \neq \emptyset \} \\ = \{i \mid i \in \text{Person} \land [i \text{ has the right to live in Europe}] \neq \emptyset \}$

[who has the right to live in Europe] = $\{i \in \operatorname{dom}(\operatorname{subj}') \mid [i \text{ has the right to live in Europe}] \neq \emptyset\}$

 $\begin{bmatrix} \text{person} & \text{who has the right to live in Europe} \end{bmatrix} \\ = \text{Person} \cap \{i \in \text{dom}(\text{subj'}) \mid [i \text{ has the right to live in Europe}] \neq \emptyset \} \\ = \{i \mid i \in \text{Person} \land [i \text{ has the right to live in Europe}] \neq \emptyset \} \\ \stackrel{\text{def}}{=} \text{subjs} \left(\bigoplus_{i \in \text{Person}} [i \text{ has the right to live in Europe}] \right)$

[who has the right to live in Europe] = $\{i \in \operatorname{dom}(\operatorname{subj}') \mid [i \text{ has the right to live in Europe}] \neq \emptyset\}$

 $[\operatorname{person} \text{ who has the right to live in Europe}] = \operatorname{Person} \cap \{i \in \operatorname{dom}(\operatorname{subj}') \mid [i \text{ has the right to live in Europe}] \neq \emptyset \}$ $= \{i \mid i \in \operatorname{Person} \land [i \text{ has the right to live in Europe}] \neq \emptyset \}$ $\stackrel{\text{def}}{=} \operatorname{subjs} \left(\bigoplus_{i \in \operatorname{Person}} [i \text{ has the right to live in Europe}]\right)$ $= \operatorname{subjs}[(\bigoplus_{i \in \operatorname{Person}} i) \text{ has the right to live in Europe}]$

[who has the right to live in Europe]

 $= \{i \in \operatorname{dom}(\mathsf{subj'}) \mid [i \text{ has the right to live in Europe}] \neq \emptyset \}$

[person who has the right to live in Europe] = Person $\cap \{i \in \operatorname{dom}(\operatorname{subj}') \mid [i \text{ has the right to live in Europe}] \neq \emptyset \}$ = $\{i \mid i \in \operatorname{Person} \land [i \text{ has the right to live in Europe}] \neq \emptyset \}$ $\stackrel{\text{def}}{=} \operatorname{subjs} (\bigoplus_{i \in \operatorname{Person}} [i \text{ has the right to live in Europe}])$ = $\operatorname{subjs}[(\bigoplus_{i \in \operatorname{Person}} i) \text{ has the right to live in Europe}]$ = $\operatorname{subjs}[A_W \text{ person has the right to live in Europe}]$

[Every person who has the rtlE can travel freely within Europe.] = $\mathcal{A}(\mathbf{subjs}[A_W \text{ who has the rtlE}])$ \sqcap [can travel freely within Europe.]

Database join

of "A person has the right to live in Europe." with "can travel freely within Europe" on agent

(Approximate)paraphrase

Some people have the right to live in Europe. Every *one of them* can travel freely within Europe.

Quantified Relative Clauses

[that Smith wrote to every week] = $\{i \in \operatorname{dom}(ob1') \mid [\operatorname{Smith} wrote to i every week] \neq \bot\}$

[representative that Smith wrote to every week] = ob1s[Smith wrote to a_W representative every week]

Quantified Relative Clauses

Smith wrote to a representative every week. There is a representative that Smith wrote to every week. FraCaS 308

Introduction

Polynomial Event Semantics

Relative Clauses

► Conclusions

Conclusions

Dealing with all the challenges listed at the beginning (see the paper)

Future Work

▶ Mechanical implementation of entailment

▶ More challenges

It builds up muscles people thought didn't exist the land he had created and lived in