Multiresolutional piecewise-linear image decompositions:
Quantization errors propagation and design of “stable” compression schemes®

Oleg Kiselyov and Paul Fisher
Department of Computer Science
PO Box 13886
University of North Texas
Denton Texas 76203-3886

Phone: (817) 565-2767, FAX: (817) 565-2799
Email: oleg@ponder.csci.unt.edu, fisher@ gab.unt.edu

Index words: image compression, tile-effect-free image compression, lossy
compression, multiresolutional analysis, subband image coding.

Abstract

The paper introduces a new approach to design of stable tile-effect-free multiresolutional
image compression schemes. Rather than discussing convergence and other formal mathematical
properties of multiresolutional analysis, the paper focuses on how quantization errors in
decomposition coefficients affect the quality of the decompressed picture, how the errors propagate
in a multiresolutional decomposition, and how to design a compression scheme where the effect of
quantization errors is minimized (visually and quantitatively). The paper also introduces and
analyzes the simplest family of Laplacian pyramids which yield multiresolutional piecewise-linear
image decompositions. The error propagation analysis presented in the paper has lead to discovery
of particular Laplacian pyramids where quantizations errors do not amplify as they propagate, but
quickly decay. Examples are provided and extensions of the family of decompositions to give
piecewise-quadratic approximations are discussed.

. Subband image analysis and tile-effect in the reconstructed signal

Separating image features according to their ‘scale’, that is, classifying
them into appropriate resolution subbands, is equivalent to passing the image
through a two-dimensional filter bank, a collection of filters where each filter
passes only one particular ‘frequency/resolution band’ of image features and cuts
off everything else [SIMO91, MALLS9]. Each of the bands may be subsampled.
One particular type of the subband decomposition exists when the separate filters
in the bank are constructed according to a single rule:
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Fig. 1. Multiresolutional image analysis in its most general form of subband coding with iterated
filter banks and subsampling of the high-pass band

The original signal (image) is at the very bottom of the left-hand side
pyramid, a Gaussian pyramid [BURTS83], which represents a set of views of the
signal at different resolutions. Subsequent levels of the pyramid are constructed
by successively applying a zoom-out operation

ai” =y g2l-mya), 1=0.2""'-1, m=0.2~1 (1)

which ‘averages out’ fine image details with low-pass filtration and performs a
subsampling, thus reducing the resolution twice. The Laplacian pyramid
[BURTS3] is on the right-hand side of the picture. It is obtained by using a
detail operation, which is similar to zoom-out but uses a complementary filter
h(i) to isolate the high-frequency band clk , which retains the features left out
during the zoom-out operation:

¢/ =S h@2l-myay,, 1=0.2"-1, m=0.2"~1 2)

where h(i) is obviously a high-pass filter. Note that the detail band is also

subsampled. The low-pass band alk ! is treated in a similar way on the next step

of the procedure, and split into the even lower resolution, and the detail
components. Thus, recursive construction of the pyramid from the bottom to the
top, Fig. 1, achieves the multiresolutional decomposition by separating the

original signal into (octave) resolution bands clk by applying a bank of iterated
filters g and hA. It can be shown that if the filters g and & are causal ones, then
the original signal can always be reconstructed in its entirety by reversing the
pyramid construction algorithm and merging the bands. Sections 2 and 3 below
illustrate this point.



Again, the reconstruction in the absence of quantization errors is always
perfect. However, to achieve high compression ratios, the decomposition
coefficients have to be quantized, which inevitably leads to reconstruction errors.
The most frequently occurring distortion is blockiness, or tile-effect. Errors of
this type always arise when the high-pass filter has the following form:

i =ad5,, a5, 1=0.2"1-1, (3)

which is the filter used in the Haar wavelet decomposition [DEV092, KIFI93].

Indeed, suppose we performed such a quantization of the wavelet decomposition

that all bottom level coefficients clkm“x_l are set to 0 (a very common case). It

immediately follows that the first derivative of the restored function would be
zero on intervals [2[,2]+1], that is, the restored function would be piecewise-

constant, as™ = gA™%* with possible large breaks from a5 to ajr. That is

exactly what blockiness means. Another easy way of looking at it is to decompose

a sample ramp function fi=h+i-g and then set ¢, to 0. In the original

function, f(i+1)-f(i) = g is always constant. In the restored function, f(2i+1)-f(21)
= 0, but f(21+2)-f(21+1)=2g (big step). It is interesting to note that no matter
which low-pass filter is used, the blockiness would always exist as long as the
high-pass filter, eq. (2), is of the first order. Thus, to avert blockiness, we need
to use higher-order filters. The paper also shows that the way to avoid the tile-
effect, in terms of the wavelet analysis, is to allow overlap in integer translates of
the scaling function (mother wavelet) @(x), which implies that supp[@(x)] should
extend beyond [0,1].

Il. 1D piecewise-linear stable multiresolutional decompositions

The present paper thoroughly analyzes the subband image coding with
iterative filter banks in the simplest case of 3-point causal filters. For the sake of
clarity, we consider one-dimensional signal decompositions first. As we saw
above, the only way to eliminate the blockiness (piecewise constantness) upon
quantizing of decomposition coefficients is to use a high-pass filter of the order
higher than one. For example, if we employ a second-order filter, quantizing of
decomposition coefficients results in a piecewise linear function, i.e., a function
with a piecewise constant first derivative. This gives much better visual
appearance than blockiness, as examples in the next two sections illustrate.

There is only one 3-point second-order high-pass causal filter (up to
normalization):

k=1 _ k ko, k
¢, Fagi- —2ay; tay 4)



As to the low-pass filter, for a moment we consider it as general as a 3-
point causal filter can be. Thus, we will analyze the following decomposition
formulas:

af™ = f. (original signal) (51)
k=1 _ k koo ok io. k-l k_ k

Ci  Tayiy T2a3 *+a3,,i>0; cg =ap ~ag (52)
k-l _  k k k

ai = P1agi- t pray; t p3ayieg, k>0 (53)

We consider a’_‘1 = a(’)‘, assuming the signal continuity through the sample border.
Eq. (53) has to be a low-pass filter so that the constant signal can pass unharmed.
In other words, if the signal does not change over the span of three sample points,
it obviously represents a larger-scale feature (with no fine details), which should
be passed over and dealt with at higher levels of the decomposition. Therefore,
we have the following requirement for coefficients pi-pa:

prtp,tps=1 (61)
Moreov_er, we also want coefficients to satisfy the following “desirable”
properties:

PP tp3=0 (62)

p2>0, p3>0 (63)

Equation (6,) essentially says that the filter should cut off the highest possible
frequency completely. It is easy to see that along with eq. (6;) it leads to py=V5.
Though this is not a strict requirement, it is still a desirable property for a low-
pass filter. The reconstruction formulas are:

af™ = (af ~ psc§ )/ (24P *p3), (7))
af ™ = (af +(pi+ps)et )1 (py+pa+p3), (72)
a5 = (af = pscf +(py=p)akth )1 (p2+2p5), (75)
iy = (26’1']( +pact =(py +2P1)a§z'+—11)/(192 +2p3), i>0 (74)

If both p, and p3 are positive, then it is obvious that the formulas are stable with
regard to a small error in cik . To keep the errors in aik and a’zc;’_ll from
amplifying, we need the following conditions:

(p3s—p) /! (py +2p3)<l1 (81)
(pr t2p)/(py +2p3)<l1 (32)
Py (py +2p3) <1, p3/(py, +2p3)<l (83)



2/(py +2p3) <l (84)

If both p; and p3 are positive (as desired), then (83) holds automatically. Eq. (8;)
is also satisfied because of (61). Egs. (8,) and (84) along with eq. (61) give rise to
the following stability condition:

p3 >1+p, )

Incidentally, it implies that p; must be negative. Note, if we want to make pr=p3,
we must have p,=p3>%3 and p1<-143.

To see clearly what a difference a stable filter makes, consider the
following three choices for the low-pass filter coefficients:

=0, p, =%, P3 =% (10)
P="% P2=%. P3i=3 (11)
P~ _%’ P2 :%, p3 =1 (12)

Eq. (10) corresponds to a very unstable filter, which lets quantization errors
propagate with amplification; Eq.(11) is the borderline case, where the errors do
not amplify, but do not decay in some cases either. Eq. (12) specifies the stable

filter, where an error in a decomposition coefficient clk quickly decays and does
not significantly spread.

To get a better picture of distortions in the reconstructed signal due to the
quantization of decomposition coefficients, we conducted some 1D simulations in
MATLAB using various waveforms for the original signal, which can be
considered a cross-section (profile) of a two-dimensional image. The present
abstract shows a few sample results for a gaussian, that is, bell-shaped waveform.
This waveform is a good realistic approximation for a profile of a sharp edge in
a picture. In MATLAB notation, the waveform can be described as

orig_signal = (255*exp (- (x-16).72/40)+10)

The original signal was decomposed into a number of subbands using formulas
(7) with a low-pass filter specified by each of egs. (10-12), in turn. The
decomposition was quantized in such a way that three bottom level bands were
completely leveled off (that is, clk were set to zero for all / and k=kmax, kmax-
1, and kmax-2). The following pictures show the original signal (always in light
gray) and the signal reconstructed after the quantization of the subband
decomposition:
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Fig. 2. Original “bell profile” and reconstructed one after the quantization with the low-pass filter
(10). Maximum absolute reconstruction error is 60.42. Piecewise constant reconstruction is shown
in dash line.

The figure clearly demonstrates that after three levels of the decomposition
coefficients have been zeroed in, the reconstruction is rather poor: the ringing is
quite noticeable and the edge is significantly blurred. This is a consequence of the
“instability” of the decomposition, in the sense defined above. Fig. 2 also plots a
result for the Haar-wavelet decomposition quantized to a comparable level. As
one can see, even a far from perfect piecewise-linear reconstruction is still better
than the piecewise-constant one.
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Fig. 3. Original “bell profile” and reconstructed ones after the quantization with the low-pass
filters: eq. (11) (in gray dash) and eq. (12) (black solid). Maximum absolute reconstruction errors
are 34.98 and 64.80, and L errors 14.39 and 19.79, max of a derivative 29.50 and 35.19
correspondingly (max of a derivative for the original signal being 34.43)
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Fig. 4. First derivative of the original “bell profile” and the reconstructed signals after the
quantization with the low-pass filters: eq. (11) (in gray dash) and eq. (12) (black solid)

Figures 3 and 4 show that a stable 3-point low-pass filter makes quite a
difference. The plot of the first derivative on Fig. 4 points out very clearly that
in spite of a harsh quantization, the reconstructed signal conveys rather accurately
the form and shape of the original signal, asserting not only the tile-effect-free
reconstruction but also a high contrast.

lll. Stable high-contrast image compression scheme

The present section generalizes the stable subband decomposition
algorithm outlined above for images, two-dimensional signals. In the 2D case, we
use separable filters, which are tensor products of the corresponding 1D
functions. Note, that now we have one low-pass filter and three high-pass filters:

k=1 _ k ok ok
16%’ —dyi-12j-1 ~ 42i-1,2j 4a2i—1,2j+1 (131)
ok k k
Apinj-1 tayin; T4y 054
Ak k k
Aazisinj-1 T 405410 1605412541
k=1 _ _ k k k
8cvi ==y T gm0 YAy 04 (132)
k Ak ok
t2a5,5j-1 —2a3;5; 843541

ok k k
yir1pj-1 F Drivinj A4 0541



k-1 _ _ k k ok
8chj ~ ==ay;_15j-1 Y205;-12; ~ ai-12j+1 (133)

k Ak k
tay0i-1 ~ 2050 T ayinjn

k ok k
t4ay10j-1 ~8ay412; 4511041

k-1 _ k Ak k
dedyp ~ = ayi10j-1 ~ 20510 T Ayim10j41 (134)

Ak kK _~ Kk
2ay;5-1 Y4ay5; —2055i4
k _n kK k
tayis10j-1 ~2a5410; T g1 04
Here ch band characterizes horizontal features, cv represents vertical ones,
while cd band is related to diagonal image features [MALLS9].

The paper talks at great length about how to perform decomposition so that
all the coefficients are integral. It should be stressed that the reconstruction in
absence of quantization is always perfect. The paper also tests the stable image
compression method on a set of “standard” images, to show how well simple
patterns of vertical/diagonal edges, ramp gradient fills, etc., are reconstructed.
Since the patterns are very simple, it is easy to see what kind of visual distortion
(blurring of an edge, ringing, lost contrast, staircase diagonal edge, etc.) a
particular compression technique introduces. Moreover, however simple the
patterns are, they represent most characteristic and most common (tiny) parts of
a complex picture. Therefore, if reconstruction of the simple images appears
pleasant, one can expect good results for realistic images, too. Given below is an
example for one of the simple test patterns:

Fig. 5a. Original test pattern Fig. 5b. reconstructed pattern after ripping
off three bottom layers, RMSE 17.90, L
error 7.80, Lo error 94
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Fig. 5c. Horizontal cross-section of the patterns, Figs. 5a and 5b.

Finally, the following pictures show how well the proposed subband coding
algorithm works for “real” images, a satellite picture of clouds in particular:
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Fig. 6a. Original Clouds. Printed at scale 2:1
after the contrast enhancement of the inverted
LUT.

Fig. 6b. Compressed image, compression
ratio 40:1, RMSE 6.26, L error 4.22

The reconstructed picture does not look blocky at all, even at relatively
high compression ratios: usually when the ratio reaches 30:1, one can notice
blockiness in the background of the picture if one uses JPEG or Haar-base
wavelet compression.

References

[BURTS83] Burt, P., Adelson, E., “The Laplacian Pyramid as a Compact
Image Code,” IEEE Trans. Comm., Vol. 31, No. 4, pp. 532-540, April 1983.

9



[DEVO92] DeVore, R. A., B. Jawerth, B. J. Lucier, “Image Compression
Through Wavelet Transform Coding,” IEEE Trans. Inf. Theory, Vol. 38, No. 2,
pp. 719-746, 1992.

[KIFI93] Kiselyov, O. and P. Fisher, “Pyramidal Image Decompositions:
A New Look,” in Proc. DCC'93, 1993 Data Compression Conference, Snowbird,
Utah, p.479, March 30-April 2, 1993.

[MALLS89] Mallat S., “A Theory for Multiresolutional Signal
Decomposition: the Wavelet Representation,” IEEE Trans. on Pattern Analysis
and Machine Intell., Vol. 11, No. 7, pp.674-693, July 1989.

[SIMO91] Simoncelli E.P., Adelson E.H., “Subband Transforms,” in
Subband Image Coding, Ed. J.W.Woods, Chapter 4, Kluwer Academic
Publishers, 1991.

10



