
1

Image Compression with Iterated Function Systems, Finite Automata and
Zerotrees:

Grand Unification*

Oleg Kiselyov and Paul Fisher
Computer and Information Sciences, Inc.

303 N.Carroll blvd., Suite 108
Denton Texas 76201

Phone: (817) 484-1165, FAX: (817) 484-0586
Email: oleg@ponder.csci.unt.edu, fisher@compsci.com

Index words: self-similarity, fractal image compression, iterated function system,
multiresolutional analysis, wavelet decomposition, predictor/corrector.

Abstract
Fractal image compression, Culik’s image compression and zerotree prediction coding of

wavelet image decomposition coefficients succeed only because typical images being compressed
possess a significant degree of self-similarity. This is a unifying, common concept of these
seemingly dissimilar compression techniques, which may not be apparent due to particular
terminologies each of the methods uses. Besides the common concept, these methods turn out to
be even more tightly related, to the point of algorithmical reducibility of one technique to another.
The goal of the present paper is to demonstrate these relations.

The paper offers a plain-term interpretation of Culik’s image compression, a very capable
yet undeservingly underrepresented method giving spectacular results. The Culik’s method will be
explained in regular image processing terms, without resorting to finite state machines and similar
lofty language. The interpretation is shown to be algorithmically related to an IFS fractal image
compression method: an IFS can be exactly transformed into Culik’s image code. Using this
transformation, we will prove that in a self-similar (part of an) image any zero wavelet coefficient
is the root of a zerotree, or its branch.

The paper discusses the zerotree coding of (wavelet/projection) coefficients as a common
predictor/corrector, applied vertically through different layers of a multiresolutional decomposition,
rather than within the same view. This interpretation leads to an insight into the evolution of image
compression techniques: from a causal single-layer prediction, to non-causal same-view
predictions (wavelet decomposition among others) and to a causal cross-layer prediction (zero-
trees, Culik’s method). A non-causal cross-level prediction appears to be the next step. Will
someone take it?

I. Introduction

The present paper deals with analysis, generalizations and unifications of
the latest group of powerful image compression techniques: fractal image
compression with Iterated Function Systems (IFS) [BARN93], Culik’s
compression with finite automata [CULI95] and Shapiro’s embedded coding of

* This work was supported in part by US Navy SPAWAR Grant N00039-94-C-0013 “Compression of Geophysical
Data” and by US Army Research Office TN 93-461 administered by Battelle Research Office.

2

wavelet coefficients using zerotrees [SHAP94]. All three techniques achieve
premium results by exploiting properties of self-similarity of typical images. In
more precise terms, they all rely on the fact that parts of image representations at
different resolutions may in some sense be similar. Therefore, a higher-
resolution representation may be rather accurately predicted from a low-
resolution one. This leads to compression due to compactness of the low-
resolution view and smallness of the prediction errors (corrections).

Although this conceptual unity is fairly obvious, details of the precise
relationship among these methods are a bit obscure. This is partly because of
specialized non-intersecting terminology domains used to describe these
techniques: iterated transforms, finite automata, wavelet image transform. In the
present paper, we will show that all three methods can be formulated in plain
terms of a common language, which makes the kinship of these techniques
manifest. Furthermore, it turns out that these methods are not only conceptually
related, they are algorithmically reducible as well. The paper demonstrates an
algorithm by which an image coding with one technique can be exactly
transformed into another method’s image code, with both codes yielding identical
reconstruction results. Specifically, we will show how an IFS can be rendered in
terms of projection matrices of Culik’s method. Although these techniques appear
to function in opposite ways (an IFS iteration shrinks the image iterated upon,
while a Culik’s iteration expands it), the reduction of one to the other is indeed
possible, with both iterations producing identical results at all steps up to the final
reconstructed image. This transformation also allows us to demonstrate in exact,
precise terms how self-similarity of a part of an image gives rise to a zerotree of
corresponding wavelet coefficients. In other words, if an image can be adequately
represented by an IFS, every zero/insignificant wavelet coefficient in its
decomposition is a root of a zerotree branch.

The three methods above can be considered the latest step in evolution of
image compression techniques. Since every compressor is based on modelling
(prediction) of a source and compact representation (or disregarding) of the
prediction errors, what sets different algorithms apart is whether prediction is
causal, and what quantity is predicted. For example, CCITT Group III, JPEG
lossless, etc., use a causal prediction of a pixel from its same-resolution
neighborhood. A Laplacian pyramid decomposition, perfected by a Wavelet
image transform, is an example of a non-causal prediction, as first noted by Burt
[BURT83]. There, the neighborhood surrounds the pixel in question on all flanks.
This usually leads to a more accurate prediction (and, therefore, smaller
correction). Then came a zerotree coding, a causal prediction of a
coefficient/pixel based upon its resolutional neighborhood. This cross-resolutional
prediction is indeed causal: if a parent tree node is zero (insignificant), all kid
nodes are anticipated to be zeros as well. Non-causal cross-resolution predictor
awaits: wavelet decomposition of layers of wavelet decomposition?

3

II. Culik’s method revealed: fat pixels and exposing projectors

Culik’s method is based on an alternative exact representation of an image
as a single “fat” pixel, which gets stretched and smeared during repeated
expansion operations, until it covers the whole area of the original picture.
Unlike a regular, “thin”, pixel (which holds a single value: brightness of the
corresponding picture element), the fat pixel is a vector. The brightness of the
corresponding picture element is computed as a linear combination of the fat
pixel vector elements. In the simplest case, one can consider the first element of a
fat pixel vector to be a “visible” brightness, with the rest of the vector values
being “hidden”. The hidden values show up during projection by four matrices,
which arrange fat pixel(s) into four quadrants of a larger picture. This
representation of an image by a single fat pixel is always possible, and the
original image can be reconstructed in its entirety. As an example, the picture
below shows a representation of a 4×4 image by a single 16-vector (fat pixel).
Different pixels are numbered 1 through 16: these are merely pixel labels rather
than actual pixel values.

 1 2 5 6..
 3 4 7 8..
 9 10 13 14..
 11 12 15 16

1

 6 8 14 16 ... 5 7 13 15 ...

 1 3 9 11 ... 2 4 10 12 ...

16151413

1211109

8765

4321

C3

C2

C1

C0

C0

Fig. 1. Example of fat pixel revelations to precisely reconstruct an image. Far left: the original
image. Far right: a single fat pixel with 16 components. Center: a partial revelation of hidden

components (grayed) upon application of the four transformation matrices.

There are only four projection matrices, C0-C3, which are applied over and over
again to produce an image at a finer resolution. For example, applying transform
C0 to the original fat pixel (Fig. 1, far right) makes a lower-left fat pixel of a 2×2
square, at the center of Fig. 1. Applying C0 again, to the entire 2×2 square, gives
the lower-left quadrant of the image on Fig. 1, far left. The projection matrices
in the example above are trivial:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

.........

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

.........

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

.........

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

.........

C1 C3 C0 C2
Fig. 2. Projection matrices for Fig. 1.

4

They obviously are permutation matrices: matrix C1 picks up every forth element
of a vector, matrix C3 picks the next ones, etc.

The image representation above does not yet give any compression;
moreover, we need an additional space to store coefficients of the projection
matrices. However, it might turn out that the original image or its close
approximation can be reconstructed with less fat pixels. For example, consider a
Sierpinski gasket:

Fig. 3. Making of the Sierpinski gasket: two steps of expanding a thin pixel.

As the figure shows, one needs only a single “thin” pixel and four 1×1 matrices
C0=C1=C2=1, C3=0 to make the gasket at any resolution. Another example is a
diagonal grayscale ramp (this example is almost identical to the one given in
Culik’s paper [CULI95]). The numbers in squares in the figure below are the
pixel values themselves, on a 1-256 scale.

256

128

64

256

192

256

256

128

256

128
214

32
128

192
192

160

160
160 128

128

128

96
96

96
64

64

Fig. 4a. Original fat pixel (a
hidden component is grayed)

Fig. 4b. One step of
transformation

Fig. 4c. Two steps of
transformation (all hidden

components have the value of
256, and not shown)

The projection matrices are as follows:

C0 =
1

2
1

2

0 1






, C1 = C2 =

1
2

1
4

0 1






, C3 =

1
2 0

0 1







(1)

One can iterate further to obtain a bigger image, with smoother gray scale
gradations. In any case, one needs only a single 2-vector (fat pixel) and four 2×2
matrices, 18 short integers total, to represent even 256×256 and bigger images.

As Culik’s presentations at DCC conferences have demonstrated, even
realistic pictures (of lenna, among others) can be represented quite compactly
with only 300 or so coefficients total (as compared to 1/4M pixels in case of a
512×512 grayscale picture).

5

III. Culik’s Compression and Iterated Function Systems

Examples of Culik’s iterations shown above strongly suggest that Culik’s
method must be very closely related to iterated function systems. It is indeed: in
this section, we will show how one can convert an IFS into Culik’s transform/fat
pixel.

Iterated Function System (IFS) is a finite collection of contraction
mappings [BARN93]. In practice [BARN93, KOMI95], these mappings are
usually specified as transformations between two partitionings of the same image
into blocks. One, a finer scale partitioning into range blocks, is usually a regular
tiling of the image into non-overlapping, usually 4×4 blocks. Another
partitioning uses bigger blocks, called domain blocks, which can overlap and do
not have to cover the whole picture. Usually domain blocks are twice as big as the
range blocks. An IFS is made of separate transformations from a domain block to
a range block. A single transformation squeezes the domain block and linearly
adjusts its brightness. For example, the figure below depicts a very simple IFS
with a single domain block and four smaller range blocks:

D
α0D+β0

α3D+β3

α1D+β1

α2D+β2

Fig. 5. Sample IFS with a single domain block

Note that the exact sizes of the blocks are irrelevant in this example. The only
thing that matters is that the range blocks and the domain block both partition the
same image, and that range blocks are half as big in each dimension as compared

to a domain block. A linear transform of block’s brightness αD+β applies to all

pixels of the domain block D. For example, starting with a square image with a
uniform brightness (grayscale) value y, and applying the transformations above
once, and then again, one obtains:

6

α1y+β1

α2y+β2α0y+β0

α3y+β3

α0α1y+

α0β1+β0

α1α3y+

α3β1+β3

α1α2y+

α1β2+β1

α0α3y+

α0β3+β0

α2
1y+

α1β1+β1

α1α3y+

α1β3+β1

α0α1y+

α1β0+β1

α2
0y+

α0β0+β0

α0α2y+

α0β2+β0

α2
3y+

α3β3+β3

α2
2y+

α2β2+β2

α0α2y+

α2β0+β2

α1α2y+

α2β1+β2

α2α3y+

α2β3+β2

α0α3y+

α3β0+β3

α2α3y+

α3β2+β3

Fig. 6a. Application of IFS, Fig. 5, to a square
image of uniform brightness y considered as a

single domain block

Fig. 6b. Application of IFS, Fig. 5, to a an
image Fig. 6a considered as a single domain

block

The result of one iteration is an image of the same size but with four times as
many details. Once the size of a detail diminishes down to one pixel, one may stop
iterating: for all practical purposes, “convergence” is achieved. It is obvious that
the content of the starting image becomes less and less important, as it shrinks

twice at each iteration. Moreover, providing α i < 1, all the series on Fig. 6b

converge, to a limit not depending on the initial value y.

Precisely the same result can be obtained with Culik’s transforms, with the
original fat pixel i and projection matrices as follows:

i =
y

1






, Ck =

α k βk

0 1






, k = 0,1,2,3 (2)

Indeed, applying the Culik’s projection once to the fat pixel i gives a picture
exactly like Fig. 6a. The only difference is that each quadrant is now a pixel
(rather than a square ‘subimage’), and it is a fat pixel with a hidden value of 1.
Applying the projection once again results in Fig. 6b, with the identical
interpretation. In general, it is obvious that an IFS launched from a square image

of size 2m, and the Culik’s transform give identical (and identically sized) results
after m iterations each.

Note Fig. 4 above is a particular case of this example, Fig. 6 and eq. (2),
with

α k = 1
2 , β0 = 128, β1 = β2 = 64, β3 = 0, y = 128 (3)

Let us consider now a more complex IFS, with several domain blocks.
First, we will try an example with a single transform, a mapping between a
domain and a range block:

7

D
αD+β

Fig. 7. Sample IFS with a single domain-to-range block mapping

Iterating upon a square with a uniform brightness y yields, in turn:

αy+β

0 0 0 0

00 0

00

0

000

0

0

α2y+
αβ+β

0 0

0

00

00

000

0

0

ββ

β
α3y+α2β
αβ+β

0 00

000

0

0

β

β

β

0 00

000

0

0

0 00

000

0

0

0 00

000

0

0

0 00

000

0

0

0 00

000

0

0

β

ββ

β

β

β β

β β

αβ+βαβ+β

αβ+β

Fig. 8a. Application of IFS,
Fig. 7, to a square image of

uniform brightness y
considered covered by the 4

domain blocks

Fig. 8b. Application of IFS,
Fig. 7, to the image Fig. 8a
considered covered by the 4

domain blocks. Only the lower
right quadrant is shown.

Fig. 8c. Application of IFS,
Fig. 7, to the image Fig. 8b
considered covered by the 4

domain blocks. Only the lower
right quadrant is shown.

The corresponding Culik’s transformation is:

i =

0

y

1

1















, C0 =

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1















, C1 = C2 =

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1















, C3 =

0 0 0 0

0 α 0 β
0 0 1 0

0 0 0 1















(4)

It is evident that the first iteration of projecting the starting fat pixel i leads to a
picture on the right-hand side of Fig. 7; the second iteration results in Fig. 8a.
Iterating once more gives, in turn, Fig. 8b and Fig. 8c, etc.

A more complex example involves two domain blocks and two “mutually
dependent” transforms:

D0

γD+δD1

αD+β

Fig. 9. Sample IFS with a mutually-dependent domain-to-range block mapping

which converges to something like

8

Fig. 10. Third iteration of IFS Fig. 7

The fat pixel i and the projection matrices corresponding to the example are as
follows:

i =

0

x

y

1

1

1

















, C0 =

0 1 0 0 0 0

0 0 0 0 0 0

0 α 0 0 β 0

0 I









 , C1 = C2 =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 I









 , C3 =

0 0 1 0 0 0

0 0 γ 0 0 δ
0 0 0 0 0 0

0 I









 (5)

where I is a 3×3 unit matrix and 0 is a 3×3 zero matrix. As one can easily verify
by applying these projection matrices to the fat pixel i over and over again, the
result at each iteration is identical to that for the IFS Fig. 9.

Thus the IFS and Culik’s image compression methods are indeed very
tightly related, despite outward differences: an IFS iteration shrinks and
reshuffles input image tiles, while a Culik’s iteration merely rearranges its input,
always in the same regular way. The Culik’s method starts with a single domain
block (that is, the entire image, or a “fat” pixel), and uses “range” blocks of the
same size as the domain block itself. However, the Culik’s method makes up for
the lost “translational” degrees of freedom by using “fat” pixels and a more
complex luminance transform: although linear, but vector rather than scalar.
Similar to IFS, Culik’s matrices are required not to amplify pixels’ luminance
[CULI95]; i.e., the matrices should be contractive, or at least, not expanding.
Finally, as examples above show, an IFS can indeed be algorithmically reduced to
a Culik’s transform. The general algorithm of this reduction and its inverse are
discussed in more detail in the paper.

It is obvious from the examples above that an IFS with k transforms
requires a 2(k+1)-element fat pixel and four 2(k+1)×2(k+1) projection matrices.
Note that the bottom half of these matrices is just a unit matrix, which does not
have to be stored at all. The upper halves are also very sparse, which ought to be
taken advantage of. For example, one can regard a projection matrix as a distance
matrix for a directed weighted graph. Since the matrix is sparse, the
corresponding graph would have rather few edges, which can be more efficiently
stored as a list. Thus we come to exactly the same weighted graphs Culik
originally used to represent his finite automata [CULI95]. Hence, the automata
described by Culik are nothing but a neat trick to efficiently store and use sparse
projection matrices.

9

IV. An IFS image has a zerotree of wavelet coefficients

 The title of the section is actually a formulation of a theorem the paper
presents and proves. In precise terms, within an image or a part of it with a
property of self-similarity, i.e., which can be adequately described/reproduced by
an IFS, a zero wavelet coefficient is always a root of a zerotree branch. In other
words, if a wavelet coefficient at some particular resolution turns out to be zero
(exactly or within some tolerance), all the child coefficients, at finer resolutions,
will be zero as well (exactly or within the same tolerance). Thus, as long as an
image has enough self-similarity to allow efficient compression by an IFS (or,
which is the same, by Culik’s method), a zerotree coding of wavelet coefficients
would be beneficial. This is the unifying idea mentioned above; the theorem gives
it a more precise meaning.

Because of space constraints, we will show the proof of the theorem on a
small but characteristic example. We will analyze a case of a simple Haar wavelet
transform, which has very short wavelet filters, spanning, in 2D, over a cluster
of four “pixels”. Consider a set of zoomed-out views of a self-similar (part of a)
picture, and assume that the top view is made of the 4-pixel cluster. Following the
premise of self-similarity, all these views are well described by an IFS, or (which
is the same as we saw above) by a Culik’s transform. Let corresponding “fat”
pixels of the cluster be F0, F1, F2, and F3, and the projection matrices C0-C3. Let

us arrange the four-pixel neighborhood in a block-vector F=(F0 F1 F2 F3)'. Note

that the fat pixels are vectors themselves, that is why we call F a block-vector.
Finer resolution views of the cluster can be obtained by projecting it with (block)
matrices Ci. For example, the lower-left quadrant of the cluster at a higher

resolution can be computed as

C0 0 0 0

0 C0 0 0

0 0 C0 0

0 0 0 C0















F0

F1

F2

F3















≡ C0F (6)

where C0 is a block-projection matrix. The pixels F0-F3 can be combined to yield

a (fat) wavelet coefficient W, by using a 2D (high-pass) filter with coefficients
[h0,h1,h2,h3]:

W = HF ≡
h0 I h1I h2 I h3 I

h0 I h1I h2 I h3 I

h0 I h1I h2 I h3 I

h0 I h1I h2 I h3 I















F ≡
I

I

I

I









 h0 I h1I h2 I h3I()F (7)

where I is a unit matrix of the size that of Fi. The pivoting point of the proof is

the fact that matrix H is commutative with Ci. This is easy to see by directly

computing CiH and HCi, which in both cases gives:

10

CiH ≡ HCi ≡
I

I

I

I









 h0Ci h1Ci h2Ci h3Ci() (8)

A child wavelet coefficient at any finer resolution can be computed then as

Wkid = HCi

0

Ci
1

L Ci
k

F = Ci
0

Ci
1

L Ci
k

HF (9)

Note that the first element of a fat pixel Fi, Fi0, is the visible pixel. The hidden

elements are either 1, or can be set to 1, because it does not matter in the case of
contracting matrices Ci, as we saw above. Since the wavelet filter H is high-pass,

(h0 h1 h2 h3)(1 1 1 1)' is exactly zero. Therefore, if the wavelet-filtering of

visible pixels Fi0 gives zero as well, the entire fat wavelet coefficient W=HF is a

zero matrix. It follows then from eq. (9) that all the children wavelet coefficients
are zeros as well.

One can easily accommodate other wavelet filters by considering larger
neighborhood of pixels. Block-vector F and block-matrices Ci would have more

block-rows/columns, but the derivations remain the same. It is also easy to
generalize the result to a case when a wavelet coefficient is not exactly zero, but
small. As long as matrices Ci are not expanding (that is, convergence is

guaranteed), all kid wavelet coefficients would be just as small as their parent.

References

[BARN93] Barnsley, M.F., Hurd L.P., Fractal Image Compression, AK
Peters Ltd., 1993, 244 p.

[BURT83] Burt, P., Adelson, E., "The Laplacian Pyramid as a Compact
Image Code," IEEE Trans. Comm., Vol. 31, No. 4, pp. 532-540, April 1983.

[CULI95] Culik, Karel II, Kari, J., "Finite State Methods for Compression
and Manipulation of Images," in Proc. DCC'95, 1995 Data Compression
Conference, Snowbird, Utah, pp.142-151, March 28-30, 1995.

[KOMI95] Kominek, John, "Convergence of Fractal Encoded Images," in
Proc. DCC'95, 1995 Data Compression Conference, Snowbird, Utah, pp.242-
251, March 28-30, 1995.

[SHAP94] Shapiro, J.M., "Embedded image coding using zerotrees of
wavelet coefficients," IEEE Trans. on Signal Processing, Vol. 41, No. 12, pp.
3445-3462, December 1994.

